ANTWERP PAPERS IN LINGUISTICS

1975, nr. 3

COMPLETION GRAMMARS AND THEIR APPLICATIONS

_

Luc Steels

UNIVERSITEIT ANTWERPEN

Universitaire Instelling Antwerpen

Departementen Ger. en Rom.. Afdeling Linguistiek

Universiteitsplein 1 - 2610 Wilrijk - TEL 031/28.25.28



ABSTRACT

Three new typas of grammars: open, closed and complex completion grammars, are
formally defined and their relative parsing systems are discussed.

Also it 1s -shown how these systems.tbgethsr with interppatatian mechanisms

make up complete language undérstanding systems. The applicability is illustrated

by computer programmed experiments in natural and artificial language processing.

The basic novelties arg a new approach towards the intermal arder of the elements
in a langusge expression, the introduction of structdres, distinct from constituent
structure trees, for representing the informaticn necessary for semantic
interpretation and a strong procedural.attitude towards language theory, as well

on & syntactic as a semantic level.

Complietipn grammars in geheral can serve as a model for functional or relational
grammars in that the emphasis on order, which 1§ basic to the concept of constituent
structure grammars, is replaced by emphasis on internal relations due to semantic
properties. As a result the currently widely accepted distinction between deep

and surface structures becomes ﬁnnecessary. Indeed with the grammars defined it

is posslble te map the language input directly into structures which contain all

the information for a semantic interpretaticon.
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Introducticon

This paper is devoted te the sfudy of systemg designed for the task of
language prucessing._The main tﬁeme is the investigation of one part of
such systems, namely the one by which analysis is being done. Analysis
is the task of mapping the language input into e formal structure upon

which interpretation takes place.

In the following sections we will introduce three types of grammars designed
for the purpose of analysis: open completion grammar (§ 1) , closed completion
grammars (§ 2) and complex completion grammars (§ 3) . We will also define

parsing systems for the three typés of grammars and interpretation mechanisms.

This paper is a statememt on research in progress. Therefore we do not present
fully worked out discussions, but only giveran indlcation of the way in which
research proceeds. The emphasis is on the definition of a fundamental framewcrk,
applying 1t to the data is another matter.

~This does not mean however that we do not give any explicit information at all.

The systems will be formally defined, the algorithms are all programmed and

we will present concrete experiments in natural and artificisl language processing.
In particular we programmed and implemented experimental versions of language
processing systems based on the 3 types of gramﬁars and do experiments with as
source languéges the Propogitional Calcﬁlus (in infix, prefix and postfix notation)

and (sybsets of) a natural language.

We thank the members of the reading committee especially prof. De Schutter,

prof, Goossens, prof. Tasmowski because they accepted the paper for pubiicetion

and made some very helpfui remarks to improve the text. We afsn thank prof. Rozenberg
D. Vermeir and H. Daman fer discussing the matter and providing new insights

into .it. OFf course rasponsibility for all remaining errors and deficiencies

remains by the author.



0. FUNDAMENTALS OF SEMANTIC INTERPRETATICN

Basically we assume that a predicate is a procedure or function name. The meaning

of a predicate is egqual to a procedural definition of its corresponding function

and the interpretation of a predicate is equal tc the execution of the proecedure.

Consider e.g. 'SUM'. The procecure *sum', familiar from simple arithmetics, takes
two numbers as input and returns another appropriate number (sometimes called the
'value' of the procedurse) as output. Undérstanding what'sum’means is considered
to be the same as knowing what the pfonedure-is and being able to execute the

procedure on a given input.

A procedure calls for certain arguments (also called operands or cases) as
input. These arguments are elther resulting &s values from other procedures {then
the srgumants will be called hidden) either directly present in the languags

expression {then the arguments will be called occurred).

Consider 'the sum of 1 and 1'..The procedure here is agaln 'sum’, arguments are
'I' and '1l'. Similarly consider '2 times the sum of B and 2'. 'Sum' takes now

'6' and '2’ as arguments, the result is 8. This result together with '2’ is

input to the procedure 'timés'. Nete that '8' is an hidden argument, 'B', '2' and

'2' are ocgurred ones.

In = text one does of course not meet expressicns as 'a,b and c are input to

the procedure A and f 1is output', this would be a tedious way of communicating
Instead we find simply 'Aabc 'or ' aAboc ', i1.e. input arguments and procedures
are written.after gach other and finding the exact input and outputrelations is

left to the perscn trying to understand. S0, a langusge expression will be considered

as a series of procedure names and arguments.

The tesk of understarding consists in:
(i) finding out how the procedures denoted by these procedure names are inters
related with the arguments (this phase is called analysis) and

(ii) executing the procedures (this phase is called interpretation].

The problem of analysis or in other words the problem of extracting from & natural
or artificial language input the correspending semantic structure, will be

solved by the definition of grammars (in particular completlon grammars) end parsers,
beging systems computing the structures assigned by the grammar to an arbitrary
combinaticn in the langusge. The solution to the problem of interpratation

involves a definition of all the procedures for a given lenguage and a description

of the way in which the procedures appearing in a given structure are exscuted.

A system that is able to perform the task of understanding will be called a language

understanding system (for short L.U.system)



Definition 0.1. A Language understanding system S is defined by a

qguadruple S = (G. M, P, ¥ where G is a grammar, I is a parsing system
accepting G, P is a set of procedures and ¥ is a function relatipg procedure

names to procedures.

