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Abstract
A method is proposed to convert a Context Free Grammar to a Bracket Context Free Gram-
mar (BCFG). A BCFG is able to parse input strings which are, in part or whole, annotated
with structural information (brackets). Parsing partially bracketed strings arises naturally
in several cases. One interesting application is semi-automatic treebank construction. An-
other application is parsing of input strings which are first annotated by a NP-chunker.

Three ways of annotating an input string with structure information are introduced:
identifying a complete constituent by using a pair of round brackets, identifying the start
or the end of a constituent by using square brackets and identifying the type of a constituent
by subscripting the brackets with the type. If an input string is annotated with structural
information and is parsed with the BCFG, the number of generated parse trees can be
reduced. Only parse trees are generated which comply with the indicated structure.

An important non-trivial property of the proposed transformation is that it does not
generate spurious ambiguous parse trees.
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1.1 Introduction

Natural language is highly ambiguous. If natural language sentences are parsed according
to a given Context Free Grammar (CFG), the number of parse trees can be enormous. If
some knowledge about the type and coherence of words in a sentence is available before-
hand, the number of parse trees can be reduced drastically, and the parser will be faster. In
this paper we present a method to parse partially bracketed input.

The method presented in this paper is useful for a number of different applications.
One interesting application is semi-automatic treebank construction. Another application
is parsing of input strings which are first annotated by a syntactic chunker.

In recent years much effort is devoted to the construction of treebanks: sets of nat-
urally occurring sentences that are associated with their correct parse. Typically, such
treebanks are constructed in a semi-automatic way in which the sentence is parsed by an
automatic parser, and a linguist then selects, and sometimes manually adapts, the appro-
priate parse from the set of parses found by the parser. If a sentence is very ambiguous
this process is rather cumbersome and time consuming. In our experience in the context
of the construction of the Alpino and D-Coi treebanks (van der Beek, Bouma, Malouf and
van Noord 2002, van Noord, Schuurman and Vandeghinste 2006), the ability to add some
brackets (possibly with the corresponding category) is a very intuitive and effective way
to reduce annotation efforts.

Below, we also introduce the possibility to annotate a sentence with an opening bracket
without a corresponding closing bracket, and vice versa. This possibility is motivated by
the second application: parsing input that is pre-processed by a chunker. A chunker is
an efficient program which finds occurrences of some syntactic categories (typically noun
phrases). If a reliable and efficient chunker is available, syntactic parsing can be faster by
using that chunker in a preprocessing stage. One common implementation strategy which
goes back to Ramshaw and Marcus (1995) is to use techniques originally developed for
POS-tagging, and to encode the start and end of chunks in the POS-tag inventory. Such
chunkers are able to detect where a chunks starts, or where a chunk ends, but the fact
that the beginning and the end of a chunk are supposed to co-occur is not inherent to the
technique, but is usually added as an ad-hoc filter on the output. The ability of our method
to allow independent opening and closing brackets in the input implies that this ad-hoc
filter is no longer needed. It remains to be investigated if this improvement has empirical
benefits as well.

In the past, researchers have experimented with techniques where pairs of parentheses
are used to group constituents of an input string, such that fewer parse trees are generated.
In Pereira and Schabes (1992) as well as Stolcke (1995) a method is given to adapt an
existing parse algorithm (inside-outside and Earley) in such a way that it works faster
with input strings which are annotated with pairs of parentheses. In McNaughton (1967)
and Knuth (1967) features of a parenthesis grammar are discussed where brackets are
added at the start and end of every production rule, A → ( a ). In their bracketed context
free grammar, Ginsburg and Harrison (1967) add additional information by subscripting
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brackets with unique indexes, A → [1 a ]1 and A → [2 b ]2 .

In our research, we have focused on finding an automatic procedure to convert a given
CFG to a Bracket Context Free Grammar (BCFG). A BCFG can parse the same input
strings as the CFG, but in addition these input strings may be annotated in part or whole
with legal structural information. By providing knowledge about the structure of an input
string, the number of parse trees can be reduced and a correct parse can be found earlier.
A property of the proposed transformation is that it does not generate spurious ambiguous
parse trees. This property is non-trivial, as shall be shown later.

In the following section we indicate how an input string can be annotated with struc-
tural information by using brackets. In the third section a recipe is given to convert a
CFG to a BCFG which can parse the annotated input strings. Features of the recipe are
discussed in section 4, before the conclusion is given in section 5.

