9

The automatic generation of
narratives

Mariét Theuné& Nanda Slabbef’s and Feikje Hielkemé
fUniversity of Twente
tUniversity of Aberdeen

Abstract

We present the Narrator, a Natural Language Generation @oemp used in a digital sto-
rytelling system. The system takes as input a formal reptatien of a story plot, in the
form of a causal network relating the actions of the charadie their motives and their
consequences. Based on this input, the Narrator generatesative in Dutch, by carrying
out tasks such as constructing a Document Plan, perforngggegation and ellipsis and
the generation of appropriate referring expressions. VEerdee how these tasks are per-
formed and illustrate the process with examples, showingthds results in the generation
of coherent and well-formed narrative texts.

9.1 Introduction

Most natural language generation (NLG) systems are aim&gdous’ applica-
tions such as the generation of weather reports, instngtidescriptions of mu-
seum artifacts, etc. The automatic generation of narstitiewever, is still a
largely unexplored subject. A notable exception to thishis work by Charles

IFeikje Hielkema carried out this work while she was at thevigrsity of Groningen.

Proceedings of the 17th Meeting of Computational Lingessiin the Netherlands
Edited by: Peter Dirix, Ineke Schuurman, Vincent Vandegténand Frank Van Eynde.
Copyright(©)2007 by the individual authors.

131

132 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

Callaway on SORYBoOK (Callaway 2000), a full-fledged NLG system for narra-
tive prose generation that can generate many differertingte of the same story
(Little Red Riding Hood). The input for ®RYBOOK consists of a number of
plot arcs selected using user-specified parameters; thensygas never coupled
to a digital storytelling system that could generate oagjjplots. Other work ad-
dressing the generation of narratives is that linheker (2005), who proposed
an architecture for a “narratologically enhanced NLG gsyst® be used in com-
bination with a story (plot) generator. However, this atetiure has not been
implemented. One of few systems that have been actuallyeimghted and used
as a language generation component in a digital storygeflirstem is PRINCE,
which is used as a front-end to the Proto-Propp plot gemeratjstem (Geids et
al. 2005). Language generation in this system is based quidées and schema’s;
a distinguishing feature is its capacity to generate anedodienas et al. 2006).

In this paper we present another system for narrative ggoerahe Narrator,
the NLG component of the Virtual Storyteller story generatystem. We discuss
its architecture and give an overview of how the differentG\tasks are carried
out. Then we discuss two example stories generated by thatidarfollowed by
some concluding remarks and pointers to future work. Fivstpriefly describe
the Virtual Storyteller, the storytelling system of whidtetNarrator is a part.

9.2 The Virtual Storyteller

The Virtual Storytelle? is a multi-agent system that automatically creates fairy
tales. Story generation in the Virtual Storyteller takeacpl in three stages, each
handled by specialized agents.

The first stage iplot generation which is based on the actions of semi-
autonomous character agents in a simulated story worldselagents can reason
logically and make plans to achieve their personal goalsediation to events and
objects, they can experience emotions such as joy andsfistove and hate, and
their subsequent actions are influenced by these emotidreu(iEe et al. 2004).
Note that this is a so-called ‘emergent narrative’ appro@gtett 1999) where
stories are created by the characters, not based on a fereditplot or a story
grammar.

During plot generation, a formal representation of whatpeays in the story
world is constructed, called the Fabula (Swartjes and Taeg06). When all
events in the Story World have played out, the Fabula is jpasseto the next
stage: narration. This part of the story creation process is carried out by the
Narrator agent, which maps the Fabula to a Dutch text usirmyvladge about
discourse structure and Dutch syntax and morphology. Irrdkeof this paper,
the workings of the Narrator will be discussed in some defHile third and last
stage ipresentationan embodied agent representing a human storyteller ggesen
the narrative to the audience using text-to-speech. Ouk woithe generation of
speech with a storytelling speech style is described in méet al. (2006b) and
will not be discussed here.

2http://lwwwhome.cs.utwente.nl/theune/VS/index.html

The automatic generation of narratives 133

9.3 The Narrator architecture

The design of the Narrator is based on the pipe-lined NLGitrcture described
by Reiter and Dale (2000), who distinguish three stagesda\ihG process:

1. Document planning determining what is to be said, and creating an ab-
stract document specifying the structure of the infornratmbe presented.

2. Microplanning : fleshing out the document specification by the generation
of referring expressions, lexicalisation (word choice)d aggregation.

3. Realisationt converting the abstract document specification to red) tes¢
ing knowledge about syntax, morphology, etc. In additioarkrup may be
added for use by external components.