An L.U.system is suych that Il is depending on the type of grammar being used

while once the tipe is fixed G is variable to the system.

Definition 0.2. The source Language for a given L.U.system is the language

being accepted by the system.
This invaolves the fact that the parser 1s capable of analysing by means of the
grammar all combinations of the source language and tha&lP conteine procsdural

definitions for all procedurs namgs in the lexicon of the language.



1. CLOSED COMPLETICN GRAMMARS
1.7, Basic definitions

Definition 1.1. A closed completion ghamman is a quadruple G = { Voa, Vha, Vp, §

where

Voa is a finite nonempty set of arguments called the set of occurred arguments,

Vha is a finite nocnempty set of arguments called the set of hidden arguments,

Voa U Vha = Va and Va is called the set of arguments,

Vp is a finite nonampty set of procedure names and Vpey Va = B,

8 1s a finite set each element of which is a finite ternery relation included

*
in Va X Vp X Vha , relating arguments to procedures.

If (v, A, 3 € & where YE€Va , A€ Vp and a € Vha , then we write v » A - 8
¥ - A - a is called a rule. The arguments appearing on the left of a rule
are called the input arguments and the arguments appearing on the right of the rule

the output arguments.

Example 1.1. Let G = {Voa, Yha, Vp, &§ } be a closed completion grammar where
Voa = {a.b,c,d} s Vha =[E,f,g} and Vp = {A, 8, C; and &

l.ab - A -»>&8

2, efc =B+ g

3.d - C > 7

A closad completion grammar G describes a language (called L(G)) in the following

way. Starting with an arbitrary hidden argument, replece it by a procedure name

of which this argument is output and add all the input arguments tc the combination.
If there 1s a hidden argument among these arguments, again replace it by a procedure
of which these argument - is output and add all the input arguments to the combination.
If after a finite numbsr of steps all elements are either procedure names or

cccurred arguments, the combination is complaete.

More formal:

Definition 1.2.
(i) If there is a combination x u y {x,y poesibly empty) where X,y E[ValJVp]* and

u €vha and if there is a rule in the grammar 8pere 87 A = {n =2 1) where
8,5 +er s @€ Va and A € Vp, then we say that x u y Preferentially dinectly denives
x A A eee 8 y » denoted as x uy =»x A 8y +re B Yoo

(11) Let 23 he the transitive reflexive closure of the relation == . If

K =3 y then we say that x preferentially derives y.
*
(1ii) The language of G, denoted as L(G) is defined by L(G) =5 y 1y EVoalVp) and
N !
X =y where x € Vhal .



Example 1.2, Let G be the. clesed completion grammar of example 1.1, then the
followipg derivations are possible. (The index on =3 ig the applied rule

of the grammar)

(1) f 24 C d
(1) e 2 A a b
(113) g =+ Bafc = BAabfco BAabCdec

Exqmple 1.3, Let G = {(Voa, Vha, Vp, 8 )be a clossd completion grammar anrd
vos = {a,b,c,d} , Vha =fe,f}vo =fa, B, c, D} and @

l.. abe > A-=e

2Z.cef »B *7F

3.d *C —+ e

4.d »D ~+F

Some derivaticons:

(1) f23yBcefis BocAabef BoAabCdfs BeAabCdBee s
L BecAablCdBeAabefcF éﬁ BcAabCdBehAabCd#¥
(i1) f 22D d SeBcAabCdBocAabCdpy

(1ii) T2 Boef = BoAabefi BcAabCdfi BecAabCdod

(note that L(G} is infipite)

In our definition of a direct derivation there is something that needs a bit more

explanation, namely the word preferential,

It is well known that the formel theory of languages,dealing in particular with the

so called Chomsky or phrase structure grammars, their related automata and their

possible augmentations, has been exclusively based on strings formed by the operation

cf concatenation, Indeed the sssence of these systems is fhat they define 'a strict linear
order on the elements of a language and 'grammatical’ means that a particular order is
present.

What we propose here is to consider language utterances not as strictly ordered as it

is usually done, rather we will introduce the concept of preferential order, being

gn mrler which is most likely to cocur. In this respect the occurrence itself of an

element is more important than the moment when it ogcurs.

We hope to gaim by this approach not only & greater flexibility, a pessible cure for
the britleness of current natural language processing systems, but also a means of
dealing with cther levels of language than syntax and morphelogy, notably those where

order is not as relevant as OCcurrence.

In linguistic theory strings are defined as objecte consisting of an ordered set of
occurrences of the elements of an alphabet. Now we introduce a 'weaker’ object, called

& combination, whers the order is not se relevant anymors.



Detinition 1.3. Let © be a finite alphabet then a combination over £ is a set

of occurrences or tokens of the elements of % .

Notation: As the distinction between combinations and strings is relative to the
point of view, combinations will be written as strings.
Example 1.4. Let Z = {a.b.c 5 then examples of combinations are a b c, ab,

aabec, etcv.s

From the definitions it follows that if a combination is considemd te have

a particular ordering (e.g. the precedence order] then the combination will

be called a string. E.g. i¥f o = a b c 1is considered tc be a combination then
¢ = abec = b.a c=cab, etc..., whereas if o0 is considered as a string

abc#bac#fcab...