1.2 Annotating an input string with structural information

In previous studies (e.g. McNaughton (1967) and Knuth (1967)) structural information of
the input string was added by placing a pair of brackets around each constituent (a chunk)
of the input string. Our method also allows partly annotated (incomplete) input strings:

( The cat ) ( has caught ( a mouse ) ).

Three chunks can be distinguished here: The cat, a mouse and has caught a
mouse.

It is also possible that knowledge about the type of the chunk is present (for example
a noun phrase or a verb phrase, NP or VP). It should be possible to store this information,
since more information about the structure may reduce the number of possible parse trees.
In our model we will indicate the type of a chunk by subscripting the brackets of the
chunk with this type. This way differs from Ginsburg and Harrison (1967), in which each
production rule contains a pair of uniquely indexed brackets (A → [1 ... ]1 ). Another
difference is that in our annotation method incomplete input strings are possible. Note that
each bracket in a pair of brackets must have the same subscript:

The cat (VP has caught (NP a mouse )NP )VP.

Besides allowing incomplete input strings, our method also allows for inconsistent input
strings. In this case the number of opening brackets does not equal the number of closing
brackets. We will use square brackets to indicate the start and/or the end of a chunk
individually ([ and ]). In this case information about the structure of an input string is
also present - although more limited than in the other case. Note that it is possible that an
opening square bracket and a closing square bracket may form a chunk, as is shown in the
following inconsistent input string:

The cat [VP has caught [NP a mouse ].
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In this case it is left undecided which pair of brackets form a chunk. When certainty exists
about the beginning and end of the same chunk, it is better to use the round brackets to
indicate all knowledge about the structure.

Three methods can be used to indicate knowledge about the structure of an input string:

• Define a complete chunk: ( ... )
• Define the start and/or end of a chunk: [ and ]
• Define type A of a chunk: [A, ]A, (A ... )A

The three methods can be combined as can be seen in the examples below:

( The cat ) [VP has caught (NP a mouse )NP.

[VP (NP The mouse )NP walked through [NP the barn ].

It was mentioned earlier that each single bracket in a pair of typified brackets should have
the same subscript. It is also possible to subscript only one of the brackets, after which
(in a separate processing step) both brackets should be given the same subscript. For this
method it is necessary to find out which round brackets form a pair. This can be realised
in a straightforward way. A pair of round brackets is identified by matching an opening
round bracket to the nearest closing round bracket, in such a way that the number of
opening round brackets equals the number of closing round brackets between them.

In this study, we have restricted ourselves to allow only structural information for non-
empty chunks. This decision will be treated in more detail in section 4.

1.3 Converting a CFG to a BCFG

In the previous section we indicated how structural information can be added to an input
string by using brackets and subscripts. The following step is to convert the original CFG
to a grammar which can also parse the round and square brackets (a BCFG). Note that
if the structure symbols are in the set of terminals of the original CFG, other structure
symbols should be chosen.

1.3.1 Ambiguity problems

A first approach to create the new grammar is to generate for each production rule in the
CFG, A → ..., the following 11 production rules in the BCFG Gf :
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A → ...
A → ... ]
A → ... ]A

A → [ ...
A → [ ... ]
A → [ ... ]A

A → [A ...
A → [A ... ]
A → [A ... ]A

A → ( ... )
A → (A ... )A

In this way all possible configurations of brackets are represented and no parse trees will
be generated which do not comply with the indicated structure. The following example
illustrates this (the start symbol is A):

A → B C

A → C D

B → a
C → a
D → a

The input string aa can be parsed in two ways with this grammar:

• A ⇒ B C
∗
⇒ aa

• A ⇒ C D
∗
⇒ aa

If it is known in advance that the second a is of type D, this can be indicated by annotating
the input string in the following way: a [D a. To parse this input string, the following
generated production rules of Gf are relevant (the other production rules are left out for
simplicity):

A → B C

A → C D

B → a
C → a
D → a
D → [D a

The structure symbol can only be matched in the final production rule, therefore the anno-
tated input string can be parsed in one way only: A ⇒ C D

∗
⇒ a [D a.
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By applying this naive conversion to generate the BCFG, it is possible that for a given
annotated input string a large number of spurious ambiguous parse trees are generated,
which map - when the brackets are removed - on the same parse tree according to the
original grammar. This is illustrated with the following CFG:

A → A a
A → a

If the input string is [A aa, the following generated production rules of Gf are relevant:

A → A a
A → [A A a
A → a
A → [A a

Figure 1 shows that the input string [A aa can be parsed in two ways with the BCFG,
while only one parse tree exists for the unannotated input string in the original grammar.
According to Gf more parse trees are generated than according to the original CFG, which
is of course an undesired property.

