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Abstract

This paper describes a grammar formalism and a deterministic parser developed for text nor-
malisation in the rVoice1 text-to-speech (TTS) system. The rules are formulated using regular
expressions and converted into a non-deterministic finite-state transducer (FST). At runtime,
search is guided by parsing preferences which the user may associatewith regular operators;
the best solution is determined in a way similar to the directional evaluation of constraints in
Optimality Theory. During compilation, the FST is converted into a bimachine, making deter-
ministic parsing possible.

1 Motivation

Over the past decade, speech synthesis has become one of the most succesful com-
mercial applications of natural language and speech processing technologies. During
this time, it has established itself as a standard solution in call centre applications,
telephone banking and several other areas. The reason for its success is rightly at-
tributed to the emergence of high-quality unit selection synthesis methods (Hunt and
Black 1996). However, as a result of this focus onspeechprocessing, thetextprocess-
ing part of TTS typically receives less attention although ahigh quality text front end
is indispensable for a good TTS system.

The task of the text front end in a TTS system is to convert raw input text into
a sequence of unambiguous phonetic symbols. For example, the sentence“On 22/5,
Mr Brown had to pay an$80 fine” may be transformed to the phonetic representation
[on D@ twentI sek@nd @v meI mIst@ braUn hæd t@ peI @n eItI dol@ faIn]. While mapping
some of the words (e.g.pay) to phonetic symbols is straightforward, other parts of the
input require a complex multi-stage transformation, e.g.,$80→ eighty dollar→ [eItI

dol@]. Non-trivial processing is required for numbers, dates (22/5), currency amounts
($80), abbreviations (Mr) and many other types of expressions. It is often context
dependent (e.g.$80→ eighty dollar/eighty dollarsas inan $80 finevs. he was fined
$80).

Typically, text processing is split into two main stages. Inthe first one, abbrevia-
tions, digits and symbols are rewritten as literal text (e.g. On 22/5, Mr Brown had to
pay an$80 fine→ On the twenty-second of May, Mister Brown had to pay an eighty
dollar fine). Then, the actual phonetic rewrite takes place.

The termtext normalisationcommonly refers to the first processing stage, which
is also the more difficult one. Due to the required broad coverage, text normalisation
grammars tend to be very large and complex. As in other areas of NLP, disambiguation
of alternative analyses is the main source of complexity: the string1 may be expanded

1Seehttp://www.rhetorical.com/cgi-bin/demo.cgi.
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asone, first, premier, etc. depending on the context it appears in. Although it may
be possible to learn such context-based disambiguation rules from data, existing text
normalisation systems are typically rule-based, which is most probably due to two
reasons.

Firstly, existing rule-based formalisms often come with very large and detailed
grammars developed over years, an extremely valuable resource that might be wasted
if one decided to abandon the rule-based paradigm. Secondly, text normalisation re-
quires very high precision as we cannot afford, say, an account balance to be expanded
incorrectly in an automated telephone banking application. The precision threshold is
thus much higher than in those areas of NLP where data-drivenapproaches have be-
come successful, e.g. in Machine Translation. This does notpreclude a data-drived
solution to the problem, but the quality restrictions imposed on the potential solutions
make it very hard.

In effect, this paper focuses on disambiguation strategiesfor purely rule-based
grammars. It shows how to implement a simple but intuitive and powerful disambigua-
tion strategy within a system that is both efficient at runtime and expressive enough to
handle typical text normalisation constructs. The use of the finite-state transducer
(FST) framework provides for a good compromise between expressive power and
computational tractability: a grammar is first compiled into a non-determinstic FST
containingmarkersthat express user-defined local parsing preferences. In an extra
step, the preferences are used to turn the FST into a deterministic device calledbima-
chine. The system scales well to large grammars and supports efficient and ergonom-
ical grammar development, including interactive rule compilation and debugging.

2 Definitions and Notation

The following definitions are intended to clarify the notation for some basic finite-state
constructs. The less well known notion ofbimachinesis introduced and explained in
section 5.