Let us now study tha implication for our detinition of the language . Recall.that -
we defined the language of 2 completion grammar G as L(G) = {gi‘XGELVDa Vplrand
" .
y =px , where y€ Vha }. This language we will call the preferentilal language of G.

To have a mathematical way of talking sbout nonpreferentially obtained strings,

e
we introduce the concept of the associated language of G called L(G). and

L(G) = [y } xe L(G) and y is a permutation of x ; .

So what we mean by '1s preferentielly derived from' is that the precedence order

imposed by this relation was praferential and in producing or generating this ordesr

is the goal. However if this order is rot present because of a failure ip the productian
or by influence of higher language levels (e.g. pragmatics), the analysis systam

does not block, as would be the wase for phrase structure grammars. Also in

cases of ambiguity, the order most approaching the preferential order will be the

one chosan as the right analysis.

The problem in makirg these decisions is one of parsing and we will with this in

1.2..

Let us now discuss the format of the structures essigned by the grammar.'These will

not be labelled plane rocted trees or constituent structure trees, but a formally
distinct structure to be intreduced in this section. The significance of taklng another
format for the structures assigned by the grammar should not be underestimated. The

validity will follow from its usage.

We reprent procedures as circles, called procedure circles, with the name of the
procedure in it, and arguments as squares called argument sguares. The input and
output relations will be represented by directed lines from the arguments to the

procedure circles. These lines can be labelled if there is any need to do so.



Example 1.5, Let a,b,c be input arguments and d output argument for a given

procedure A, then this information is represented as follows:

a b ] o

The whole graph is called a relation structure, because it represents the functional

relations among the elements.

4

Definition 1.4. A aefation Atmucture is a conmstruct ¢Vp,Va, R )wherse Vp is a set
of preocedures, Va is a set of arguments, R € (Va x Vp) VU LVp x Va) 1s a set of

prdered pairs describing input relations (Va x Vp) and output reletions [(Vp x Va),

In this paper we will not investigate formally relation structures and for ease

of discussion alway use the graphic representation.
Let us now defipe relation structures in relatinn to combinations.

Definition 1..5 The felation structure for a givencombination is a set of procedure

circles representing the procedures in the combination .a set of argument sguares
representing the arguments coccurring in the combination itself or as an cutput
argument of a procedure and a set of directed lines between the sguares representing
input and output relations.

Clearly a line leaving a circle 1s denoting an ocutput relation whereas a line leaving

a square is denoting an input relations.

Example 1.B. Let a, b, c be input arguments and d output argument for a given procedure
A, and let d and e be input arguments for & given procedure B where f is the output

argument then the relation structure for the combination A a b c B e is:




It is gasy to gee how to obtain relation structures [(as defined in definition 1.5.)
during the derivation process. Given an hidden argument as output, draw a square

for it, connect it with an arrow to the procedure circle and for all input arguments
draw sguares and make connections to the procedure circle. For derivation (i) in

example 1.3,] this would result in the following structure:

’

Definition 1.6. A completion grammar is deteamindstic if for each procedure in Vp there

is one and only cne rule in the grammar.
A completion grammar is nendefeaminisiic if there is more than ore rule for the

same procedure.

All examples up to now wera examples of deterministic closed completion grammars.

Example 1.7. Lat G = (Vpe, Vha, Vp,§ > be a closed completion grammar and.
Vha = {a.b,c} » Voa =4e,d.f§ s Vp o= {A s and & :

l.ad=A =c

Zoef>A->nb

3. b +*A=a

Clearly G is nondeterministic.



PROBLEMS 1.

(1)} Are the combinations d 0, Aabe, Boc €CdDdin the language generated by
the grammar of example 1.3. 1

{1i) Construct other closed completion grammars and generate some combinations.

1.2. The pansing problem for closed comptetion grammaris

In linguistic science, a recognizer is a system that takes a grammar and an input
string and decides whether or not the string is in the language (supposed to be)

described by the grammar or not.

A parser on the other hand is a system that takes-a grammar and an input string and
produces the structural description assigned to this input string by the grammar.
Of course if the input is upgrammatical there gan be no structural description,

so a parser implies a recognizer {but not vice-versa).

Let us now deal with the parsing problem for closed completion grammars by-giving
an alporithm that solves the problem. Due to spacelimitatids, we will only deal

with deterministic closed completion grammars here.

Algorithm 1l.l. Let there be a pushdown stack (for shert pds.) T1 where all procedures
are stored and é pds. T2 for all arguments. Although in a concrete implemshtation

the (pertial) relation structure is stored in & list siructure or a table representation
of 2 list structure, for the mke of clarity in the exposition we will here use

a graphic representaticn. Let ¢ be a given irput combination and ai the- -i-th element

of the combination.

Scan the input from left to right:
A, 1If o, 1s 5 procedurs:

1. create a procedure circle ip the structure and put the procedure on T1,

2. {a) check whether there are any arguments on T2 which can be input to the
procedure according to the gremmar, if so connect and take that particular
argument from the pds. TZ2.

