
9

The automatic generation of
narratives

Mariët Theuney, Nanda Slabbersy, and Feikje Hielkemaz1yUniversity of TwentezUniversity of Aberdeen

Abstract

We present the Narrator, a Natural Language Generation component used in a digital sto-
rytelling system. The system takes as input a formal representation of a story plot, in the
form of a causal network relating the actions of the characters to their motives and their
consequences. Based on this input, the Narrator generates anarrative in Dutch, by carrying
out tasks such as constructing a Document Plan, performing aggregation and ellipsis and
the generation of appropriate referring expressions. We describe how these tasks are per-
formed and illustrate the process with examples, showing how this results in the generation
of coherent and well-formed narrative texts.

9.1 Introduction

Most natural language generation (NLG) systems are aimed at‘serious’ applica-
tions such as the generation of weather reports, instructions, descriptions of mu-
seum artifacts, etc. The automatic generation of narratives, however, is still a
largely unexplored subject. A notable exception to this is the work by Charles

1Feikje Hielkema carried out this work while she was at the University of Groningen.

Proceedings of the 17th Meeting of Computational Linguistics in the Netherlands
Edited by: Peter Dirix, Ineke Schuurman, Vincent Vandeghinste, and Frank Van Eynde.
Copyright c
2007 by the individual authors.

131



132 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

Callaway on STORYBOOK (Callaway 2000), a full-fledged NLG system for narra-
tive prose generation that can generate many different retellings of the same story
(Little Red Riding Hood). The input for STORYBOOK consists of a number of
plot arcs selected using user-specified parameters; the system was never coupled
to a digital storytelling system that could generate original plots. Other work ad-
dressing the generation of narratives is that by Lönneker (2005), who proposed
an architecture for a “narratologically enhanced NLG system” to be used in com-
bination with a story (plot) generator. However, this architecture has not been
implemented. One of few systems that have been actually implemented and used
as a language generation component in a digital storytelling system is PRINCE,
which is used as a front-end to the Proto-Propp plot generation system (Gerv́as et
al. 2005). Language generation in this system is based on templates and schema’s;
a distinguishing feature is its capacity to generate analogies (Herv́as et al. 2006).

In this paper we present another system for narrative generation: the Narrator,
the NLG component of the Virtual Storyteller story generation system. We discuss
its architecture and give an overview of how the different NLG tasks are carried
out. Then we discuss two example stories generated by the Narrator, followed by
some concluding remarks and pointers to future work. First,we briefly describe
the Virtual Storyteller, the storytelling system of which the Narrator is a part.

9.2 The Virtual Storyteller

The Virtual Storyteller2 is a multi-agent system that automatically creates fairy
tales. Story generation in the Virtual Storyteller takes place in three stages, each
handled by specialized agents.

The first stage isplot generation, which is based on the actions of semi-
autonomous character agents in a simulated story world. These agents can reason
logically and make plans to achieve their personal goals. Inreaction to events and
objects, they can experience emotions such as joy and distress, love and hate, and
their subsequent actions are influenced by these emotions (Theune et al. 2004).
Note that this is a so-called ‘emergent narrative’ approach(Aylett 1999) where
stories are created by the characters, not based on a pre-authored plot or a story
grammar.

During plot generation, a formal representation of what happens in the story
world is constructed, called the Fabula (Swartjes and Theune 2006). When all
events in the Story World have played out, the Fabula is passed on to the next
stage: narration. This part of the story creation process is carried out by the
Narrator agent, which maps the Fabula to a Dutch text using knowledge about
discourse structure and Dutch syntax and morphology. In therest of this paper,
the workings of the Narrator will be discussed in some detail. The third and last
stage ispresentation: an embodied agent representing a human storyteller presents
the narrative to the audience using text-to-speech. Our work on the generation of
speech with a storytelling speech style is described in Theune et al. (2006b) and
will not be discussed here.
2http://wwwhome.cs.utwente.nl/˜theune/VS/index.html



The automatic generation of narratives 133

9.3 The Narrator architecture

The design of the Narrator is based on the pipe-lined NLG architecture described
by Reiter and Dale (2000), who distinguish three stages in the NLG process:

1. Document planning: determining what is to be said, and creating an ab-
stract document specifying the structure of the information to be presented.

2. Microplanning : fleshing out the document specification by the generation
of referring expressions, lexicalisation (word choice), and aggregation.