Figure 9.1 shows the global architecture of the Narratdra#t three modules,
corresponding to the three NLG stages described above: anbatt Planner, a
Microplanner and a Surface Realizer. The Document Plareegives a Fabula
as input and turns it into a Document Plan, consisting of plements linked
by rhetorical relations. The Microplanner converts the ent Plan into a so-
called Rhetorical Dependency Gragty mapping the plot elements to partially
lexicalised Dependency Trees. Finally, the Surface Reafierforms syntactic
aggregation and the generation of referring expressiams,atéso takes care of
linearization, morphology and punctuation to produce gersurface form.

Fabula
|

v

Document Planner:
- Selecting relevant information
- Adding rhetorical relations

I
Document Plan

Microplanner:
- Generating sentence plans
- Lexicalization

Rhetorical Dependency Graph

Surface Realizer:

- Syntactic aggregation

- Referring expression generation
- Surface form generation

\
v

Surface form

Figure 9.1: Architecture of the Narrator

134 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

The architecture of the Narrator deviates from the ‘statiddtG architecture
of Reiter and Dale (2000) in that we situate syntactic agafieg in the Surface
Realizer, whereas Reiter and Dale see aggregation as afléiorong task. Cahill
and Reape (1999) investigated the architecture of overtyal¢hG systems and
found that the location of the aggregation process varietkhyiacross these sys-
tems. This divergence is partly caused by the fact that naanite different pro-
cesses are gathered under aggregation (Reape and MeliSh t8wever, in the
Narrator we only focus on syntactic aggregation, which sl@ath grammatical
processes and therefore in our view should be situated iSthface Realizer. A
consequence of this decision is that the generation ofriefeexpressions is also
located in the Surface Realizer: it would not be efficienténerate referring ex-
pressions that are at risk of later being deleted duringsdli(which is part of the
aggregation process). More importantly, to generate prgiothe exact position
of their antecedents has to be known.

9.4 Document Planning

The input for the Document Planning stage of the Narratorkalaula (Swartjes

and Theune 2006): a causal network representing the stargtherged from the
actions of the character agents in the story world. The featbos not form a com-
plete network of everything that happened in the courseesthry, but captures
only those elements that have either a cause or an effect.odel of Fabula

structure is an adapted version of the story comprehensaehof Trabasso et
al. (1989). It has been implemented as an OWL ontolayyd includes the fol-

lowing plot elements: actions, events, perceptions, geaitomes of goals, and
characters’ ‘internal elements’ such as emotions and fgeli€he possible rela-
tions between these plot elements are motivation, enalbiemental and physical
cause relations. Also, each plot element is associatedantithe stamp (in terms
of discrete, virtual time steps in the story world) from whiemporal relations
between elements can be derived.

The Document Planner receives a Fabula as input and tumte &iDocument
Plan by mapping the causal links to appropriate rhetorelaltions, removing ir-
relevant information and adding background informatiorewhecessary. We will
illustrate this using the (simplified) example Fabula giirefigure 9.2. This Fab-
ula represents a simple story about a dwarf who is hungry alieMes there is an
apple in the house. Combined, these two internal elemewvésrigie to the goal to
eat the apple. To achieve this goal, the dwarf carries ouhplsiplan: to take the
apple and then eat it. Eating the apple leads consecutivelyet perception and
the belief that the apple has been eaten, which means avpasiticome for the
original goal. Because the Fabula contains several elentkeat are relevant for
plot generation but not for narration, the first step of theuent Planner is to
prune away this irrelevant information. A typical examplehis is the perception-
belief-positive outcome chain following the action of egtithe apple in the exam-
ple Fabula: for the narration it is sufficient to mention ottt the action was

Shttp://www.w3.0rg/TR/owl-features/

The automatic generation of narratives 135

carried out, leaving it to the reader to infer the rest. Niegadutcomes, however,
are never pruned as these are generally quite relevantdatainy.

hungry
take apple

eat apple

apple is
in house eat apple apple eaten apple eaten positive!
successfully

Figure 9.2: Example Fabula. (IE = internal element, G = ghal action, P = perception, O
= outcomeg) = physical cause, e = enablement, m = motivatidr, psychological cause)

The next step is to convert the pruned Fabula to a binary trdécareplace the
causal links with appropriate rhetorical relations, inegiby Rhetorical Structure
Theory (RST) (Mann and Thompson 1987). The basic set of ricataelations
used in the Narrator are Cause, Contrast, Temporal and idedélations, with
more specific relations such as Purpose and Elaboratioeiastibclasse$\When
mapping the relations in the Fabula to rhetorical relati@eisecutive steps of a
plan are connected using a Temporal relation; motivatiahpmychological cause
relations are mapped to Volitional Cause relations, andlenaent and physical
cause relations are mapped to Non-volitional Cause rektiddditive is the most
general relation. Itis used if two plot elements togetheiseaanother plot element,
and more in general to connect two plot elements in the DoatirR&an if no
more specific relation holds between them. The automatigrasent of Contrast
relations is a subject of ongoing research.