(b) if all ipput arguments are found (we say that the precedure is complete)
remove the procedures from T1, put the output element es argument square in
the structure and connect it with an output relation toc the procedure circle;
then execute the B.2. part of this algorithm. |

B, 1if ai is an argument:

1. Create an argument square in the structure

2. Check for all procedures on T1 whether this argument can be input to it. If so
connect, else put it on T2, If the procedure is complete, do the same as was
specified under A.Z.(b] of this algorithm,

To be grammatical there should be one and only one element on T2 and rone on T1 after

gcanning the whale input. The final element on T2 is the initial point in the derivaticn.
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Example 1.8,

Let the grammar be G =(Voa, VYha, Vp,
vha ={e,f} vn ={A, B, C, D} and
l.abe—> A-—=> &g
2Z.cef > B - f
3.d - C - &g
4. d ~0 = f
Derivaticn 1:
e =3 Acbe2» AabcCd
¢ =AabCd
(1) o, = A
O
T1: A
2. T2 is empty, no checking.
(ii)- o 5= @
- O
a T1: A
T2: -
T1: A
2 T2: =
[iii) 03=b
1
a b
T1s
TZ:

T1: A

8 )
&

and Voa = {a.b,c,d}.

(create a procedure circle in the structure

and put the procedure on T1)

(create a sguare in the structure)

laccording to the grammar a is ipput to A, so

we connect a to A)

(create a square in the siructure)

(according to the grammar b is input to A, so we

cennect b to A)
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©

2. T2 is empty: no checking

a[alG

d
T1:
T2
2. A
a b e
d
3.
e
A
a b e
d

(create a procedure circle for C-and put

C on.T1)

T4 : C A
T2: -~

{create an argumentsquare ih the structurel

CA

(As d is input for C according to the grammar, we
connect d to €. By this C is complete and we
add the ocutput of C to the étrubfure.

This output is according to the grammar

input to A, hence we make & connsction to A)

T1: A
T2: =~

(By adding.the output ef C , i.e. e, to the structure

also A is complete)

T2: ©

Note that the final element on T2 is the initial point of the derivation.
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Derivation 2.
F%8 Bcefd BeAabef BoAabCdfd BocAabCdD

At each step we now give only the partial structure and ths contents of

o= BcAabCdDd
(1) 61 = B
1'%', T1: B
T2 -
Eii)02= €
‘II'Lg\\ T1: B
' T2: -
c
(iii) 03 = A
‘Iil' T1: A B
‘ TZ2: -
c
(iv] Uy =8
T™: A B
T2: -
G
a
r =
V) 7 b
T1: A B
T2: -

d

T1 and T2.
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(¥rid 08=C

B T1I+: CAB

T2: -
C A
16 O
(vii) 07 =d
T1: B
c e T2: -

(C is complete by d and A is

complete by adding the output of C)

(viil)

T1: D B




_14_

Tix} og = d

T -

(D 1s complete and B is complete by output of
D) '

[oR

Derivation 3.

In the next example we show what happens with an input eombination which 1s not in a

preferential order. Let us take the reverse of the combination obtained by derivation 1,

namely g = dCbaA
(i) 9, = d.
d T1: -
TZ2: d
(i1) o, = C

T1: -
T2: e
(iii) .03 = b
e
b T1: =
C T2: b &
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(iv) g, =@
el b 2 T1: -
TZ2: a b e
C
d
(v} o = A
“I' T1s =
. T2: e
=} b a J
C
1d

The reader is advised to compare this parsing process with the one used for a

preferential order on this combimation, and to parss other orderings over this combination.
He will see that the same result 1s obtained. Some combinations will lead toc a very

clumsy parsing process. The easiest parsing will be the one with a preferential

precedence ovrder.on.the imput combinations.
PROBLEMS 2.

(i) Construct a program for algorithm l.1. in an available pregramming ianguage and
test the examples given.
(ii) Let G = {Vea, Vha, Vp, 8 > be a closed completion grammar where Voa ={a,b,c§
Vha ={d.e.5 . Vp [A, B, C-S and &

d~>A=-d ’

abce—>B8 —+a

be>C —+e

Describe the language generated by this grammar.
(1ii) Let G ={(Voa, Vha, Vp, 8§ } be a closed completion grammar where Voa = {é,b.cﬂ
vha = fd.el, vp = {a. B, c|  and &

1. abe » A —=d

2. dbec B =»d

3. b »C e
Parse the following examples with algorithm 1.l.: (i) Aab C b (i1) b CbaA
(111) BAabCh b o '
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Betore we deal with the application of complstion'grammars two impartant remarks
should be mede on the nature of the arguments:

1. Contrary to intuition, we think that thexe are no real or 'occurred’ arguments
appearing in any language input itself. Some examples will make thils clear.

Take the sign '42', 1t may be thought that '12° is a simple argument for an
arilthmetic procedure or so, howsever understanding '12' involves a computation
baseq on the decimal number system: 1 x 101 + 2 x 10° , So, although '12' does
not take any input arguments, it implies a preocedure to which it is input.

As 'another example take the sign 'p' as it 1s used in the propositional calculus,
i.e. a2 propositicnal variable. Now again understanding '‘p' 1nvolves a procedure:
checking whether 'p' has already & valus and if not store a new Variabia name of
yet unknown vealue.

Similarly a pronoun invelves a prucedure computing the reference of. the proncun

a proper name involves checking where the name appears in the memory (data base), etc...