3. Realisation: converting the abstract document specification to real text, us-
ing knowledge about syntax, morphology, etc. In addition, mark-up may be
added for use by external components.

Figure 9.1 shows the global architecture of the Narrator. Ithas three modules,
corresponding to the three NLG stages described above: a Document Planner, a
Microplanner and a Surface Realizer. The Document Planner receives a Fabula
as input and turns it into a Document Plan, consisting of plotelements linked
by rhetorical relations. The Microplanner converts the Document Plan into a so-
calledRhetorical Dependency Graphby mapping the plot elements to partially
lexicalised Dependency Trees. Finally, the Surface Realizer performs syntactic
aggregation and the generation of referring expressions, and also takes care of
linearization, morphology and punctuation to produce a proper surface form.

Figure 9.1: Architecture of the Narrator



134 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

The architecture of the Narrator deviates from the ‘standard’ NLG architecture
of Reiter and Dale (2000) in that we situate syntactic aggregation in the Surface
Realizer, whereas Reiter and Dale see aggregation as a Microplanning task. Cahill
and Reape (1999) investigated the architecture of over twenty NLG systems and
found that the location of the aggregation process varied widely across these sys-
tems. This divergence is partly caused by the fact that many,quite different pro-
cesses are gathered under aggregation (Reape and Mellish 1999). However, in the
Narrator we only focus on syntactic aggregation, which deals with grammatical
processes and therefore in our view should be situated in theSurface Realizer. A
consequence of this decision is that the generation of referring expressions is also
located in the Surface Realizer: it would not be efficient to generate referring ex-
pressions that are at risk of later being deleted during ellipsis (which is part of the
aggregation process). More importantly, to generate pronouns, the exact position
of their antecedents has to be known.

9.4 Document Planning

The input for the Document Planning stage of the Narrator is aFabula (Swartjes
and Theune 2006): a causal network representing the story that emerged from the
actions of the character agents in the story world. The Fabula does not form a com-
plete network of everything that happened in the course of the story, but captures
only those elements that have either a cause or an effect. Ourmodel of Fabula
structure is an adapted version of the story comprehension model of Trabasso et
al. (1989). It has been implemented as an OWL ontology3 and includes the fol-
lowing plot elements: actions, events, perceptions, goals, outcomes of goals, and
characters’ ‘internal elements’ such as emotions and beliefs. The possible rela-
tions between these plot elements are motivation, enablement, mental and physical
cause relations. Also, each plot element is associated witha time stamp (in terms
of discrete, virtual time steps in the story world) from which temporal relations
between elements can be derived.

The Document Planner receives a Fabula as input and turns it into a Document
Plan by mapping the causal links to appropriate rhetorical relations, removing ir-
relevant information and adding background information when necessary. We will
illustrate this using the (simplified) example Fabula givenin Figure 9.2. This Fab-
ula represents a simple story about a dwarf who is hungry and believes there is an
apple in the house. Combined, these two internal elements give rise to the goal to
eat the apple. To achieve this goal, the dwarf carries out a simple plan: to take the
apple and then eat it. Eating the apple leads consecutively to the perception and
the belief that the apple has been eaten, which means a positive outcome for the
original goal. Because the Fabula contains several elements that are relevant for
plot generation but not for narration, the first step of the Document Planner is to
prune away this irrelevant information. A typical example of this is the perception-
belief-positive outcome chain following the action of eating the apple in the exam-
ple Fabula: for the narration it is sufficient to mention onlythat the action was

3http://www.w3.org/TR/owl-features/



The automatic generation of narratives 135

carried out, leaving it to the reader to infer the rest. Negative outcomes, however,
are never pruned as these are generally quite relevant for the story.

Figure 9.2: Example Fabula. (IE = internal element, G = goal,A = action, P = perception, O
= outcome, = physical cause, e = enablement, m = motivation,� = psychological cause)

The next step is to convert the pruned Fabula to a binary tree and to replace the
causal links with appropriate rhetorical relations, inspired by Rhetorical Structure
Theory (RST) (Mann and Thompson 1987). The basic set of rhetorical relations
used in the Narrator are Cause, Contrast, Temporal and Additive relations, with
more specific relations such as Purpose and Elaboration as their subclasses.4 When
mapping the relations in the Fabula to rhetorical relations, consecutive steps of a
plan are connected using a Temporal relation; motivation and psychological cause
relations are mapped to Volitional Cause relations, and enablement and physical
cause relations are mapped to Non-volitional Cause relations. Additive is the most
general relation. It is used if two plot elements together cause another plot element,
and more in general to connect two plot elements in the Document Plan if no
more specific relation holds between them. The automatic assignment of Contrast
relations is a subject of ongoing research.