The final step is to extend the Document Plan with informatii is relevant
for Narration, but which is not specified in the Fabula. Exfsmre informa-
tion about the setting (introducing characters and looa)i@and information on
the properties of characters and objects. In Figure 9.3 wétows the Document
Plan corresponding to the Fabula from Figure 9.2, such adéedents are shown
in grey: a Setting element introducing the protagonistneated via an Elabora-
tion relation with an element specifying the protagoniggisne. These added plot
elements stand in a ‘Temporal-onc®r{ce upon a time)..relation to the other
elements; this particular relation was added specificalytfe fairy tale domaif.

4Penning and Theune (2007) show that almost all cue wordsifoufairy tales fit into these classes.
5As pointed out by one of our reviewers, it might be more appate to classify this relation as Back-
ground. However, since it is used only for this one constouactits exact classification is somewhat
academic.

136 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

Temporal-once

Elaboration Cause - volitional
- Cause - volitional Temporal-after
Setting: Character:
Character Name
Goal: Action: Action:
Additive Eat apple Take apple Eat apple
Belief:
Emotion: Apple is in
Hungry the house

Figure 9.3: Document Plan based on the example Fabula frgord=D.2.

9.5 Microplanning

The Microplanner maps the plot elements in the Document @lgartially lexi-
calised Dependency Trees. We call the resutthatorical Dependency Grapha
graph (or rather, tree) structure with Dependency Treegessng simple propo-
sitions as leaves, and rhetorical relations connecting thg nodes. Dependency
Trees are an attractive formalism for use in the Narratopairticular for the pur-
pose of aggregation and ellipsis (see Section 9.6), beaduke independence of
word order, and the dependency labels that specify whighaalode performs in
its parent syntactic category.

In order to convert plot elements to Dependency Trees, seatemplates have
been created that specify exactly how the arguments of titef@ment should ap-
pear in the Dependency Tree. In total, over 30 different tatep are currently
available to express actions, events, failed actionsngsttstates, beliefs and per-
ceptions. Actions and events are expressed using a sfaightd active voice
construction, with an optional PP argument to expressunstnts, e.g.pe rid-
der opende de poort (met een sleut@he knight opened the gate (with a key)).
Failed actions are expressed using a complex sentencenmetikren(to try) as the
main verb, e.g.De ridder probeerde de poort te open@rhe knight tried to open
the gate). For internal states, we have standard constnscsiuch aPe prinses
was bang The princess was scared) abd kabouter had hongdihe dwarf was
hungry). In addition, templates are available for two sfiedtorytelling-style
constructions that allow for the expression of high-intgnemotions: sentences
such asVat was ze gelukkiglOh, how happy she was!) aatk was nog nooit zo
gelukkig geweest{She had never been so happy before!). Such information con-
cerning characters’ emotions is usually included as andg&ion relation in the
Document Plan. Another specific storytelling construci®nsed for the setting:
Er was eens..(Once upon a time, there was...). Various templates ar&alaior
different goal types such as Attain goals, where the agemssvwta perform some

The automatic generation of narratives 137

action or achieve some statdif wilde de appel opeten / gelukkig zijn / de appel
hebbe (He wanted to eat the apple / be happy / have the apple) antdisgsals,
where the agens wants to maintain some existing situatigmglde blijven eten

/ gelukkig blijven / de appel houdg(He wanted to keep eating / remain happy /
keep the apple).

Once the sentence templates are selected, the trees aedlypsexicalised.
References to entities are not lexicalised, as this is gditeogeneration of refer-
ring expressions, which is done at a later stage. All othecepts are mapped
to Dutch words by the lexical choice algorithm, which makse of a discourse
history to achieve some variation in wording, taking inte@mt which words
have been used recenflyThe words added to the Dependency Trees are still un-
inflected, as morphology is taken care of during SurfaceiRatain.