The general problem is that Gf does not fix in which production rule the square bracket
([ or ]) is matched. This problem can occur with typified brackets when a production rule
of the same type as the bracket is traversed multiple times before the terminal is reached.
For example: A ⇒ B ⇒ C ⇒ A ⇒ t or A ⇒ B ⇒ C α ⇒ A α β ⇒ t α β.
If the type of the (opening) bracket equals A, the bracket can be matched at the first or
at the final production rule and multiple spurious ambiguous parse trees are generated.
If the brackets are not typified this problem occurs when multiple production rules (non-
terminals) are traversed before the terminal is reached. For example: A ⇒ B ⇒ C ⇒ t
or A ⇒ α B ⇒ α β C ⇒ α β t. Because the (closing) bracket can be matched at every
non-terminal, again multiple spurious ambiguous parse trees are generated.

If round brackets are used, the ambiguity problem occurs when unit rules are traversed.
If the grammar is converted to Chomsky Normal Form, the problem with regard to the
round brackets is solved, however the problem with the square brackets still remains.

1.3.2 Matching brackets as soon as possible

The problem of the previous approach, was the existence of ambiguity in the moment of
matching the brackets. A solution for this problem is to define exactly when a bracket
should be matched. In the following we will give a conversion of a CFG to a BCFG which
enforces that brackets will be matched as soon as possible.
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FIGURE 1 Parse trees for input [A aa and aa (left: BCFG, right: CFG)

Short introduction to the method

In the following method a large number of new production rules in the BCFG (G) are
generated for each production rule in the CFG, based on the possible structure symbols.
By using two variables (s0 and s0

′) for each production rule in G, the structure symbol
expected at the start (s0 ) and at the end (s0

′) of the current input string are stored. Be-
cause it is not always possible to match a certain structure symbol in a production rule,
it is necessary to store for each non-terminal in the right-hand side of the production the
structure symbols with which these may start and end. This is done by assigning to each
non-terminal in the right-hand side of the production rule two variables, which therefore
map to the left side of the generated production rules. By using these variables it is en-
forced that if a matchable square bracket is not matched in a production rule, it can also
not be matched in a later stage in the same parse tree. If round brackets are not matched,
they can not be matched in a later stage as long as unit rules are encountered. A more
in-depth explanation will be given after the conversion scheme is introduced.

When a specific bracket is expected as a start or end symbol of the current input string,
this is indicated by setting the value of the variable (s0 or s0

′) equal to this bracket. If no
structure symbol may be matched, the symbol ε is used to indicate this.

1.3.3 Conversion scheme CFG → BCFG

The following definitions are used with the conversion:

• N : the set of all non-terminals in the CFG
• T : the set of all terminals in the CFG
• Ω[ = {[A: A ∈ (N ∪ ε)}

• Ω] = {]A: A ∈ (N ∪ ε)}

• Ω( = {(A: A ∈ (N ∪ ε)}

• Ω) = {)A: A ∈ (N ∪ ε)}

• Ωb = Ω[ ∪ Ω( ∪ ε

• Ωb′ = Ω] ∪ Ω) ∪ ε

Note that T must be different from the introduced structure symbols. If this is not the case,
different structure symbols must be used.
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In the BCFG, we add for each production rule of the CFG
A → X1 ... Xm

with X i ∈ {N ∪ T}, new production rules
A(s0 , s′0 ) → Y X1

′ ... Xm
′ Y ′

with

• (s0 , s0
′) ∈ Ωb × Ωb′

• X i ∈ T ⇒ X i
′ = X i

• X i ∈ N ⇒ X i
′ = X i(si , si

′), (si , si
′) ∈ Ωb × Ωb′

• Y ∈ {(,[,[A,(A, ε}

• Y ′ ∈ {),],]A,)A, ε}

Where exactly one condition of 1. and one condition of 2. must hold.