The final step is to extend the Document Plan with informationthat is relevant
for Narration, but which is not specified in the Fabula. Examples are informa-
tion about the setting (introducing characters and locations) and information on
the properties of characters and objects. In Figure 9.3, which shows the Document
Plan corresponding to the Fabula from Figure 9.2, such addedelements are shown
in grey: a Setting element introducing the protagonist, connected via an Elabora-
tion relation with an element specifying the protagonist’sname. These added plot
elements stand in a ‘Temporal-once’ (Once upon a time...) relation to the other
elements; this particular relation was added specifically for the fairy tale domain.5

4Penning and Theune (2007) show that almost all cue words found in fairy tales fit into these classes.
5As pointed out by one of our reviewers, it might be more appropriate to classify this relation as Back-
ground. However, since it is used only for this one construction, its exact classification is somewhat
academic.



136 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

Figure 9.3: Document Plan based on the example Fabula from Figure 9.2.

9.5 Microplanning

The Microplanner maps the plot elements in the Document Planto partially lexi-
calised Dependency Trees. We call the result aRhetorical Dependency Graph: a
graph (or rather, tree) structure with Dependency Trees expressing simple propo-
sitions as leaves, and rhetorical relations connecting them as nodes. Dependency
Trees are an attractive formalism for use in the Narrator, inparticular for the pur-
pose of aggregation and ellipsis (see Section 9.6), becauseof the independence of
word order, and the dependency labels that specify which role a node performs in
its parent syntactic category.

In order to convert plot elements to Dependency Trees, sentence templates have
been created that specify exactly how the arguments of the plot element should ap-
pear in the Dependency Tree. In total, over 30 different templates are currently
available to express actions, events, failed actions, settings, states, beliefs and per-
ceptions. Actions and events are expressed using a straightforward active voice
construction, with an optional PP argument to express instruments, e.g.,De rid-
der opende de poort (met een sleutel)(The knight opened the gate (with a key)).
Failed actions are expressed using a complex sentence withproberen(to try) as the
main verb, e.g.,De ridder probeerde de poort te openen(The knight tried to open
the gate). For internal states, we have standard constructions such asDe prinses
was bang(The princess was scared) andDe kabouter had honger(The dwarf was
hungry). In addition, templates are available for two specific storytelling-style
constructions that allow for the expression of high-intensity emotions: sentences
such asWat was ze gelukkig!(Oh, how happy she was!) andZe was nog nooit zo
gelukkig geweest!(She had never been so happy before!). Such information con-
cerning characters’ emotions is usually included as an Elaboration relation in the
Document Plan. Another specific storytelling constructionis used for the setting:
Er was eens...(Once upon a time, there was...). Various templates are available for
different goal types such as Attain goals, where the agens wants to perform some



The automatic generation of narratives 137

action or achieve some state (Hij wilde de appel opeten / gelukkig zijn / de appel
hebben) (He wanted to eat the apple / be happy / have the apple) and Sustain goals,
where the agens wants to maintain some existing situation (Hij wilde blijven eten
/ gelukkig blijven / de appel houden) (He wanted to keep eating / remain happy /
keep the apple).

Once the sentence templates are selected, the trees are partially lexicalised.
References to entities are not lexicalised, as this is part of the generation of refer-
ring expressions, which is done at a later stage. All other concepts are mapped
to Dutch words by the lexical choice algorithm, which makes use of a discourse
history to achieve some variation in wording, taking into account which words
have been used recently.6 The words added to the Dependency Trees are still un-
inflected, as morphology is taken care of during Surface Realization.

9.6 Aggregation

To achieve coherent output texts that are more than a sequence of simple sentences,
syntactic aggregation is applied to the trees in the Rhetorical Dependency Graph.
The aggregation algorithm goes through the graph depth-first, trying to combine
the Dependency Trees at the leaf nodes. If aggregation succeeds, the graph is
updated with a new, complex Dependency Tree replacing the original relation, and
the algorithm continues looking for relations to transform.