9.6 Aggregation

To achieve coherent output texts that are more than a segoésitnple sentences,
syntactic aggregation is applied to the trees in the Riegtbbependency Graph.
The aggregation algorithm goes through the graph depth-fiying to combine
the Dependency Trees at the leaf nodes. If aggregation edscéhe graph is
updated with a new, complex Dependency Tree replacing tgaat relation, and
the algorithm continues looking for relations to transform

The syntactic aggregation process consists of three sk, based on the
rhetorical relation between two Dependency Trees, an @pjte cue word is
selected that expresses this relation. Then, dependinigeoproperties of the se-
lected cue word, the two Dependency Trees may be joineditegesing a specific
syntactic construction. Finally, the joined DependenoyeBrare checked for re-
peated elements that can be ellipted. In the remainder sfstition we briefly
outline these steps; a detailed description of the aggmgatocess is given in
Theune et al. (2006a).

For the purpose of cue word selection, a small taxonomy iclgadnly the
most prevalent cue words in Dutch has been constructedg @sirariant of the
substitutability test described by Knott and Dale (1994je Tue words are divided
into four main classes, signaling Cause, Temporal, CardrasAdditive relations.
Each of these classes is subdivided into more specific ssgedaA cue word from
a subclass can always be replaced by a more general cue vihedsame category.
We have insufficient space to show the taxonomy here, butrigaal taxonomy
(with 38 cue words) is given in Theune et al. (2006a), and alatgul version (with
32 cue words) is presented in Penning and Theune (2007).

The rhetorical relation between two Dependency Trees irRifwetorical De-
pendency Graph determines which cue words (if any) can kettossgggregate the
trees. If the relation has no specific features licensingitieeof a specialized cue
word, a more general cue word is chosen. It is not necesghglynost specific
applicable cue word that gets selected; discourse histags@ part as well. If a

6We use a small lexicon that was constructed specifically fioistory domain and contains only a few
synonyms; for a more sophisticated approach to lexicabehasing WordNet, see Heéas et al. (2006).

138 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

cue word has been recently used, it is less likely to get ahagain. The selected
cue word determines the structure of the generated selig@nki¢he cue word is a
coordinator, a paratactic structure is created, i.e., atcoction where two clauses
of equal status are coordinated. A new Dependency Tree sremted with a root
labeled ‘CONJ’ (conjunction). Its child nodes are a cooadiim (the cue word) and
two conjuncts (the Dependency Trees to be aggregated)e Belected cue word
is a subordinator, a hypotactic structure is created. IEtreeword is an adverb, the
cue word is added to either the first or the second tree in tadoe (depending
on the cue word), while the trees remain separate.

In the final step, ellipsis, superfluous nodes or brancheseaneved from an
aggregated Dependency Tree. This only applies to parataets, not to hypotac-
tic ones where one of the combined clauses is subordinatibe tather. First the
identical nodes (if any) in the aggregated Dependency Treenarked. We use
unique identifiers to distinguish different instances af #ame concept, so that
ellipsis is only applied to nodes with identical refereri¢hen all identical nodes
(if any) have been found and marked, it is determined whictraions are suit-
able, for example Conjunction Reduction, where the sulgjétiie second clause
is deleted. This operation is illustrated in Figure 9.4,resging the Additive rela-
tion in the Document Plan of Figure 9.3. A correspondingaeefstring would be
something likeDe kabouter had honger en dacht dat er een appel in huis(Mas
dwarf was hungry and believed there was an apple in the hotike)other avail-
able forms of ellipsis are Gapping (deleting the main verlhefsecond clause,
e.g.,De prinses at een appel en de kabouter een p@dre princess ate an apple
and the dwarf a pear), Right Node Raising (deleting the mgist string of the first
clause, e.gDe prinses ziet en de prins hoort de kaboli{@he princess sees and
the prince hears the dwarf), Stripping (deleting all cdostits but one from the
second clause, and replacing them by the wak (too), as inDe prinses houdt
van appels en de prins opkThe princess loves apples and so does the prince)
and Constituent Coordination (combining two non-identemmstituents into one
and deleting the rest of the second conjunct in its entirety,, De prins en de
prinses houden van appgidhe prince and the princess love apples).

hungry Dwarf01 believe

Figure 9.4: Dependency Tree with Conjunction Reduction.

The aggregation process is recursive in that an aggregagpdridency Tree

“Lit.: The princess loves apples and the prince too.

The automatic generation of narratives 139

can potentially be combined with another tree it stands ielaion to. However,
to keep the resulting sentences from getting too complexadded the restriction
that at most three simple Dependency Trees can be combimedsés where this
restriction prohibits aggregation it is still possible tpeess the relation between
two Dependency Trees by adding an adverb sucheagolgengthen) orechter
(however) to the second tree. To express the maximum ofaoe>after the initial
traversal and transformation of the Rhetorical Dependé&@m@ph, the algorithm
makes another pass through it and expresses some finadmelati adding adverbs
to non-aggregated sentences.