Definition 1. (Nondeterministic FSA) A non-deterministic finite-state automaton
(NFSA) over input alphabetΣ is a quintupleA = (Σ, Q, q0, E, F ), whereQ is the
set of states ofA, q0 ∈ Q is the initial state, andF ⊂ Q the set of final states, and
E ⊂ Q× (Σ ∪ {ǫ})×Q the set ofA’s transitions.

Definition 2. (Deterministic FSA) A deterministic finite-state automaton(DFSA) is
a quintupleA = (Σ, Q, q0, δ, F ), whereq0 ∈ Q is the initial state,δ : Q×Σ→ Q the
transition function, andF the set of final states. The symbolδ∗ is used to denote the
extension of the transition function to the domainQ×Σ∗: δ∗(q, ǫ) := q, δ∗(q, ua) :=
δ(δ∗(q, u), a) for a ∈ Σ, u ∈ Σ∗.

Definition 3. (Finite-State Transducer) A finite state transducer(FST) T =
(Σ,∆∗, Q, q0, E, F ) over an input alphabetΣ and output alphabet∆ is defined
identically to an NFSA except that each transition containsan output label, i.e.,
E ⊂ Q× (Σ∪ {ǫ})×Q×∆∗. We will use the notatione.source, e.input, e.output

ande.target to refer to the respective components of a transitione ∈ E.



Preference-Driven Bimachine Compilation 205

Definition 4. (Sequential Transducer) A sequential transduceris the two-level coun-
terpart of a DFSA. It is a 7-tupleT = (Σ,∆, Q, q0, δ, σ, F ), such that(Σ, Q, q0, δ, F )
is a DFSA, andσ : Q × Σ → ∆∗ is theoutput functiondefining the output of each
transition.

Definition 5. (Path, Reachability) A path in an NFSA/FST is a sequence of transi-
tionsπ = e1, . . . , et such thatej .target = ej+1.source for j = 1, . . . , t− 1. A path
π consumes a stringw if e1.input · . . . · et.input = w. In the following, the term
path always denotes anǫ-cycle-free path. In analogy to transitions, we will also write
π.source, π.target, etc.

The notationq
a:o
⇒ q′ indicates that stateq′ is reachable from stateq by exactly one

transition consuming symbola ∈ Σ and emittingo, i.e.,(q, a, q′, o) ∈ E. For a string

u ∈ Σ∗, q
u:o
⇒

∗

q′ denotes the reflexive-transitive closure of⇒, i.e., there is a path in
T from q to q′ consuming inputu and emittingo ∈ ∆∗.

3 Grammars

Text normalisation consists of two sub-tasks:parsing(the identification of construc-
tions that require normalisation) andrewriting (the actual string transformations, e.g.
$11→ eleven dollars). Therefore, the formalism is split intoparsing rulesandrewrite
rules.

The syntax of parsing rules is roughly based on common parsergenerators such as
yacc orbison.2 Each rule consists of a left-hand side non-terminal symbol (therule
name), a right-hand side specifying itsexpansionas a regular expression over terminal
and non-terminal symbols, and an optionalrewrite statementthat callsrewrite rules
in order to perform string rewriting, as shown below:

date
->

day:$D [name="/"] month:$M
([name="/"] year:$Y)?

{"the" exp_ordinal($D) "of" $M exp_year($Y)};

day -> [name="(0?)[1-9]|[12][0-9]|3[01]"];

month -> [name="(0?)[1-9]|1[012]"];

year -> [name="[12][0-9][0-9][0-9]"];

Here, the left-hand side symboldate is expanded today followed by the ter-
minal/, the nonterminalmonth, and an optional instance of the nonterminalyear
preceded by the separator/. The symbolsday, month andyear expand to termi-
nals according to the respective rules. Each terminal is a simple feature structure that
denotes a token (in the above grammar fragment, only the featurename is used).
2Note, however, that the semantics of the rules, as discussed below in section 4.2, is different: while LR
grammars such as the ones accepted byyacc andbison are expected to be unambiguous, our formalism
allows a substantial amount of ambiguity in the grammar.
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Thedate rule is also associated with a rewrite statement enclosed incurly brack-
ets. It specifies that a date, e.g.13/05/2001, should be expanded into the string
the thirteenth of May two thousand and one. The symbols$D, $M and$Y are corefer-
ences between constituents of the right-hand side of a rule and the associated rewrite
statement. The functionsexp ordinal() andexp year() arerewrite rulesthat
specify how a constituent should be rewritten in the normalisation process. The gram-
mar may also insert new tokens (as it does"the" and"of") as well as reorder or
duplicate existing ones.