The syntactic aggregation process consists of three steps.First, based on the
rhetorical relation between two Dependency Trees, an appropriate cue word is
selected that expresses this relation. Then, depending on the properties of the se-
lected cue word, the two Dependency Trees may be joined together using a specific
syntactic construction. Finally, the joined Dependency Trees are checked for re-
peated elements that can be ellipted. In the remainder of this section we briefly
outline these steps; a detailed description of the aggregation process is given in
Theune et al. (2006a).

For the purpose of cue word selection, a small taxonomy charting only the
most prevalent cue words in Dutch has been constructed, using a variant of the
substitutability test described by Knott and Dale (1994). The cue words are divided
into four main classes, signaling Cause, Temporal, Contrast and Additive relations.
Each of these classes is subdivided into more specific subclasses. A cue word from
a subclass can always be replaced by a more general cue word inthe same category.
We have insufficient space to show the taxonomy here, but the original taxonomy
(with 38 cue words) is given in Theune et al. (2006a), and an updated version (with
32 cue words) is presented in Penning and Theune (2007).

The rhetorical relation between two Dependency Trees in theRhetorical De-
pendency Graph determines which cue words (if any) can be used to aggregate the
trees. If the relation has no specific features licensing theuse of a specialized cue
word, a more general cue word is chosen. It is not necessarilythe most specific
applicable cue word that gets selected; discourse history plays a part as well. If a

6We use a small lexicon that was constructed specifically for our story domain and contains only a few
synonyms; for a more sophisticated approach to lexical choice using WordNet, see Hervás et al. (2006).



138 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

cue word has been recently used, it is less likely to get chosen again. The selected
cue word determines the structure of the generated sentence(s). If the cue word is a
coordinator, a paratactic structure is created, i.e., a construction where two clauses
of equal status are coordinated. A new Dependency Tree is constructed with a root
labeled ‘CONJ’ (conjunction). Its child nodes are a coordinator (the cue word) and
two conjuncts (the Dependency Trees to be aggregated). If the selected cue word
is a subordinator, a hypotactic structure is created. If thecue word is an adverb, the
cue word is added to either the first or the second tree in the relation (depending
on the cue word), while the trees remain separate.

In the final step, ellipsis, superfluous nodes or branches areremoved from an
aggregated Dependency Tree. This only applies to paratactic trees, not to hypotac-
tic ones where one of the combined clauses is subordinated tothe other. First the
identical nodes (if any) in the aggregated Dependency Tree are marked. We use
unique identifiers to distinguish different instances of the same concept, so that
ellipsis is only applied to nodes with identical referents.When all identical nodes
(if any) have been found and marked, it is determined which operations are suit-
able, for example Conjunction Reduction, where the subjectof the second clause
is deleted. This operation is illustrated in Figure 9.4, expressing the Additive rela-
tion in the Document Plan of Figure 9.3. A corresponding surface string would be
something likeDe kabouter had honger en dacht dat er een appel in huis was(The
dwarf was hungry and believed there was an apple in the house). The other avail-
able forms of ellipsis are Gapping (deleting the main verb ofthe second clause,
e.g.,De prinses at een appel en de kabouter een peer) (The princess ate an apple
and the dwarf a pear), Right Node Raising (deleting the rightmost string of the first
clause, e.g.,De prinses ziet en de prins hoort de kabouter) (The princess sees and
the prince hears the dwarf), Stripping (deleting all constituents but one from the
second clause, and replacing them by the wordook (too), as inDe prinses houdt
van appels en de prins ook) (The princess loves apples and so does the prince)7

and Constituent Coordination (combining two non-identical constituents into one
and deleting the rest of the second conjunct in its entirety,e.g.,De prins en de
prinses houden van appels) (The prince and the princess love apples).

Figure 9.4: Dependency Tree with Conjunction Reduction.

The aggregation process is recursive in that an aggregated Dependency Tree

7Lit.: The princess loves apples and the prince too.



The automatic generation of narratives 139

can potentially be combined with another tree it stands in a relation to. However,
to keep the resulting sentences from getting too complex, weadded the restriction
that at most three simple Dependency Trees can be combined. In cases where this
restriction prohibits aggregation it is still possible to express the relation between
two Dependency Trees by adding an adverb such asvervolgens(then) orechter
(however) to the second tree. To express the maximum of relations, after the initial
traversal and transformation of the Rhetorical DependencyGraph, the algorithm
makes another pass through it and expresses some final relations by adding adverbs
to non-aggregated sentences.