For instance, to make sure an opening square bracket is matched at the first possibility,
condition 1a. is used. Condition 1a. indicates that when an opening square bracket has no
type or a type corresponding to the current production rule, it must be matched because
Y is also equal to this bracket (see condition 2a. for the closing square bracket case).
Alternatively, if no structure symbol may be matched at the start of a sub-string, condition
1h. is used. Condition 1h. indicates that when no structure symbol may be matched at the
start of a certain sub-string (s0 equals ε), this will hold because Y and s1 must also equal
ε (see condition 2h. for the same case at the end of a sub-string). A detailed explanation
of all conditions is given in paragraph 3.4.

1. (a) s0 = [t ∧ t ∈ {A, ε} ∧ Y = s0

(b) s0 ∈ Ω[ \ {[A,[} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

(c) s0 = (t ∧ s0
′ = )t ∧ t ∈ {A, ε} ∧ Y = s0 ∧ Y ′ = s0

′

(d) s0 = (t ∧ s0
′ = )t ∧ t ∈ {A, ε} ∧ X1 ∈ N ∧ m > 1 ∧ Y = ε ∧ s1 = s0

(e) s0 ∈ Ω( \ {(A,(} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

(f) s0 = (t ∧ s0
′ 6= )t ∧ t ∈ {A, ε} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

(g) s0 = ε ∧ X1 ∈ T ∧ Y = ε

(h) s0 = ε ∧ X1 ∈ N ∧ Y = ε ∧ s1 = ε

2. (a) s0
′ = ]t ∧ t ∈ {A, ε} ∧ Y ′ = s′0

(b) s0
′ ∈ Ω] \ {]A,]} ∧ Xm ∈ N ∧ Y ′ = ε ∧ sm

′ = s0
′

(c) s0
′ = )t ∧ s0 = (t ∧ t ∈ {A, ε} ∧ Y ′ = s0

′ ∧ Y = s0

(d) s0
′ = )t ∧s0 = (t ∧ t ∈ {A, ε}∧Xm ∈ N ∧m > 1∧Y ′ = ε∧sm

′ = s0
′

(e) s0
′ ∈ Ω) \ {)A,)} ∧ Xm ∈ N ∧ Y ′ = ε ∧ sm

′ = s0
′

(f) s0
′ = )t ∧ s0 6= (t ∧ t ∈ {A, ε} ∧ Xm ∈ N ∧ Y ′ = ε ∧ sm

′ = s0
′

(g) s0
′ = ε ∧ Xm ∈ T ∧ Y ′ = ε

(h) s0
′ = ε ∧ Xm ∈ N ∧ Y ′ = ε ∧ sm

′ = ε

An ε-production rule (A → ε) in the CFG is converted to A(ε, ε) → ε in the BCFG. As
mentioned earlier, we only allow structural information for non-empty chunks.
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1.3.4 Explanation of the conversion scheme

For each production rule A of the CFG a number of new production rules are generated in
the BCFG G (because of (s0 , s0

′) ∈ Ωb ×Ωb′). For example, for a non-ε-production rule
of a CFG:

A → ...

the conversion to G will generate at least 11 new production rules:

A(ε , ε) → ...
A(ε , ]) → ... ]
A(ε , ]A) → ... ]A

A([ , ε) → [ ...
A([ , ]) → [ ... ]
A([ , ]A) → [ ... ]A

A([A , ε) → [A ...
A([A , ]) → [A ... ]
A([A , ]A) → [A ... ]A

A(( , )) → ( ... )
A((A , )A) → (A ... )A

Because non-terminals may exist in the right-hand side of the production rule A, it is
possible that there are more production rules generated. This is discussed later.

The large number of generated production rules is necessary, because there must exist
a production rule for each structure symbol in which it can be matched. If more non-
terminals are present in the CFG, the number of structure symbols also increases (and this
results in a larger grammar). An analysis of the number of generated production rules,
based on the original production rules, the number of terminals and non-terminals in the
CFG is given in a later section.

The conversion scheme enforces that terminals and non-terminals (X i ) remain in the
same place in the generated production rule A(s0 , s0

′) as in the original production rule
A.

The variables s0 and s0
′ indicate which structure symbols are expected at the start

and the end of the current input string. The variables Y and Y ′ indicate which structure
symbols must be matched at the start and at the end of the current production rule.