Parsing rules can optionally be associated with left and right context restrictions.
For example, the ruleA → B / C D / E will expand the sequenceC D toA only
if it is preceded by a match of regular expressionB and followed by a match of regular
expressionE.

Therewrite rules, formulated in a two-level regular calculus, do not introduce any
novel constructs, so they are not discussed in detail.

The expressive power of the formalism is restricted to a regular language by a)
excluding recursion of the formX → . . . → X3 and b) an implicit treatment of
constituent reordering and duplication, which are non-regular operations. The gram-
mar is converted to an FST translating input strings to possible constituent bracket-
ings including special markers for the non-regular operators. At runtime, the selected
bracketing is converted to a tree, on which the extra operations are performed. The
constituents of the reordered tree are then sent to the rewrite grammar according to the
rewrite rules specified in the rewrite statements of the respective parsing rules.

The grammar FST is typically ambiguous, i.e. it encodes a non-functional rational
relation, and may return more than one analysis for an input string. Thus, the actual
challenge is to devise a disambiguation strategy with a simple and user-friendly se-
mantics that would make it easier for the grammar developer to maintain control over
the behaviour of the grammar.

4 Finite-State Parsing Preferences

As a first step, we shall see how to incorporate parsing preferences into a finite-state
grammar. It turns out that preferences can be a) associated with regular operators,
and b) translated into an FST in a meaningful way. The result is a prioritisation of
alternative paths for a wordw in the FST that also corresponds to the order of results
in a näıve depth-first search with backtracking. This result will be used in section 5 to
establish a deterministic and fail-safe best-first search technique.

4.1 Regular Operators

In a finite-state grammar, complex structures are created from simpler regular expres-
sions usingregular operations. Their basic inventory comprisesconcatenation(AB,
A · B), union (A|B) andclosure(A∗). Further commonly used operators, such as?

3This restriction might appear harsh, but text normalisation tasks typically do not require more expressive
power (Sproat 1996).
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and+, can be derived from the primitive ones listed above and neednot be considered
at first.

·

∗ {c : D}

∪

· ∪

{a : ǫ} {b : A} {a : B} {b : C}

Figure 1: Regular expression({ab : A}|{a : B}|{b : C})∗{c : D} shown as a tree.

The resulting structure forms a tree as shown in figure 1. Sucha tree can be com-
piled into a (non-deterministic) FST. The simplest compilation algorithm (Thompson’s
algorithm) is to create a network of transitions that directly correspond to a traversal
of the regexp tree (Hopcroft, Motwani and Ullman 2001). Eachnode/leaf in the tree
translates into two FST states: anin state (“we enter the subexpression rooted in the
current node”) and anout state (“we leave the subexpression rooted in the current
node”). Thein state and theout state of the root node are, respectively, the initial and
the (only) final state of the FST. The states are connected by transitions in accordance
with the semantics of the regular operators at the respective tree nodes, as shown in
table 1.

Node type Transitions added
X = Y |Z {Xin

ǫ:ǫ
⇒ Yin,Xin

ǫ:ǫ
⇒ Zin

Yout
ǫ:ǫ
⇒ Xout, Zout

ǫ:ǫ
⇒ Xout}

X = Y · Z {Xin
ǫ:ǫ
⇒ Yin, Yout

ǫ:ǫ
⇒ Zin

Zout
ǫ:ǫ
⇒ Xout}

X = Y ∗ {Xin
ǫ:ǫ
⇒ Xout, Yout

ǫ:ǫ
⇒ Xout,

Xout
ǫ:ǫ
⇒ Yin}

X = {a : o} {Xin
a:o
⇒ Xout}

Table 1: The FST compilation of union, concatenation, closure and an atomic regexp.