So, what one normally thinks to be simple arguments are arguments for a procedure that
is supposed to be known by the understander. For ease of discussicn we will from now
on treat these objects as arguments appearing in the combination 1tself, and call

them occurred arguments as opposed to hidden arguments.

2. Although arguments were represented {in a formal treatment) by single letters,
they have in fact an internal structure, in particular an argument has an.
argument value . an argument type and an argument name'. that is a sign by which
a particular argument is denoted. “

When an argumant has not yet a value it is called & dummy =srgument.

When an argument has not yet a name, it is called an anonymous argument.

E.g. when talking about the variable IZ, we could say that it is:

(i) an integer (argument type)
[11) caliled I2 {argument namsal
(11i) baving e.g. the walue 20 (argument value)

We have now ancther way of meking the distinction between hidden and cccurred arguments:

all hidden argumenis arse anonymous and all cocurred arguments are not anonymous,
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1.3. Application to the P.C.fLanguage

We have now reachec the point where we can put this formal framework to use.
We will do this by discussing a language which is certainly known to anyone
and which has such properties that one can deal with it by means of closed
completion grammars. The 1anguage we have in mind is the 51mple propositional
calculus (for short PC-language) in Polish notation.

We hope that by giving a fully worked out example the reader will see the

relevance of our approach and is encouraged to read on.
(a) Current descriptions of the language.

A Logicdan would define the SYNTAX of the PC-language as follows,

Let there be a set of propositionsl operators: [NUT, AND, OR, IMPLIES, EQUIVAL } and
a set of prcpositionél variables or elementary propositions (i.e. propositicnal
variables having a truth value), then .

l. Every elementary propcsition or propositicnal variable is & propositional
expression.

2. Every propositional expression preceseded by NOT is a propositional expression.

3. Every combination of two propositional expressione by means of Dne‘nf the other
propositional operators is a propositional expression.

4, The PC-language consists solely of propositional expressions.

Examples: NOT p, AND p q, IMPLIES. p g , etc...

A Linguist would define the syntax of the PC-language as follows., Let
G ={Vn, Vt, P, EXPR ) be a context-free grammar where Vn = EXPR COPER
= (AND, OR, IMPLIES, NOT, EQUIVAL, p,Qsrsess } and P:

1. EXPR - OPER EXPR  EXPR
2. EXPR = NOT EXPR
3. EXPR = p, g, I, 4+

4. OPER — AND, DR, IMPLIES, EQUIVAL

This way of defining the language has the advantage that a structure can be recognized

in a propositional expression and this helps when calculating truth valuses.

(b) Closed completicn grammaré for the PC-language

How should we deal now with the PC-language from a completion grammars point of wview.
First of all; we make a distinction between procedurss and arguments. Procedures

are clearly NOT, AND, OR, IMPLIES, EQUIVAL. We add also the function SET by which
one can assign a truth value to a propositional variable (e.g.’'SET P TRUE')and the
function '?' by which one can ask the truth valus of a propositional variable or

expression (e.g. '? P', '? AND P Q') .
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The grammar is the following one. Let G = {Vca, Vha, Vp,8 } be a closed
completion grammar where Voa = {LCIG { Vha ={LDGin =p\ND, OR, NOT, IMPLIES,
EQUIVAL, SET .7 k
and &

1. LOG LOG ~ AND - LOG

2, LOG LDG - OR — LOG

3. LOG - NOT - LDG

4, LOG LOG ~ IMBELIES — LOG

5, LOG LOG - EQUIVAL =~ LOG

6. LOG LOG -+ SET -+ LOG

7. LOG =+ ? = LOG

It is easy to see that one can abstract ~patterns and make the grammer simpler. This
can be done by using more than one possible instantiation of the procedure name in
a rule. In this way ﬁlasses of procedure names can be definied.
X, = {AND, OR, IMPLIES, EQUIVALY
X, = {NDT, . SETY
The patterns:
1. LOG LDG-*)(1 - LOG
2. LOG XZ - LoG

Warning: The symbols X,, X2 should not be considered as a sort of nonterminals as

J'
one, used to the p.s.grammars framework,might be tempted to do.

Note also that LOG is the argument type . The argument name can-be anything,
e.g. TRUE, FALSE, P, §, R, ... or even no name [(for anonymous argumentsj. and the
argument value is either assignec by means of the set-function or fixed as for

TRUE which is always true. The value 1s of course either true, false or unknown.

Some derivaticns:

(1) LOG =» AND LDG LOG = AND NOT LOG LOG 7=$ AND NOT LGG CR LOG LOG
(ii) LO5 =» IMPLIES LOG LOG

(iii) LOG = SET LOG LOG = SET LOG NOT LOG

The relation. structurse for derivaticn (i) is:

LOG

LOG LOG

LoG LOG LCG




.ExamEle 1.9.
(i) SET P TRUE

(type]

(name)

(value)

LOG

LOG

TRUE

true

(ii) ? ANDOR AND R 3 S R

LOG

true

LOG

LOG

true

{type)
Lname)

(valuel

(WHere R and 8 are true )'.

LOG

true
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1.4. The interpretation problem,

Recall definition 0.1. where an L.U.system was defined as a gquadruple
s=4G. O0,P, 7). In'previaus sections we specified G, in particular

& closed completion grammar,and I the parser, in particular algerithm 1.1..
In this section we briefly discuss P and ¥ . Briefly, because this paper .
concentrates on analysis rather than interprstaticn. Indeed, interpretation

should be more sophisticated then we willl present it here.