We now illustrate the aggregation process using our exampleof the hungry
dwarf. Figure 9.5 shows the Rhetorical Dependency Graph corresponding to the
Document Plan from Figure 9.3, i.e., the same structure but with its leaves replaced
by Dependency Trees (here abbreviated using a number). First, the two leftmost
Dependency Trees D1 and D2 are combined. They are related by an Elaboration
relation, so D2 is attached to D1 as a relative clause. Since the resulting Depen-
dency Tree has a Temporal-once relation node as its parent, the cue phraseEr was
eens(Once upon a time) is also added to the tree. Next, D3 and D4 arecom-
bined, resulting in the tree shown in Figure 9.4. D5 does not have a sister it can be
combined with, so it is skipped in this pass through the tree.(Remember that the
algorithm moves from left to right through the Rhetorical Dependency Graph, so
D5 cannot be combined with its left sister at this point.) D6 and D7 are related by
a temporal relation, so they are combined into a hypotactic structure starting with
the cue phrasenadat (after). In a next pass through the Rhetorical Dependency
Graph, the algorithm adds an adjunct to D5: the cue phrasedaarom(therefore),
which expresses the causal relation of the aggregated Dependency Tree from Fig-
ure 9.4 (D3 and D4) to D5. An overview of the result is shown to the right in
Figure 9.5; the full text of the story is given in Section 9.9.

Er was eens D1 die D2
D3 en D4.
Daarom D5.
Nadat D6, D7.

Once upon a time, D1 who D2.
D3 and D4. Therefore D5.
After D6, D7.

Figure 9.5: Rhetorical Dependency Graph for the example story.

9.7 The generation of referring expressions

To decide whether a pronoun can be used to refer to a certain entity, or if it would
be better to use a noun, we use an algorithm that combines and extends those of
McCoy and Strube (1999) and Henschel et al. (2000). The algorithm is shown



140 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

in Figure 9.6. Its input is the referentr for which a referring expression is to
be generated. It returns true if a pronoun should be used and false otherwise.
Sometimes, even when a pronoun can be used without ambiguity, it is preferable
to use a noun phrase for variation. An analysis of human-written fairy tales led us
to a number of conclusions about when a noun phrase is preferred over a pronoun:� At the beginning of a paragraph.� If the antecedent has not been mentioned for two sentences.� If a pronoun has been used a number of times (about four times)and the

referring expression is the first one in the sentence.

Also, it is undesirable to use a pronoun when the referring expression should
include additional information (e.g., information about the emotional state of a
character). This information should be expressed by an adjective or a relative
clause, which cannot be combined with a pronoun. If the aboveconditions do
not hold, the algorithm returns true if there is strong parallelism with the previous
clause or sentence (Chambers and Smyth 1998) or if the clausein whichr appears
stands in a Causal relation to the preceding clause (Kehler 2002). Otherwise the
algorithm bases its decision on the salience of the referent, which is computed
using the salience factors of Lappin and Leass (1994).

Pronominalize(r)
if first reference tor in current paragraph

or antecedent has not been mentioned for two sentences
or first reference in sentence and a pronoun has been used 4 times
or referring expression should contain a relative clause
or adjective should be added (determined by the Document Planner) then
return false

end if
if r has not been mentioned in current sentencethen

if strong parallelism with previous sentencethen
return true

end if
else

if strong parallelism with first clause
or r appears in causal relationthen
return true

end if
end if
if r has highest salience value then

return true
end if
return false

Figure 9.6: Algorithm used for pronominalization choice.



The automatic generation of narratives 141

If a noun phrase is to be generated, the first step is to decide whether the name
of the entity should be used or not (assuming the entity has a name). This decision
is made randomly; 25% of the generated references use the name and the other
75% use a description. If the algorithm decides to generate areferring expression
containing the entity’s name, there are still two possibilities: simply the name (e.g.,
Amalia), or a noun phrase containing the name (prinses Amalia) (princess Amalia).
The latter construction can only be used when the noun describes a function, such
as princess, king or knight. If this is the case the algorithmincludes the noun,
otherwise it will only generate the name.

If a regular noun phrase is used instead of a name, first a noun has to be se-
lected. To have some variation in the generated texts, for some concepts we have
stored some synonyms in the lexicon: a preferred entry (the most commonly used
word for that concept) plus one or more additional entries that will only be used
occasionally. An example is the concept ‘king’ with the Dutch wordkoningas the
preferred entry and the wordvorstas an additional entry, which will only be used
when the wordkoninghas been used a number of times in a row. In addition, for
some concepts hypernyms are available that can be used for variation once in a
while. For example,De ridder sloeg de prinses. Het meisje huilde(The knight hit
the princess. The girl cried).