4.2 Local Parsing Preferences

Now suppose we want to find a translation for a stringw licensed by a compiled
regular expression. A possible, although naı̈ve, strategy is to explore all paths starting
from the initial state until we reach the final state. Wheneverwe find that we have
run into a dead end, we backtrack to the previous choice pointand explore another
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path from there. As long as we omitǫ-cycles, the algorithm will eventually terminate.
Also, if there is more than one translation, the local searchdecisions taken at the
choice points will influence the result.

A simple but powerful disambiguation strategy can be pursued here:

• longest or shortest match (distinguished by notation) at the closure operator;

• exploring disjunction branches in order of their disjuncts.

These two simple rules give the grammar developer full control over all ambiguity
in the system. They are also very intuitive: if longest-match is chosen as the default
interpretation for the closure operator, the strategy resembles the evaluation of Perl
regular expressions, which most users can be assumed to be familiar with.

The reader may object that this disambiguation strategy istoosimplistic, especially
compared to frameworks such as Optimality Theory (OT, (Ellison 1994, Karttunen
1996, Eisner 2000)), which splits linguistic knowledge into a device generating all
possible analyses (Gen) and a number of constraints that rank these analyses accord-
ing to the number and severity of constraint violations. Theanalysis with the fewest
violations wins.

However, this elegant framework is intended as a tool for linguistically adequate
theoretical modelling of clear-cut phenomena. It is doubtful that a “dirty” task like
text normalisation could be decomposed into a neat hierarchy of constraints filtering
the possible analyses. In addition, TTS grammar developersare more likely to be
familiar with Perl regular expressions than Optimality Theory. As a matter of fact, the
author is not aware of a single large-scale NLP system based on OT.

Nevertheless, we will see that some formal concepts developed in the framework
of OT turn out to be very useful for the purpose of preference-based compilation, cf.
section 4.4.

4.3 Preference-Driven Search

The simple disambiguation strategy outlined in the previous section can be easily
translated to an FST framework by adding some control information to the choice
points. Note that only two types of regexp tree nodes introduce non-determinism:
union and closure. Thus, ifX is a disjunction node andY,Z are the disjuncts, then
the compilation algorithm will create theǫ-transitions shown in figure 2.

Xin Xout

Yin . . . . . . Yout Zin . . . . . . Zout

Figure 2: Compilation of the union operator.

The choice point occurs atXin: we can either go toYin or to Zin. All we need
to implement the chosen strategy is to make sure that the moveXin

ǫ
⇒ Yin will be

performed first (i.e. beforeXin
ǫ
⇒ Zin).
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Figure 3 shows the other case, namely the closure operation.Here,X is the node
corresponding to the closure operator,Y the root of the embedded expression andV

the parent node ofX. The choice point occurs at stateXout, from where we can go
either toYin or toV . Note that the former option corresponds to the longest-matchand
the latter to the shortest-match strategy.

Xin Xout V

Yin . . . . . . Yout

Figure 3: Compilation of the closure operator.

4.4 Encoding

In order to eliminate the non-determinism of the search method sketched above, it is
worthwhile to take a closer look at finite-state approaches to Optimality Theory (OT),
where a non-deterministic FST (Gen) encodes all possible pairs of inputs (called un-
derlying representations, UR) and outputs (called surfacerepresentations, SR). The
generated SRs are evaluated by applying a sequence of constraint FSTs(C1, . . . , Cn),
which either filter out some of the possible SRs or insertmarkersdenoting the fulfill-
ment/violation of a constraint. The markers can be used to guide the search for the
optimal solution.

Out of all types of OT constraints, the strategy described inthe previous section
resemblesleft-to-right directional constraints(Eisner 2000). Following Eisner, when-
ever two possible transitions labelled with the same input symbola ∈ Σ∪ {ǫ} leave a
stateq, the preferred one is assigned the markm0 and the less preferred one the mark
m1. In the case of the compilation method specified in section 4.1, such choice points
are always binary and are possible only fora = ǫ. Thus, the simplest encoding is to
sete.output = m0 or respectivelye.output = m1 for all suchǫ-transitions leaving
choice point states.