{a) The set of procedure P.

A Logician would deal with the SEMANTICS in the following way:

If p and g are propositional expressions, AND p-q is true just in case both

p.arid g are trus, otherwise false.

If p and g are propositional expressions OR p g is true just .in case p is true

or g is true of both; otherwise 1t is false.

If p is a prapositioﬁal expression, then NOT p is true just in case p 1s false,
otherwise it is true.

If p and g are propositional expressions, them IMPLIES p g is false when p is true
and g i1s false, otherwise it is true.

If p and g are propositional expressicns then EQUIVAL p q istrue when p is true

and g is true, or p 1s false and-g is false, otherwise it is false.

Linguistics semantics is currently still a matter of debete and the procedural
view which is basic to the epproach presented in the following paragraph is not yet

accepted by the whole linguistic community.

Let us glve some procedures for the predicates of the propesitionsl calculus. Let

true be denotéd by 0 and false by 1.

(There ars DtHer solutions possible)

(i) AND: if the sum cf the values of the input arguments is O the valus of the output-
argument is D; else it is 1. '
(1i) OR: if the sum of the input values is smaller or equal to 1, the output value is
D0, else 1.

[iii1) IMPLIES: if the value of the second input argument minus the value of the first
one is Equél to 1, the output is 1, else O.

[iv) EQUIVAL: if the irput values are equal, the output is D; else it 1s 1.

{v) NOT: the output value is 1 minus the ipput velue. '

{vi) SET: store the value of the first input argument in the value place of the second
argument and set the output egual to this value.

fvii) ?: print the value of the input argument.

(8} The interpretation mechanism.

There ere in general two ways of doing semantlc interpretation or in other words
organizing the subroutine celling the procedural definitions of the predicates and

connecting them to the input arguments according to the relation structure.



Definition 1.7.  An internretation process 1s said to be {nsfant if procedures

are &xecuted as scon as this is possible during the parsing process.
An interpretation process is said to be defayed if procedurss are executed when

the complete structure i1s available, or in other words after the parsing process.

The distinction between instant and delayed mode is very important. Not sg much
for closed completion grammars, but we willl see that with open completion
grammars, to be introduced in next sections, different structures (and thus
interpretations) are obtained depending on whether the mode is instant or delayed.
Clearly the difference bstween instant and delayed interpretation is related to

the compiler/inferpreter distincticn knewn from translators of programming languages.

Definition 71.8. A progedure is said to be 4nsfant if it must be executed as socon

as all its arguments are found in the input.
A procedure is said to be delayed 1f it is exscuted =fter the parsing process

- is completed.

When interpreting in instant resp. delayed mode, all procedures must be instant
resp. delayed. Also it is possible to organize a mixed interpretation process.

where instant and delayed procedures ocour .

Let us now give algorithms for interpretations. As the instant mode is the easiest

cne, we deal with it first.

Algorithm 1.2. ¥ in instant mode.

As soon as a procedurs 1s complete, i.e. 1If the parser has discovered all the

ipput arguments, execute it.

Algorithm 1.3. 7 in delayed mode.

We start by the argument left on 72 ,i.e. the initial argument in the derivaticon,
then we go to the procedure circle for which this argumenf was the output. Feor

all input arguments of this procedure, check whether they are hidden or ocourred.
If hidden apply rescursively ¥ , else goto the next argument. If all arguments are

worked out in this way, execute the procedure.

Example 1.10.
' AND NOT P R ' (where P 1is true and @ is false)

the structure:

LOG

LOG

false
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We start with_the uppermost LOG-square, go to the AND-procedure circle and

check for every argument whether it is hidden or occurred. Thé first‘argument

is hidder,soc we start again with this one, go to the NOT-procedure circle

and check its input arguments. This time the only input argument is an occurred
argument; hence we sxecute the functicon NOT; Now we know the value cof the

first ipput argument of the AND-procedure and because the second input argument

is an occurred argumeht we execute the AND-FuﬁctiDn.

For example 1.10. the final result would be false.

There is a lot more to say about technigues for carrying'oﬁt semantic interpretation
but this will do for the moment.

It 1s a good custom of scientists to do experiments. In this spirit we programmad
algorithm 1.1. and 1.2. in FORTRAN IY and realised an implementeticn on the PDP 11/45
The performance of the system is illustrated by the following output.

In general for all experiments we use the following conventicns for communicating

with the system.

When the sign '?' appears, an input expression is being typed. The system will
first return this inpu%, preceeded by 'input ' and then start'prccessing the expression,
For ease of reference, the.system automatically numbers the input according to their

gccurrence, Systems output is preceeded by 'out:'.

Example:
7 (reguest for input)
SET P TRUE ‘ (input expression of user)
INPUT 1: SET P TRUE (system returns the input)
(no output produced)
7 : (request for input)
TP {input expressionm of user)
INFUT 2: ? P (system returns the input)

OUT: TRUE (result of processing)

The following additional commands are accepted: +GRAMMAR (returns the grammar!,
+LEXICON (returns the lexicon) +END INPUT {means end of input streaml.

There 1s a switch to ask for additional parsipng information +STRUCTURE is

for on and +NO STRUCTURE 1s to put it off. .