As discussed earlier, ambiguity with respect to matching the brackets can occur with
square brackets and round brackets in combination with unit-rules. This ambiguity is
prevented by matching the structure symbols as soon as this is possible. The values of Y

and Y ′ will therefore correspond when this is possible with s0 and s0
′.
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In the next two paragraphs the influence of s0 and s0
′ on Y and s1 will be discussed.

The situation for Y ′ and sm
′ is analogous, instead of the conditions of 1. the conditions

of 2. will be used. The relevant conditions of the conversion scheme are mentioned at the
end of each paragraph.

The influence of s0 and s0
′ on Y

When a square bracket without a type is expected (s0 = [), this symbol can be matched
in every production rule and thus the value of Y must equal s0 . This is also the case if a
typified square bracket is expected with a type corresponding with the current production
rule, s0 = [A (1a).

When a pair of round brackets without a type is expected (s0 = ( and s0
′ = )), these

structure symbols can be matched in every production rule. If the production rule is a unit-
rule or starts and/or ends with a terminal, the values of Y and Y ′ must equal the values of
s0 and s0

′. If this is not the case, the values of Y and Y ′ must equal the values of s0 and
s0

′ or must both be equal to ε. Since the values of s0 and s0
′ do not have to apply to the

same chunk and can be matched later, the values of Y and Y ′ can also be equal to ε. The
same arguments can be applied for a situation in which a pair of typified round brackets is
expected with a type corresponding to the current production rule, s0 = (A and s0

′ = )A

(1c,d).

If no structure symbol can be matched, s0 = ε, Y is left out (1g,h).

Finally, if a typified bracket is expected with a type not corresponding to the current
production rule, it is not possible to match this structure symbol in the current production
rule. This is also the case if a matchable opening round bracket is expected without the
matchable closing round bracket. If the right-hand side of the production rule does not
start with a terminal, the value of Y must equal ε (1b,e,f). In the other case no production
rule is generated, because the typified bracket cannot be matched.

The influence of s0 and s0
′ on s1

If no structure symbol can be matched, the current input string w may not start with a
structure symbol. If the right-hand side of the current production rule A starts with a non-
terminal B, the start of w is parsed with the production rule belonging to B. Since w may
not start with a structure symbol, the production rule of B may not start with a structure
symbol. Therefore the value of s1 must be equal to ε (1h).

If a typified bracket of a different type than A is expected at the start of w, this struc-
ture symbol cannot be matched in the current production rule. This is also the case if a
matchable opening round bracket is expected without a matchable closing round bracket.
In these cases the value of s0 , like in the previous situation, must be passed on to B

(s1 = s0 ) where the structure symbol can possibly be matched (1b,e,f).

If a pair of round brackets can be matched and the right-hand side of the non-unit
production rule starts and ends with a non-terminal, it is also possible to pass on the round
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brackets. In that situation s1 must be equal to s0 . This has to be possible, because s0

and s0
′ can apply to different chunks and therefore should be matched later. Only in the

previous three situations, the value of s1 is specified. If a structure symbol is matched in
the current production rule, the value of s1 is free (1a,c).

The value of the variable s1
′ is free if the right-hand side of the production rule does

not consist of one element (being a non-terminal). The values of the other variables si and
si

′ for 1 < i < m are always free.

Free variables

If the value of one or more variables (si and si
′) is free, this results in the generation

of multiple production rules for the same A(s0 , s0
′). For every possible combination of

variable values si and si
′ a production rule must exist. This is illustrated by the following

production rule (the complete CFG consists of two non-terminals):

A → B b

We limit ourselves to the generated production rules for A([B , ε). This means that at the
beginning a typified bracket is expected unequal to the current type (B 6= A) and at the
end no structure symbol may be present:

A([B , ε) → B([B , ε) b
A([B , ε) → B([B ,)) b
A([B , ε) → B([B ,)A) b
A([B , ε) → B([B ,)B ) b
A([B , ε) → B([B ,]) b
A([B , ε) → B([B ,]A) b
A([B , ε) → B([B ,]B ) b

If there are more free variables present (si or si
′), this results in a significant increase of

the number of production rules of G. This will be explained in more detail later.

Several examples of parsing an annotated input string by a BCFG are given in appendix
A (downloadable from: http://www.martijnwieling.nl).