In this way, each pathπ = e1, . . . , en in a transducerT can be associated with a
sequence of preference marksω = ω1 . . . ωk, which can be extracted fromπ.output

simply by ignoring all output symbols other thanm0 andm1. Let such a sequence be
denotedπ.score.

Note that the relative preference order of two pathsπ(1) andπ(2) is expressed by
the lexicographic order of the mark sequences:

π(1) ≺ π(2) ⇐⇒ π(1).score <lex π(2).score

Generalised to setsΠ of paths accepting a stringw, this criterion states that the pre-
ferred path is the first one in lexicographic order:

πbest = min≺(Π)
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In particular, ifΠT (w) denotes the set of all paths inT that consumew ∈ Σ∗, then
the preferred translation forw is the output of the pathπbest(w) ∈ ΠT (w) defined as:

πbest(w) = min≺({π ∈ ΠT (w) :

π.source = q0 ∧ π.target ∈ F})

Note that we may want to make transducerT ǫ-free for further processing stages.
This is not a problem because the preference order of paths ispreserved inǫ-
elimination.

5 Search Strategy

Let T̂ = (Σ,∆, Q̂, q0, Ê, F̂ ) be anǫ-free FST constructed from a regular expression
using the compilation method described in section 4.1 and some ǫ-elimination algo-
rithm. Given an input stringw = a1 . . . at, we want to find the best-scoring successful
path forw in T̂ .

Note that if the unsuccessful paths are pruned away in advance, the search boils
down to a chain of purely local decisions. We start by choosing the lowest-score arc
(q0, a1, q1, o1) starting inq0, and then choose the lowest-score transition starting inq1

and acceptinga2, etc.
The set of all successful paths forw can be determined in timeO(t) using

the following factorisation method. Let̂EDFSA = {〈q, a, q′〉 : ∃o ∈ ∆∗ :
〈q, a, q′, o〉 ∈ Ê} be the projection of the transitions of̂T onto the first three com-
ponents (i.e. source state, input symbol and output symbol). We determinize the
NFSA A = (Σ, Q̂, q0, ÊDFSA, F̂ ) for the input language of̂T using a variant of the
subset construction algorithm (Hopcroft et al. 2001). Thisoperation yields a) a DFSA
−→
A = (Σ,

−→
Q,−→q 0,

−→
δ ,
−→
F ) acceptingL(T̂ ) and b) a function

−→
h :

−→
Q → 2Q map-

ping each state of the DFSA to the corresponding set of statesof T̂ . More precisely,
−→
h (
−→
δ (−→q 0, u)) is the set of states reachable inT̂ from q0 by consuming the stringu.
In a similar way, we can construct an acceptor

←−
A = (Σ,

←−
Q,←−q 0,

←−
δ ,
←−
F ) and a

function
←−
h by reversing and determinisingA. Accordingly,

←−
h (
←−
δ (←−q 0, v

−1)) is the
set of all statesq ∈ Q̂ such thatq

v
⇒ F .

If now w = uv ∈ Σ∗, then the intersection
−→
h (
−→
δ (−→q 0, u)) ∩

←−
h (
←−
δ (←−q 0, v

−1)) is
the set of all states on a successful path inT̂ acceptingv after consuming the prefixu.
Thus, given a stringw = a1 . . . at, we can determine the successful paths inT̂ in time
O(t) by:

• running
−→
A on stringw and keeping the path−→q 0

−→q 1, . . . ,
−→q t;

• running
←−
A onw−1 and keeping the path←−q 0

←−q 1, . . . ,
←−q t;

• forming a sequence ofreachability setsR0, . . . , Rt constructed as follows:
Rj =

−→
h (−→q j) ∩

←−
h (←−q t−j), j = 0, . . . , t.