We now illustrate the aggregation process using our exaimiptee hungry
dwarf. Figure 9.5 shows the Rhetorical Dependency Graptesponding to the
Document Plan from Figure 9.3, i.e., the same structure libtits leaves replaced
by Dependency Trees (here abbreviated using a number}, thiestwo leftmost
Dependency Trees D1 and D2 are combined. They are related Biaboration
relation, so D2 is attached to D1 as a relative clause. Shmeedsulting Depen-
dency Tree has a Temporal-once relation node as its panertue phrasgr was
eens(Once upon a time) is also added to the tree. Next, D3 and D4¢a@re
bined, resulting in the tree shown in Figure 9.4. D5 does awela sister it can be
combined with, so it is skipped in this pass through the t(Bemember that the
algorithm moves from left to right through the Rhetoricalg@adency Graph, so
D5 cannot be combined with its left sister at this point.) D@ ®7 are related by
a temporal relation, so they are combined into a hypotatticture starting with
the cue phraseadat(after). In a next pass through the Rhetorical Dependency
Graph, the algorithm adds an adjunct to D5: the cue phdaseom(therefore),
which expresses the causal relation of the aggregated bepey Tree from Fig-
ure 9.4 (D3 and D4) to D5. An overview of the result is shownhe tight in
Figure 9.5; the full text of the story is given in Section 9.9.

Temporal-once Er was eens D1 die D2

D3 en D4.
Elaboration Cause - volitional Daarom D5.
N RS Nadat D6, D7.

m D2| Cause-vol Temporal-after
= ditive/\ E Once upon a time, D1 who D2.
TN D3 and D4. Therefore D5.
After D6, D7.

Figure 9.5: Rhetorical Dependency Graph for the examplg.sto

9.7 The generation of referring expressions

To decide whether a pronoun can be used to refer to a certaiy en if it would
be better to use a noun, we use an algorithm that combinesxéeds those of
McCoy and Strube (1999) and Henschel et al. (2000). The ighgoris shown

140 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

in Figure 9.6. Its input is the referemtfor which a referring expression is to
be generated. It returns true if a pronoun should be used alsd btherwise.
Sometimes, even when a pronoun can be used without ambigugypreferable
to use a noun phrase for variation. An analysis of humantewrifairy tales led us
to a number of conclusions about when a noun phrase is pedfewer a pronoun:

e At the beginning of a paragraph.

¢ If the antecedent has not been mentioned for two sentences.

e If a pronoun has been used a number of times (about four tiames)he
referring expression is the first one in the sentence.

Also, it is undesirable to use a pronoun when the referriqgession should
include additional information (e.g., information abobetemotional state of a
character). This information should be expressed by arctiggeor a relative
clause, which cannot be combined with a pronoun. If the alwovelitions do
not hold, the algorithm returns true if there is strong daliaim with the previous
clause or sentence (Chambers and Smyth 1998) or if the diaudgchr appears
stands in a Causal relation to the preceding clause (Kebl@2)2 Otherwise the
algorithm bases its decision on the salience of the referehich is computed
using the salience factors of Lappin and Leass (1994).

Pronominalizef)

if first reference ta@ in current paragraph
or antecedent has not been mentioned for two sentences
or first reference in sentence and a pronoun has been used 4 times
or referring expression should contain a relative clause
or adjective should be added (determined by the Document EXiten
return false
end if
if r has not been mentioned in current sentehea
if strong parallelism with previous sentertben
return true
end if
else
if strong parallelism with first clause
or r appears in causal relatidinen
return true
end if
end if
if » has highest salience value then
return true
end if
return false

Figure 9.6: Algorithm used for pronominalization choice.

The automatic generation of narratives 141

If a noun phrase is to be generated, the first step is to dediééher the name
of the entity should be used or not (assuming the entity hasreelh This decision
is made randomly; 25% of the generated references use the aatthe other
75% use a description. If the algorithm decides to generadéearing expression
containing the entity’s name, there are still two posdik#i: simply the name (e.g.,
Amaliag), or a noun phrase containing the namper(ses Amalia(princess Amalia).
The latter construction can only be used when the noun desca function, such
as princess, king or knight. If this is the case the algoritholudes the noun,
otherwise it will only generate the name.