After having selected the noun, three types of adjectives can be added to it:

1. Distinguishing adjectives, which are necessary in orderto create an unam-
biguous referring expression. These are selected using a slightly modified
version of the algorithm proposed by Krahmer and Theune (2002). When
introducing a new character all known properties of this character are added
to the referring expression, because they can be used as distinguishing ad-
jectives later in the story.

2. Adjectives describing a character’s internal state.
3. Adjectives that only have a decorative function. These adjectives are only

added if the object to be described has no specific propertiesexcept its basic
type; for example gates and bridges. The Narrator agent maintains a list
of adjectives that can be used to ‘spice up’ the description of such objects,
returning clich́e expressions such aseen zware poort(a heavy gate).

The final step of the noun phrase generation algorithm is choosing a determiner
and adding this to the noun phrase generated so far. To this end an entity history is
maintained. When an entity is mentioned for the first time, anindefinite article is
used, and when the entity has been mentioned before, a definite article is used.

The algorithm described above can also create noun phrases that express rela-
tions of the referent with other objects, such asde poort van het kasteel(the gate
of the castle). For the description of the related object, the noun phrase algorithm
is applied recursively. In some of these cases, however, therelation can be easily
inferred and it would be more appropriate not to mention it explicitly. For exam-
ple, when the castle has already been mentioned, just sayingde poort(the gate)
is sufficient. Also, in some of these cases a definite article can be used for a first



142 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

mention, since the entity in question (e.g., the gate) has already been evoked by
the mention of the related object (the castle), based on world knowledge (‘every
castle has a gate’). Such referring expressions are calledbridging descriptions. To
be able to generate this kind of description we have defined a number of inference
rules such as8x.Castle(x)! 9y.Gate(y)̂ Has(x,y), which are checked if a refer-
entr is related to another referentr0 that has been mentioned earlier. So ifr is a
gate andr0 is a castle that has been mentioned before, the algorithm then checks
if there is a rule specifying that an entity of the type ofr0 usually has an entity
of the type ofr. If this is the case, then it checks if there is another salient entity
that can also have an entity of the same type asr (so it checks if there is another
entity that can have a gate – note that this can be another castle, but also an entity
of a completely different type). Finally it checks if the entity r0 has exactly oner, in which case a definite article can be used; if this is not thecase an indefinite
article will be used. A similar strategy is used for references to unique entities
in the story; for example, in stories it is common to refer to aking asthe kingif
there is only one king in the story. Such definite descriptions can be generated by
checking if the Story World only contains one entity of this type.

9.8 Surface form generation

After aggregation and referring expression generation have taken place, the Sur-
face Realiser linearises the Dependency Trees. It traverses the trees depth-first, or-
dering the children of each node by grammar rules that use thesyntactic category
of the parent node and the dependency labels of the child nodes. For example,
the rule: SMAIN! SU + HD + OBJ1 states that if a parent node has syntac-
tic category ‘SMAIN’ (sentence) and three children with dependency labels ‘SU’
(subject), ‘OBJ1’ (direct object) and ‘HD’ (main verb), then those children should
be ordered in the above way. This particular rule would for instance be applied to
produce the sentenceDe prins zag Amalia(The prince saw Amalia). Any nouns,
adjectives and verbs are inflected at the moment they are linearised. Punctuation
is added once linearisation is complete.

This concludes our description of the language generation process in the Nar-
rator; more details can be found in Slabbers (2006).

9.9 Some example stories

After referring expression generation and surface realization have been applied,
our simple example story about the hungry dwarf is finally narrated as follows:

Er was eens een kabouter die Plop heette. Hij had honger en dacht
dat er een appel in een huis was. Daarom wilde hij de appel eten.
Nadat Plop de appel had opgepakt, at hij de appel.8

8Once upon a time there was a dwarf who was called Plop. He was hungry and believed there was an
apple in a house. Therefore he wanted to eat the apple. After Plop had taken the apple, he ate it.