Since T is non-deterministic, there are several alternative pathsπ(i) =

e
(i)
1 , . . . , e

(i)
t for w, each associated with a unique scoreπ(i).score. The preferred
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translation is the output of the first pathπ(i) according to the lexicographic order of
the path scores. Thus, the preferred path can be found deterministically in timeO(t)
according to the following formula:4

ej =

{

min≺(Out(q0, a1)) j = 1
min≺(Out(ej−1.source, aj)) j > 1

(1)

In this way, we arrive at a deterministic parsing strategy that guarantees finding the
best parse (according to the locally expressed disambiguation preferences) in time
O(t).

The construction of
←−
A and

−→
A together with a recursive formula for the best path is

closely related tobimachines(Berstel 1979, Roche and Schabes 1996). Abimachine
is a tripleB = (

−→
A,
←−
A, γ), where

−→
A = (Σ,

−→
Q,−→q 0,

−→
δ ,
−→
Q) is a left-to-right DFSA,

←−
A = (Σ,

←−
Q,←−q 0,

←−
δ ,
←−
Q) is a right-to-left DFSA, andγ :

−→
Q ×

←−
Q → ∆∗ the output

function ofB. Applied to a stringw = a1 . . . wt, B outputs the stringb1 . . . bt, where
bi = γ(

−→
δ

∗

(−→q 0, b1 . . . bi−1),
←−
δ

∗

(←−q 0, bt . . . bi)).
The importance of bimachines lies in the fact that a) they aredeterministic and

b) every unambiguous FST — even a non-determinisable one — can be converted
to a bimachine. Since most interesting cases of FSTs actually are ambiguous, the
construction presented in this section extends the notion of bimachines to FSTs which
are disambiguated at runtime via preference marks.5 Accordingly, the output function
is not specified explicitly; instead, it follows from the recursive formula (1).

6 Optimisation and Evaluation

6.1 Runtime Optimisation

The algorithm can be made more efficient by means of precompilation. Instead of
running

−→
A and

←−
A separately, and then performing the disambiguation step described

by (1), the task can be performed in only two stages.
In the first pass, the acceptor

←−
A is run on the reversed input string, pro-

ducing a path←−q 0, . . . ,
←−q t. This path is then combined with the original in-

put w in order to form a sequence of state-input pairs of the following form:
〈a1,
←−q t−1〉, . . . , 〈aj ,

←−q t−j〉, . . . , 〈at,
←−q 0〉. This sequence serves as input to the

second component of the system, which is a sequential transducer T̃ = (Σ ×
←−
Q,∆, Q̂, q0, δ, σ, F̂ ) over the complex input alphabetΣ ×

←−
Q . If w is accepted,̃T

outputs the preferred translation ofw. The functionsδ andσ are defined as follows.

δ(q, 〈a, q′〉) = min≺(q,a)
({r ∈

←−
h (q′) : q

a
⇒T̂ r})

σ(q, 〈a, q′〉) = o(q, a, δ(q, (a, q′))).

The application of the above device to a stringw is deterministic and very efficient: it
requires2|w| transition lookup steps; the execution time of each of thesesteps can be
made constant by employing appropriate data structures.
4Out(q, a) denotes the set of all transitions leavingq via symbola. min≺ is well-defined because the
transitionse ∈ Out(ej−1.source, at) have distinct scores, i.e., they are totally ordered by≺.
5For another application of the concept of bimachine factorisation to ambiguous FSTs, see Kempe (2001).
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6.2 Compile-Time Optimisation

There are several possible optimisations aiming at speeding up the compilation
process. First of all, the structure(

←−
A, T̃ ) introduced above for runtime optimisation

is also faster to compile since its compilation involves only one potentially expensive
determinisation step (for

←−
A ) instead of two (for

←−
A and

−→
A ).

Another improvement is related to the representation of themarkers, which need
not be present at runtime. Instead, alternative transitions can be stored in a list in an
order corresponding to the relation≺.

6.3 Compilation Speed

As mentioned above, the determinisation of
←−
A is the only expensive step in the con-

struction. It took 28 minutes for a grammar fragment comprising 78 rules, while the
running time of the remaining compilation steps was under 2 seconds. For larger
grammar fragments, the discrepancy was even bigger, indicating scalability problems.
Therefore, the decision was taken to introduce two compilation modes:development
andrelease.