If a regular noun phrase is used instead of a name, first a nasimohbe se-
lected. To have some variation in the generated texts, foesmncepts we have
stored some synonyms in the lexicon: a preferred entry (st commonly used
word for that concept) plus one or more additional entried will only be used
occasionally. An example is the concept ‘king’ with the Duteordkoningas the
preferred entry and the worirstas an additional entry, which will only be used
when the wordkoninghas been used a number of times in a row. In addition, for
some concepts hypernyms are available that can be usedrfatiara once in a
while. For exampleDe ridder sloeg de prinses. Het meisje hui(d@ée knight hit
the princess. The girl cried).

After having selected the noun, three types of adjectivasesadded to it:

1. Distinguishing adjectives, which are necessary in otd@reate an unam-
biguous referring expression. These are selected usirigtalglmodified
version of the algorithm proposed by Krahmer and TheuneZR0®/hen
introducing a new character all known properties of thigabter are added
to the referring expression, because they can be used awdishing ad-
jectives later in the story.

. Adjectives describing a character’s internal state.

3. Adjectives that only have a decorative function. Thegedides are only
added if the object to be described has no specific propestieept its basic
type; for example gates and bridges. The Narrator agenttaiaina list
of adjectives that can be used to ‘spice up’ the descriptiauoh objects,
returning clicte expressions such aen zware poorfa heavy gate).

N

The final step of the noun phrase generation algorithm issihga determiner
and adding this to the noun phrase generated so far. To tthigreantity history is
maintained. When an entity is mentioned for the first timeinalefinite article is
used, and when the entity has been mentioned before, a defitiitle is used.

The algorithm described above can also create noun phitzstesxpress rela-
tions of the referent with other objects, suchdaspoort van het kasteéhe gate
of the castle). For the description of the related obje&,tbun phrase algorithm
is applied recursively. In some of these cases, howevergthgon can be easily
inferred and it would be more appropriate not to mention filiexly. For exam-
ple, when the castle has already been mentioned, just sdgimport(the gate)
is sufficient. Also, in some of these cases a definite artiatele used for a first

142 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

mention, since the entity in question (e.g., the gate) ha&sady been evoked by
the mention of the related object (the castle), based ondwarbwledge (‘every
castle has a gate’). Such referring expressions are daliéging descriptionsTo
be able to generate this kind of description we have definadréar of inference
rules such as’x.Castle(x)— Jy.Gate(y)A Has(x,y) which are checked if a refer-
entr is related to another referentthat has been mentioned earlier. Seo it a
gate and”’ is a castle that has been mentioned before, the algorithmcihecks
if there is a rule specifying that an entity of the typer6fusually has an entity
of the type ofr. If this is the case, then it checks if there is another saketity
that can also have an entity of the same type éso it checks if there is another
entity that can have a gate — note that this can be anothéde dast also an entity
of a completely different type). Finally it checks if the éytr’ has exactly one
r, in which case a definite article can be used; if this is notcme an indefinite
article will be used. A similar strategy is used for referefito unique entities
in the story; for example, in stories it is common to refer tireg asthe kingif
there is only one king in the story. Such definite descrigioan be generated by
checking if the Story World only contains one entity of thipé.

9.8 Surface form generation

After aggregation and referring expression generatiore haken place, the Sur-
face Realiser linearises the Dependency Trees. It travéiedrees depth-first, or-
dering the children of each node by grammar rules that ussythiactic category
of the parent node and the dependency labels of the childsnoéer example,
the rule: SMAIN — SU + HD + OBJ1 states that if a parent node has syntac-
tic category ‘SMAIN’ (sentence) and three children with degency labels ‘SU’
(subject), ‘OBJ1’ (direct object) and ‘HD’ (main verb), théhose children should
be ordered in the above way. This particular rule would fetance be applied to
produce the sentend®e prins zag AmaligThe prince saw Amalia). Any nouns,
adjectives and verbs are inflected at the moment they ararigsel. Punctuation
is added once linearisation is complete.

This concludes our description of the language generatioocgss in the Nar-
rator; more details can be found in Slabbers (2006).

9.9 Some example stories

After referring expression generation and surface rei@dizehave been applied,
our simple example story about the hungry dwarf is finallyrai@d as follows:

Er was eens een kabouter die Plop heette. Hij had honger entdac
dat er een appel in een huis was. Daarom wilde hij de appel.eten
Nadat Plop de appel had opgepakt, at hij de apbel.

80nce upon a time there was a dwarf who was called Plop. He wagrjhand believed there was an
apple in a house. Therefore he wanted to eat the apple. Afiprifad taken the apple, he ate it.