The automatic generation of narratives 143

Note that the Referring Expression algorithm generates theindefinite noun
phraseeen huis(a house) instead of the bridging descriptionhet huis(the house),
which would have been more appropriate if the house in question was Plop’s house
(which seems a reasonable assumption). However, in this case the Narrator lacked
knowledge about the owner of the house and therefore produced a general descrip-
tion. Apart from this error, the output story is well-formedand coherent. But
it is also very simple, and therefore we also show a more sophisticated example,
generated from a hand-made Document Plan (shown in Figure 9.7). This input
Document Plan contains Contrast relations and paragraph boundaries that cannot
currently be generated automatically by the Document Planner, so this example
illustrates the output level that could be achieved by the Narrator (in particular, the
Microplanning and Surface Realisation components) once these remaining Docu-
ment Planning problems are resolved.

Figure 9.7: Initial Document Plan for the second example story.

Er was eens een mooie prinses, die Amalia heette. Een ridder van
een ver land was verliefd op haar, maar zij was verliefd op eenjonge
prins. De ridder was jaloers, dus hij wilde haar ontvoeren.

De prinses woonde in een groot kasteel. Op een nacht ging de ridder
naar het kasteel. Hij probeerde de zware poort te openen, maar die
was op slot.

Nadat de ridder in een hoge boom was geklommen, sprong hij de
slaapkamer van de prinses binnen. Zij was zo geschrokken, dat zij
hard schreeuwde, maar niemand hoorde haar.

De ridder pakte de prinses op en vervolgens zette hij haar op zijn
paard. Daarna bracht hij haar naar een oude en smalle brug. Aan



144 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

de overkant zag zij de prins, op wie zij verliefd was. Wat was prinses
Amalia opgelucht!9

This example story illustrates most of the NLG tasks described above, such as
the addition of background information to the Document Plan(at the start of the
first and second paragraphs), choice of cue words and aggregation, pronominal-
ization and the expression of ‘decorative’ properties (een groot kasteel, een hoge
boom) (a big castle; a high tree) and the use of specific storytelling constructions.

9.10 Conclusions and future work

In this paper we have presented the Narrator, a natural language generation compo-
nent designed for use in a digital storytelling system, the Virtual Storyteller. The
Narrator has been implemented (in Java), but it has only beentested with hand-
made input structures, because parts of the Document Planner and of the Virtual
Storyteller’s plot generation component are still under construction. So far, the
only evaluations have been informal comparisons with the output of earlier ver-
sions of the Narrator.

The Narrator shows that the pipeline NLG architecture of Reiter and Dale
(2000) can very well be used for the generation of narratives. It employs so-
phisticated algorithms for NLG tasks such as aggregation and the generation of
referring expressions, enabling it to generate well-formed and fluent texts. This
stands in contrast to the output of most digital storytelling systems, which usually
consists of a straightforward mapping of plot elements to fixed expressions.

Unlike the STORYBOOK system (Callaway 2000), the Narrator cannot handle
typical properties of narrative prose such as multiple viewpoints or character dia-
logue, and neither does it employ the type of narratologicalknowledge as the nar-
rative generation architecture proposed by Lönneker (2005). However, it is capable
of generating several linguistic constructions that are typical for fairy tale-like sto-
ries, and some narrative generation tasks are currently being investigated. These
include the automatic placement of paragraph boundaries, detection of contrast re-
lations and the lexical expression of emotions (taking the intensity of the emotion
into account). Also, we would like to extend the Narrator so that it can also gen-
erate narratives in English. Since most algorithms and representations used in the
Narrator are language independent, we expect that this should be relatively easy
to accomplish by replacing the lexicon and the syntactic andmorphological rules
used for surface form generation.

Our main long-term challenge is to generate texts that are not only grammatical
and coherent, but that can also really affect the reader by employing narrative
9Once upon a time there was a beautiful princess who was calledAmalia. A knight from a far away
country was in love with her, but she was in love with a young prince. The knight was jealous, so he
wanted to abduct her.<P> The princess lived in a big castle. One night the knight went to the castle.
He tried to open the gate, but it was locked.<P> After the knight had climbed a high tree, he jumped
into the princess’ bedroom. She was so scared that she screamed loudly, but nobody heard her.<P>
The knight grabbed the princess and then he placed her on his horse. After that he took her to an old
and narrow bridge. On the other side she saw the prince whom she was in love with. Oh, how relieved
princess Amalia was!



The automatic generation of narratives 145

techniques such as the use of subjective perspectives to heighten identification,
and foreshadowing to increase suspense. Ablation tests in the style of Callaway
(2000) could then be used to evaluate the effect of such techniques.