In the development mode,
←−
A is not constructed, and the search for the optimal

parse involves backtracking. On average, this is around 11 times slower than deter-
ministic search, but the difference is not noticeable to thegrammar developer. The
benefit is that a grammar can be developed, compiled and tested interactively.

In the release mode, the construction of
←−
A is sped up by removing some irrelevant

bracketing information from the FST. For the above test fragment, the size of the
grammar transducer was thus reduced from 110,056 to 29,231 transitions, and

←−
A took

only 8 minutes to construct. For the largest grammar available, comprising 214 rules,
compilation took 34 minutes, resulting in an FST containing104,551 transitions (after
reduction).

←−
A had 671,331 transitions.

The above behaviour of the compiler means it is scalable to medium-sized sys-
tems comprising hundreds of rules. For even larger grammars, we contemplate the
construction of several preference-based bimachines: onebimachine recognising the
matches of the top-level grammar rules (e.g.date, time or phone number), and
one for each of the respective subgrammars.

6.4 Expressive Power

The formalism presented in this paper is a compromise between expressive power and
processing efficiency: linear-time parsing is achieved at the expense of keeping the
formalism relatively simple. The question is how much the restrictions imposed on
the grammar affect the convenience of grammar development.

As far as text normalisation in TTS systems is concerned, thecompromise pays
off to a large extent. The predecessor of our system, which employed exactly the
same disambiguation strategy (longest match plus a left-to-right preference order on
disjunctive rules), proved to be expressive enough as a formalism for industrial-scale
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multilingual development.6 The grammar developers have largely found the parsing
strategy intuitive and easy to follow — despite some criticism expressed with regard to
the global ordering of rules, which was deemed too rigid in certain cases. Hence, the
development of larger grammar fragments (partly using automatic conversion from
the old grammar formalism), can be expected to be straightforward.

7 Extensions

In section 4.1, the inventory of regular operators was restricted to the primitive ones:
union, concatenation and closure. Obviously, the disambiguation semantics can be
extended to other, derived operators such asR? or R+ by setting the transition scores
accordingly on the choice points introduced by these operators.

The user may also wish to retain some ambiguity, using the parser for filtering
rather than finding one optimal solution. In such a case, preference marks are not
inserted at the affected nodes of the regular expression. The search algorithm requires
a straightforward adaptation to the case of multiple optimal paths.

8 Related Work

Discussion of related work is split into three areas: the grammar formalism, expressing
preferences in hand-writable rules and the run-time evaluation of such preference-
based grammars.

8.1 Formalism

In the area of text-to-speech synthesis, pioneering finite-state work has been done in
the framework of weighted FSTs at Bell Labs (Sproat 1996, Mohri and Sproat 1996).
There, as in most finite-state approaches to NLP, text processing tasks are viewed
as successive stages of string rewriting, each implementedby an FST; the FSTs for
different stages may be combined via FST composition.

In the formalism presented here, a similar idea underlies the rewrite rules, for-
mulated in a regular calculus. However, there are also the more structure-oriented
parsing rules, which establish a tree-shaped derivation for the constructs being nor-
malised. The possibility of producing such derivations hasproved to be of great help
to the grammar developers.

8.2 Parsing Preferences

There are two basic ways of expressing parsing preferences in a finite-state frame-
work. One is to encode them as real-valuedweightsassociated with the transitions of
a weighted FST (Mohri 1997). The transducer is ambiguous, but adding weights along
alternative paths yields a preference order over the possible parsing results. Thus, the
weights may be used to guide the search for the optimal solution. This framework is

6The languages covered comprised English, Greek, German, Spanish and French; each of the language-
specific grammars consisted of up to one thousand rules.
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particularly well-suited for probabilistic NLP approaches where the weights express
probabilities (typically as logarithms).

The other way of handling preferences is to apply them at compile time, when
particular rules and constraints are combined to form a grammar system. The result-
ing FST contains only the optimal paths; hence it is unambiguous and can be either
determinised or converted to a bimachine.