The automatic generation of narratives 143

Note that the Referring Expression algorithm generatesrttiefinite noun
phrasesen huiga house) instead of the bridging descriptheet huis(the house),
which would have been more appropriate if the house in questas Plop’s house
(which seems a reasonable assumption). However, in thistbadNarrator lacked
knowledge about the owner of the house and therefore produgeneral descrip-
tion. Apart from this error, the output story is well-formadd coherent. But
it is also very simple, and therefore we also show a more stipated example,
generated from a hand-made Document Plan (shown in Figidje $his input
Document Plan contains Contrast relations and paragraphdasies that cannot
currently be generated automatically by the Document RIarso this example
illustrates the output level that could be achieved by theddar (in particular, the
Microplanning and Surface Realisation components) onesetihemaining Docu-
ment Planning problems are resolved.

Par 1 Cause-v Par 2
Temp
Cause-v
(G] conion
Coriras
[inow? |
Par 3 Cause-n Par 4 Cause-n
Temp Contrast Tems&v
oo | Too [eim | [] [Rekw
[scream |

Figure 9.7: Initial Document Plan for the second exampleysto

Er was eens een mooie prinses, die Amalia heette. Een ridder v
een ver land was verliefd op haar, maar zij was verliefd opjeage
prins. De ridder was jaloers, dus hij wilde haar ontvoeren.

De prinses woonde in een groot kasteel. Op een nacht ginglderi
naar het kasteel. Hij probeerde de zware poort te openen/ iiga
was op slot.

Nadat de ridder in een hoge boom was geklommen, sprong hij de
slaapkamer van de prinses binnen. Zij was zo geschrokkergijda
hard schreeuwde, maar niemand hoorde haar.

De ridder pakte de prinses op en vervolgens zette hij haarijop z
paard. Daarna bracht hij haar naar een oude en smalle brugn Aa

144 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

de overkant zag zij de prins, op wie zij verliefd was. Wat wassps
Amalia opgeluchf!

This example story illustrates most of the NLG tasks describove, such as
the addition of background information to the Document REtrthe start of the
first and second paragraphs), choice of cue words and aggmegpronominal-
ization and the expression of ‘decorative’ propertiesn groot kasteel, een hoge
boon) (a big castle; a high tree) and the use of specific storgtgttionstructions.

9.10 Conclusions and future work

In this paper we have presented the Narrator, a natural éygygeneration compo-
nent designed for use in a digital storytelling system, tivtusll Storyteller. The
Narrator has been implemented (in Java), but it has only bestad with hand-
made input structures, because parts of the Document Rlandeof the Virtual
Storyteller’'s plot generation component are still undemstouction. So far, the
only evaluations have been informal comparisons with thpwiwf earlier ver-
sions of the Narrator.

The Narrator shows that the pipeline NLG architecture oft&keaind Dale
(2000) can very well be used for the generation of narrativiksemploys so-
phisticated algorithms for NLG tasks such as aggregatiahthe generation of
referring expressions, enabling it to generate well-fatraad fluent texts. This
stands in contrast to the output of most digital storytglystems, which usually
consists of a straightforward mapping of plot elements tedigxpressions.

Unlike the SSORYBOOK system (Callaway 2000), the Narrator cannot handle
typical properties of narrative prose such as multiple yieints or character dia-
logue, and neither does it employ the type of narratolodinaivledge as the nar-
rative generation architecture proposed kiyheker (2005). However, itis capable
of generating several linguistic constructions that apéctyl for fairy tale-like sto-
ries, and some narrative generation tasks are currenthghevestigated. These
include the automatic placement of paragraph boundarsction of contrast re-
lations and the lexical expression of emotions (taking therisity of the emotion
into account). Also, we would like to extend the NarratorIsat it can also gen-
erate narratives in English. Since most algorithms ancesgmtations used in the
Narrator are language independent, we expect that thidcsheurelatively easy
to accomplish by replacing the lexicon and the syntacticrangphological rules
used for surface form generation.

Our main long-term challenge is to generate texts that aremp grammatical
and coherent, but that can also really affect the reader hylasiing narrative

%Once upon a time there was a beautiful princess who was cAftealia. A knight from a far away
country was in love with her, but she was in love with a younigge. The knight was jealous, so he
wanted to abduct hek:P> The princess lived in a big castle. One night the knight werthé castle.
He tried to open the gate, but it was lockedP> After the knight had climbed a high tree, he jumped
into the princess’ bedroom. She was so scared that she seddandly, but nobody heard het:P>
The knight grabbed the princess and then he placed her omtss.hAfter that he took her to an old
and narrow bridge. On the other side she saw the prince whemwah in love with. Oh, how relieved
princess Amalia was!