Alsc all conventlons for editing via teletype (e.g. RUBOUT) can be used.



BT

FALSE

.-,. - 23 GOMMENT
SET P TRUE Here we start our conversation with the
_ . INFUT _ 1: SET P TRUE system by the assignment of the value true __  _ _ e e
T to the propositional variable 'p*.
I +GRAMMAR — e e e areeearrr s e
L 18 1@ 18 By giving in +GRAMMAR we can ask for the
oo __2 3218 18 18  orammar (coded of course) R e
3. Z 18 18 1@
e 4. 2 18 18
3. T i@ 1@ 10 )
e e BB LB AR e e R e e e .
T, 2 1@ 19 - ) - T T
L N 318 16 18 B
9. 3 18 10 i
2
T SLEXICON o By giving in +LEXICON we can ask for the o
L. RMEB 1 1 @ @ lexicon. Note that the variable 'p' which
T S T g T T T e "2 T TR T is initially unknown to the system has been - T
. % IHMPLIES z 2 B @& added.
4, HOT ¢4 4 @A @
o 5. ERUIVYAL 5 5 B 0 _
& 7 & & 8 @
D UUON 1 11 SO A LU - S - S . . o .
g, GET g B B8 B N T o
o - T . 3 2. b 8 .
18. LOG 18 B 10 = )
e ii. TRHE _ie 8 11 @ - . :
12. FALSE 18 B8 12 1 i '
S P AR 5 S - 0 3 S - E U D .
14. F 1p B 14 @ R e
C [
;Egug Fgl."'gET & FALSE By INPHT 2 and INPUT 3 we introduce new
e =* - yariable names and values Tor them.
e S L 8 0 O S
IMPUT 2: SEET R NOT TRUE )
)
+LEXICON When asked for the lexicon again, one can
1. RHD 4 1 B 8  see that 'g' and 'r' have been 'learned’ =o .
2. DR 2 & B B to say by the system.
. e 2 IMPLIES 3 BB e v meine
4 HNOT 4 4 8 B
S. EQUIYAL 5 5 0 & ) ~ )
6. ? & & B 8
e it PROOF A BN B } B}
B. SET g &5 B8 @
- JU S 9.8 B e e e e e e e e . ———
18. LOG 8 8 18 2
_. A1 TRHE 218 8 11 @ . . -
12. FALSE i@ B 1z 1t
1z . 11 8 i3 @ B}
14, F 18 B 14 B
- LAs @ 18 B 13 1 - e e e e e e e e S
ig. B 18 B 18 1
7
S - - _
. INFUT 4: * P . I e B
but: TRUE Input 4 and 5 illustrate how the truth value
R u-zma.uﬁwuwww‘w»prfu"w- -~ .. pan be asked for e simple variable : . e
INRUT 5 % @
OuT. FALSE
7
? RHD B @ i
IMFUT E: 7 AND F O From input 68 onwards we give .in some more
DUT: FALSE complex expressions.
2
7 HHE P HRD & R
INPUT _7:. 7 HHD P RND B R . oo
QUT: FALEE
-
"7 AND P ORND A RND "U "7 'Here a typing mistake was made and corracted -
7 RNE P AND O AND @ R by means of the teletype conventions.
INFUT B: 7 AWML F.RHD @ AND O R
QUT: FALSE
. @ 0R B R . . . e
INFUT - oF & R - T ) - . ’

Lo
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. ﬁ
.7 IMPLIES Q R
INPUT 18: ? IMFLIES @ R

e BUT e TRUE e e e — e e e e e
g : e

7 IMRLIES & & _ o T i R
INPUT t1; % IMPLIES P @ _ .
OuT: FALSE . . S S L
7
2OIMPLIES Q@ P ..
IMPUT 12: 7 IWPLIES B F
ouT: TRUE
?
7 ERUIVAL IWMPLIES P F IWHPLIES @ 0 :
INPUT 12: 7 EQUIVAL IMPLIES P P IMPLIES @ 0O
L ouT: TRUE _
7
SET S MOT IMPLIES P B , ‘ ) L i
INFUT t4: SET & HOT IMPLIES P @

7
T 5
. INPUT 15; 2.5 L
ouUT: TRUE
?
? OMOT P
INPUT 16: 7 NOT P
QUT: FRLSE
L]

"o RHD ORF TMPLIES ERUIVAL F F @ R ©
INPUT 17: 7 ANL OR IMPLIES EQUIYRL P F & R S

pUT: FALSE

n

 +STRUCTURES )
-

"> AMD DR RND R S S
INPUT 18: 7 RAND OF AND R 5 S R

g%’!;UE";El’;EE Now we illustrate the structures switch, .
R +3TRUCTURES puts it on, and for all input-
NOGES expressions from now on the relation structure
- - e E e 18 & “= - (in a coded form) is produced.

E: 1 1 = @ 1 For a graphic repressentation of this structure
1 2 z 2T § o> we refsr to example 1.8.

4, i 1 4 8 1

= 18 4 4 1 1g&
LB tB 4 3 @ 17

7. 18 3z 4 1 14

B. i® z § B 17

o, i 2 4 B 1§

La g 2 5 1 1is

11, it 1 4 4 ig

12, ig 8 &8 1 @&

FELATIOHNE
1. g B 12 14 .