A possible method of combining prioritised rules is to express each of them as an
FST and then join these FSTs via an operation calledpriority union (Karttunen 1998).
The priority union of of two FSTsT1 andT2 is defined asT1 ∪ (T2 ◦ (Upper(T1))),
whereL is the complement of a regular languageL andUpper(T ) is the language
accepted by transducerT . Priority union restricts transducerT2 to the complement of
T1. As a result, all conflicts between translations inT1 andT2 are resolved in favour of
T1 while strings not accepted byT1 can still be rewritten byT2. Similar formalisations
have also been given for the longest-match and shortest-match semantics of regular
expressions (Karttunen 1996, Gerdemann and van Noord 1999).

The main difficulty related to this “algebraic” approach is that it involves repeated
application of costly operations such as regular complement (exponential in|Q|) and
composition (quadratic in|Q|). The resulting FST is non-deterministic, hence an-
other worst-case exponential determinisation step (subset construction or bimachine
creation) is required. All this may lead to very slow compilation for realistic text nor-
malisation grammars. In order to estimate the processing overhead caused by these op-
erations, we replaced all instances of regular union in the grammar by priority union.
As a result, the compilation time (before determinisation)for the 78-rule grammar
evaluated in section 6.3 increased from below 2 seconds to 94seconds.

One might argue that the running time of these operations is of secondary im-
portance as compilation can be done off-line. However — as already mentioned in
section 1 — compilation times exceeding one minute may seriously hamper the pro-
ductivity of grammar development.

This is the reason why we decided to employ a compilation method that does
not eliminate non-optimal paths from the transducer at compile time, but associates
its transitions with additional control information (preference markers).7 From this
perspective, our compilation method exhibits a strong resemblance to to the weighted
FST paradigm: ambiguity is left in the FST and resolved at runtime using dynamic
programming. However, the markers embedded into the outputstrings of the FST are
evaluated in a completely different way than real-valued weights are.

The construction of the FST encoding all the rules is cheap. If N is the num-
ber of regular operators and occurrences of symbols in the grammar, it involves a)
Thompson construction leading to the creation of an FST with|Q| = O(N) states
and|E| = O(N) transitions in timeO(N) and b)ǫ-elimination, which can be done in
timeO(|Q| · |E|). Hence, the construction of the grammar FST is bounded byO(N2).
The observed dependency betweenN and the actual compilation time is linear. The
only costly operation is the creation of the reverse acceptor

←−
A , which is omitted in the

7Still, an unambiguous FST can always be recovered from an FST with preference marks, e.g. using the
directional best pathsalgorithm (Eisner 2000, Eisner 2002) designed to implement directional constraint
evaluation in the OT framework.
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development mode.

8.3 Search for the Optimal Solution

The standard solution to the problem of finding the best path for a stringw in an
ambiguous FST is to compose the FST with an FSA encoding the input string. If
the scores associated with the transitions are viewed as edge weights of a directed
graph, finding the best path in the resulting FST is then an instance of the single-
source shortest path problem. Viterbi search performs boththe composition (creating
a structure called atrellis) and search for the optimal solution within this structure in
timeO(|w|).

This method can also be used to find the best-scoring path in the case of our con-
struction. However, parsing would most certainly be less efficient than in the case of a
bimachine due to the overhead caused by the construction of the trellis and keeping up
to |Q| best path candidates for each string position, which is obviously more expensive
than2 · |w| lookups in the transition table (i.e. the total parsing costin the case of a
bimachine).

9 Conclusion

The rule compiler described in this paper presents an alternative to both traditional
weighted FST compilation (Mohri and Sproat 1996) and the “algebraic” approach
in the vein of Kaplan and Kay (1994). Ambiguity is dealt with using a simple
but powerful disambiguation strategy that may be viewed as amixture of priority
union (Karttunen 1998) and longest/shortest match (Gerdemann and van Noord 1999).
The use of preference markers makes it possible to avoid the relatively costly opera-
tions typically associated with the compilation of the above constructs. On the other
hand, the resulting structure (an ambiguous FST containingpreference markers and
a right-to-left deterministic acceptor) still makes it possible to conduct deterministic
search for the optimal result. In this way, the compiler combines fast compilation and
efficient processing at runtime.
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