The automatic generation of narratives 145

techniques such as the use of subjective perspectives ghthgiidentification,
and foreshadowing to increase suspense. Ablation teskeintyle of Callaway
(2000) could then be used to evaluate the effect of such igees.

References

Aylett, R.(1999), Narrative in virtual environments — tawle emergent narrative,
Proceedings of the AAAI Fall Symposium on Narrative Irgeltice pp. 83—
86.

Cabhill, L. and Reape, M.(1999), Component tasks in applie@ NystemsTech-
nical Report ITRI-99-05Information Technology Research Institute, ITRI,
Brighton, UK.

Callaway, C.(2000)Narrative Prose GeneratigiPhD thesis, North Carolina State
University, Raleigh, NC.

Chambers, G. and Smyth, R.(1998), Structural parallelisith discourse co-
herence: A test of Centering Theodournal of Memory and Language
39, 593-608.

Genas, P., Daz-Agudo, B., Peinado, F. and Has; R.(2005), Story plot genera-
tion based on CBRKnowledge-Based Systefif4-5), 235-242.

Henschel, R., Cheng, H. and Poesio, M.(2000), Pronomt#diz revisited Pro-
ceedings of COLINGpp. 306-312.

Henas, R., Pereira, F., Gaas, P. and Cardoso, A.(2006), Cross-domain analogy
in automated text generatioRroceedings of the Third joint workshop on
Computational Creativity, ECAI'Q6Trento, Italy.

Kehler, A.(2002) Coherence, Reference, and the Theory of Gram@8&t.| Pub-
lications.

Knott, A. and Dale, R.(1994), Using linguistic phenomenanrtotivate a set of
coherence relationfiscourse Processds(1), 35-62.

Krahmer, E. and Theune, M.(2002), Efficient context-s@resigeneration of re-
ferring expressiondn K. van Deemter and R. Kibble (eddpformation
Sharing: Reference and Presupposition in Language Geioarand Inter-
pretation CSLI Publications, pp. 223—-264.

Lappin, S. and Leass, H.(1994), An algorithm for pronomarephora resolution,
Computational Linguistic2(0(4), 535-561.

Lonneker, B.(2005), Narratological knowledge for natuealguage generation,
Proceedings of the 10th European Workshop on Natural Lagguzener-
ation (ENLG-05) Aberdeen, Scotland, pp. 91-100.

Mann, W. and Thompson, S.(1987), Rhetorical structurerthe® theory of text
organization,Technical Report ISI/RS-87-19(5I: Information Sciences
Institute, Los Angeles, USA.

McCoy, K. and Strube, M.(1999), Generating anaphoric esgioms: Pronoun or
definite description®roceedings of the ACL Workshop on The Relation of
Discourse/Dialogue Structure and Referenoe. 63—71.

146 Mariét Theune, Nanda Slabbers, and Feikje Hielkema

Penning, M. and Theune, M.(2007), Cueing the virtual stlgt: Analysis of cue
phrase usage in fairy taléBroceedings of the 11th European Workshop on
Natural Language Generation (ENLG'Q7)

Reape, M. and Mellish, C.(1999), Just what is aggregatignvap?, Proceed-
ings of the 7th European Workshop on Natural Language Geioera
(ENLG99), pp. 20-29.

Reiter, E. and Dale, R.(2000Building Natural Language Generation Systems
Cambridge University Press, Cambridge.

Slabbers, N.(2006\arration for virtual storytelling Master’s thesis, University
of Twente.

Swartjes, |. and Theune, M.(2006), A Fabula model for emdrgarrative,Tech-
nologies for Interactive Digital Storytelling and Enteitanent (TIDSE)
Lecture Notes in Computer Science 4326, Springer-Verlpg9p-100.

Theune, M., Hielkema, F. and Hendriks, P.(2006a), Perfognasiggregation and
ellipsis using discourse structuréesearch on Language and Computation
4(4), 353-375.

Theune, M., Meijs, K., Heylen, D. and Ordelman, R.(2006bgn€rating ex-
pressive speech for storytelling applicatiol&-E Transactions on Audio,
Speech and Language Processidig4), 1137-1144.

Theune, M., Rensen, S., Op den Akker, R., Heylen, D. and Nijji#o(2004),
Emotional characters for automatic plot creatiom,S. Gdbel and et al.
(eds), Technologies for Interactive Digital Storytelling and Erthin-
ment (TIDSE)Lecture Notes in Computer Science 3105, Springer-Verlag,
pp. 95-100.

Trabasso, T., Van den Broek, P. and Suh, S. Y.(1989), Logieedssity and tran-
sitivity of causal relations in storieBjiscourse Processd®, 1-25.