References

Aylett, R.(1999), Narrative in virtual environments – towards emergent narrative,
Proceedings of the AAAI Fall Symposium on Narrative Intelligence, pp. 83–
86.

Cahill, L. and Reape, M.(1999), Component tasks in applied NLG systems,Tech-
nical Report ITRI-99-05, Information Technology Research Institute, ITRI,
Brighton, UK.

Callaway, C.(2000),Narrative Prose Generation, PhD thesis, North Carolina State
University, Raleigh, NC.

Chambers, G. and Smyth, R.(1998), Structural parallelism and discourse co-
herence: A test of Centering Theory,Journal of Memory and Language
39, 593–608.

Gerv́as, P., D́ıaz-Agudo, B., Peinado, F. and Hervás, R.(2005), Story plot genera-
tion based on CBR,Knowledge-Based Systems18(4-5), 235–242.

Henschel, R., Cheng, H. and Poesio, M.(2000), Pronominalization revisited,Pro-
ceedings of COLING, pp. 306–312.

Hervás, R., Pereira, F., Gervás, P. and Cardoso, A.(2006), Cross-domain analogy
in automated text generation,Proceedings of the Third joint workshop on
Computational Creativity, ECAI’06, Trento, Italy.

Kehler, A.(2002),Coherence, Reference, and the Theory of Grammar, CSLI Pub-
lications.

Knott, A. and Dale, R.(1994), Using linguistic phenomena tomotivate a set of
coherence relations,Discourse Processes18(1), 35–62.

Krahmer, E. and Theune, M.(2002), Efficient context-sensitive generation of re-
ferring expressions,in K. van Deemter and R. Kibble (eds),Information
Sharing: Reference and Presupposition in Language Generation and Inter-
pretation, CSLI Publications, pp. 223–264.

Lappin, S. and Leass, H.(1994), An algorithm for pronominalanaphora resolution,
Computational Linguistics20(4), 535–561.

Lönneker, B.(2005), Narratological knowledge for natural language generation,
Proceedings of the 10th European Workshop on Natural Language Gener-
ation (ENLG-05), Aberdeen, Scotland, pp. 91–100.

Mann, W. and Thompson, S.(1987), Rhetorical structure theory: A theory of text
organization,Technical Report ISI/RS-87-190, ISI: Information Sciences
Institute, Los Angeles, USA.

McCoy, K. and Strube, M.(1999), Generating anaphoric expressions: Pronoun or
definite description?,Proceedings of the ACL Workshop on The Relation of
Discourse/Dialogue Structure and Reference, pp. 63–71.



146 Mariët Theune, Nanda Slabbers, and Feikje Hielkema

Penning, M. and Theune, M.(2007), Cueing the virtual storyteller: Analysis of cue
phrase usage in fairy tales,Proceedings of the 11th European Workshop on
Natural Language Generation (ENLG’07).

Reape, M. and Mellish, C.(1999), Just what is aggregation anyway?, Proceed-
ings of the 7th European Workshop on Natural Language Generation
(ENLG’99), pp. 20–29.

Reiter, E. and Dale, R.(2000),Building Natural Language Generation Systems,
Cambridge University Press, Cambridge.

Slabbers, N.(2006),Narration for virtual storytelling, Master’s thesis, University
of Twente.

Swartjes, I. and Theune, M.(2006), A Fabula model for emergent narrative,Tech-
nologies for Interactive Digital Storytelling and Entertainment (TIDSE),
Lecture Notes in Computer Science 4326, Springer-Verlag, pp. 95–100.

Theune, M., Hielkema, F. and Hendriks, P.(2006a), Performing aggregation and
ellipsis using discourse structures,Research on Language and Computation
4(4), 353–375.

Theune, M., Meijs, K., Heylen, D. and Ordelman, R.(2006b), Generating ex-
pressive speech for storytelling applications,IEEE Transactions on Audio,
Speech and Language Processing14(4), 1137–1144.

Theune, M., Rensen, S., Op den Akker, R., Heylen, D. and Nijholt, A.(2004),
Emotional characters for automatic plot creation,in S. Göbel and et al.
(eds), Technologies for Interactive Digital Storytelling and Entertain-
ment (TIDSE), Lecture Notes in Computer Science 3105, Springer-Verlag,
pp. 95–100.

Trabasso, T., Van den Broek, P. and Suh, S. Y.(1989), Logicalnecessity and tran-
sitivity of causal relations in stories,Discourse Processes12, 1–25.