1.3.5 Converting generated parse trees

After the annotated input string has been parsed according to the BCFG, the final step is
to convert the BCFG parse trees to CFG parse trees. This can be realized very easily by
applying the following two steps (this is also illustrated in figure 2):

• Every A(si , si
′) is replaced by A

• All structure symbols (Y 6= ε) are removed
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FIGURE 2 Conversion of generated parse trees (left: BCFG, right: CFG)

1.3.6 Properties of the BCFG

In this paragraph we show that the BCFG can parse all legally annotated input strings.
A legally annotated input string means that there exists a parse tree in the CFG for the
unannotated input string, which adheres to the structure indicated by the annotation. We
also show that no extra ambiguity is caused by the annotation of the input string with
structural information.

The conversion scheme enforces that terminal and non-terminal symbols remain in the
same order as in the CFG. The only difference between the CFG and the BCFG is therefore
the use of structural information. We therefore will focus on this aspect in the following.

• Property 1: The BCFG can parse all input strings which can be constructed with
the CFG with the addition of legal structural information

Proof : The conversion scheme stores (by using s0 and s0
′) the structure symbols with

which the current input string may start and end. Because of (s0 , s0
′) ∈ Ωb × Ωb′ all

combinations of matching structure symbols are present for every production rule and
the current input string may therefore start and end with all possible structure symbol
combinations. Because of (si , si

′) ∈ Ωb × Ωb′ , the non-terminals (parsing sub-strings)
on the right-hand side of every production rule may also start and end with all possible
structure symbol combinations. The only exception is that s1 and sm

′ may depend on s0

and s0
′ respectively, but this is only the case when they indicate structure symbols which

are expected at the start or end of the current input string (and for this case all possible
explanations were possible).

Since a square bracket or a pair of round brackets can be matched only if it does not
have a type, or has a type corresponding with the current production rule (see condition a
and c), only input strings can be parsed which have a legal annotation.

• Property 2: The BCFG does not generate CFG-equivalent parse trees for an input
string.

Proof : CFG-equivalence of two BCFG parse trees means that if both BCFG parse trees are
converted to CFG parse trees (see the previous paragraph) these parse trees are identical.
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Assume there exist two BCFG parse trees for a certain annotated input string which are
CFG-equivalent. In that case, it is necessary that a structure symbol is present in different
places in the parse tree. This means that it must be possible to ignore a structure symbol
when it can be matched first and subsequently match it in a later stage (without parsing
terminals in between).

To ignore a matchable opening square bracket, the corresponding variable (s0 ) must
be equal to ε (see condition g and h). This results in s1 , if it is present, being equal to ε.
As a consequence, the value s0 of the production rule X1 will also be equal to ε. This
process will repeat itself. To parse the input string correctly, a terminal must be matched
(see condition g). This shows that it is not possible to ignore a matchable opening square
bracket and match it in a later stage, before matching a terminal.

The case for a matchable closing square bracket is identical, with s0 replaced by s0
′,

s1 by sm
′ and X1 by Xm .

The same arguments (for s0 and s0
′) hold for a pair of round brackets if the right-hand

side of the production rule consists of one non-terminal. If this is not the case (condition d)
round brackets can be ignored, but can never be matched again defining the same chunk.
No production rules are generated where a single round bracket can be matched.

As we have shown, it is not possible to ignore a matchable structure symbol and match
it in a later stage without matching a terminal in between. This contradicts our assumption
and we can conclude that there are no CFG-equivalent parse trees generated for a certain
annotated input string.

1.3.7 Number of generated production rules

The BCFG will consist of a large number of production rules which depends on the number
of non-terminals (N ) in the CFG, the number of non-terminals (Z) in the right-hand side
of every single production rule and the type of X1 and Xm (terminal or non-terminal).
An ε-production rule in the CFG will only generate a single production rule in the BCFG.

Four other cases can be distinguished:

1. X1 and Xm are both terminals
2. X1 is a terminal and Xm is a non-terminal, or vice versa
3. X1 and Xm are both non-terminals and m > 1

4. X1 is a non-terminal and m = 1

When a production rule only consists of terminals, 11 production rules will be generated
in the BCFG. In this case no ambiguity problem exists and the same production rules are
generated as for Gf (section 3). When Z non-terminals are present in the production rule
(not at the start and the end), 2Z free variables are present (si and si

′). Every free variable
has 2N + 3 possible values (|Ωb | or |Ωb′ |). The number of generated production rules in
the BCFG for a production rule in the CFG which starts and ends with a non-terminal is
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therefore given by the following formula:
C0 = 11 · (2N + 3)2Z(1.1)

The total number of generated production rules in the BCFG for a production rule of the
CFG beginning with a terminal and ending with a non-terminal (or vice versa) is given by
the following formula1:

C1 = (22N + 27) · (2N + 3)(2Z−1 )(1.2)

For a production rule of the CFG which starts and ends with a non-terminal and m > 1,
the following formula is used to calculate the number of generated production rules in the
BCFG1:

C2 = (44N2 + 108N + 67) · (2N + 3)(2Z−2 )(1.3)

When a production rule of the CFG consists only of one non-terminal (m = 1), the number
of production rules in the BCFG is given by the following formula1:

C3 = 44N2 + 108N + 65(1.4)

For C0 , C1 , C2 and C3 it is clear that the number of generated production rules equals
O(N2Z ). The total number of generated production rules in the BCFG based on a CFG
consisting of

• p production rules where X1 and Xm are both terminals
• q production rules where X1 is a terminal and Xm is a non-terminal (or vice versa)
• r production rules where X1 and Xm are both non-terminals and m > 1

• s production rules where X1 is a non-terminal and m = 1

• t ε-production rules

thus equals:
|G| = p · C0 + q · C1 + r · C2 + s · C3 + t

If the original CFG is converted to Chomsky Normal Form, the right-hand side of every
production rule in the CFG consists of one terminal or two non-terminals. In this case q,
s and t equal 0, the value of Z equals 0 for C0 and the value of Z equals 2 for C2 . The
total number of generated production rules Gc then equals:

|Gc | = p · C0 + r · C2

with C0 = 11 and C2 = (44N2 + 108N + 67) · (2N + 3)2 . The number of generated
production rules in Gc thus has a polynomial degree, O(N4 ).

If the CFG is not in Chomsky Normal Form, but the highest number of non-terminals
in the right-hand side of a production rule of the CFG is known (Zmax), the number of
generated production rules also has a polynomial degree, O(N 2Zmax).

1A precise calculation is given in appendix B (downloadable from: http://www.martijnwieling.nl)
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1.4 Discussion

We did not investigate in what way the size of the BCFG influences the time needed to
parse an input string. Both the Earley-algorithm and the CYK-algorithm have a time com-
plexity depending on the size of the grammar and therefore will be influenced. However,
it is likely that new production rules can be generated on the fly and thus will alleviate the
problem.

When it is undesirable to use a BCFG with a large number of production rules, it is
also possible to use the ambiguous conversion scheme. After the parse trees have been
generated according to this BCFG (Gf with the addition that ε-production rules remain
the same and do not get any structure symbols), the parse trees have to be converted to
CFG parse trees by removing the structure symbols. In a subsequent sweep duplicate
parse trees can be then be removed.

In our study we only allow structural information for non-empty chunks. If struc-
tural information is also desired for empty chunks, the conversion scheme cannot be
adapted very easily. This is illustrated with the following example. In the production
rule A(s0 , s0

′) → X1 (s1 , s1
′) X2 (s2 , s2

′) the value of X1 equals ε. A square bracket
without a type can be matched in the production rule of X1 (if s0 = [), but it is also
possible to match the square bracket in the production rule X2 while not matching it in
X1 (s1 = ε). Since the value of s0 does not influence the value of s2 , spurious ambiguity
can occur here.

1.5 Conclusion

We showed how an input string can be annotated with structural information and subse-
quently can be parsed with a BCFG. A conversion scheme was given to convert a CFG to
a BCFG with the important property that the resulting BCFG does not generate spurious
ambiguous parse trees.

If an input string is parsed with a CFG a large number of parse trees can be generated.
The number of parse trees can be reduced by annotating the input string with structural
information, parsing the annotated input string with the converted CFG (the BCFG) and
converting the resulting BCFG parse trees to CFG parse trees. The number of parse trees is
only reduced when the CFG contains parse trees for the original input string which do not
comply to the indicated structure (these parse trees will not be generated by the BCFG).
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