2. I B i1 8 1@

I I A 2 7 B8

4. I 8 F 5 &

T2 e . . L e e

+H0 STRUCTURES By #NO STRUCTURES we put ths switch off again.

Fo7? ’
THELT &8 p o From input 19 we start to experimernt a little with
OUT: TRUE other orderings over the irput. Recall that the .
% ' " Input expression 1s considered as a combilpaticn not
F AMD B 9 a8 string. In thils spirit alsc not preferentially
IHFUT 28: P BMD & 7 ordered inputs must be processed. This is clearly
OUT: FRALSE the cage. as one can see from the examples.

el

P IMPLIES R 7 )

IHPUT 21: P [HMFLIES & ¢

ouT; FALSE

P ANL F IMPLIES P OR A 7 . As there are no sophisticated error mechanisms.

éﬁ?‘.’lTFgf‘i—EP AKD F IMPLIES POR A7 unknown variables will not necessarily block the
' - interpretation process.
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That the system knows very well that A 1s of un-

) T " known value is illustrated by input 23. Note that T
7R . 7 A bas been introduced in the middi& of an expression o
CIHFUT 22: 7 R and not elsewhere. . :

. UUT _VWALUE UNKNOMN L S

F‘ AND P _IMPLIES P OR @ 7 From input 24 it is clearly to be seen that the mode

CpuT: TRUE

INFUT 4. F AWD P IMFLIES P OF § % of interpretation is instant, in fact the following
_0UT: TRUE _ . expression is processed: (e p and p ] implies p ) or g
? ,
F AND Q@ RND P RND @ AND F ANHD R 7 o
INFUT 25: F RND @ AND F AND @ AND P AND R 7
ﬁL_'._T_- T S o e e i oo et e et i e £ e
F‘ AN & OR P 7

INPUT 26: P AND @ OR P 7

. UNGRAMMATICAL INPUT
I

INPUT 23: SET SET

f-llN[:- P The cnly point wers ungrammaticality is .noticed is w‘ith

INPUT Z4: AND P " incomplete procedures.
UMGRAMMATICRL INPUT -
o ;
+END IHPUT

17

o
+STRUCTURES  ——  Another illustration of the +STRUCTURES BWitch . e
L
B AHD @ DR F 2 e ] e _ -—
IMFUT 27: P AND Q@ OR P 7
_BUT: TRUE ) — I i} _ ~
STRUCTURES
HODES
Ao 2 48 14 . : - . _
2 1 1 1 & 1
e ZA.01B 25 1A% .
4 18 5 4 1 1
. S .8 _2 2 @ & . R o _ e e
& 18 & 5 & 14
, 7.ooolB B 4_ 8 14 i} .
E £ & I B8 &
. . 8. .18 8 B 115 . } . _ i -
RELHTIDHS :
U SUNC SIS - N SN S SR e - et it e o+ e et < ot e e e
2. e 7 4 6 N
o .32 B 7.7 _ _ .l
T2 a
'-" .
+ND STRUCTURES .
? Now we give in some expressions in postfix notation. They
F @ INFLIES 7  are all processed. Note that postfix is considered as .
__INPUT 2B: P & IMPLIES 7  the exact reverse of prefix as is illustrated by input e
OuUT: FRLSE 28 and 29
o
B P IMFLIES ?
INFUT 22: @ P IWPLIES 7 o e . e e e
guT: TRUE o
F @ B AH[ OR 7
_INPFUT ZB; F B R AND OR 7 B
auT: TRUE
e T e e . et o i et e s 7 e e
P P EQUIVAL 7
B CINFUT 3t: F P ERUIYAL ¥
pUT: TRUE
P
} IMPU T 32: P Input 32 is a combination, nothing is asked nothing is et o e
being returned, the system only computes the value of p.
SET SET
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1.5. Applications to natural Language

Now we show that closed completidn grammars can also be used as—a model for [subéets)
of natural languages. In particular we will investigate nominal phrases from this
point of view. We do not present a fully worked out discussion here, only an

indication of the direction in which more detalled research shouldproceed.

The examples will all be taken from Dutch, but en !'literal’ English translation is
provided. The universe of dlscourse for the experiments is the language of simple
arithmetics. This is so because there are no complicated memory procedurss (as '
storing or retrieving information] necessary. As the problem of memory organization

is another (almost blank) page in the study of natural language behavicur, this universe

of discourse is avoiding the problem, such that ekperimentation remains possikble.

The basic hypothesis is of course that all elements in a noun phrase (nouns, determiners,
adjectives, adverbs) are either procedureé or argumsnts. Let us dlscuss very briefly

how this would go.

(i) Nouns ere elther procedureg names., either-argumsnts;

{a) Arguments are such things as proper names, numbers, namss for variables (e.g. the
word 'number', 'person’), pronouns, etc... .
(bl If a noun is a procedlrs than it takes other arguments as input. What arguments
are input to the procedure denoted by a given noun depends on the argument

type (as was the case for artificial languages) but also on additional information

of a syntactic and morphological nature, i.c. prepositions or case gndings.

These will act upon the type of an argument.

Canvention Whenever more than one specification concerning the type of the arguments
that can be input appsars in the grammar, we use squere brackets and write all

gpeclfications in it separated by comma’s.

Now we can given an example of a noun beslng & procedure name:
‘De deling van 1 door 1°f
(*The divisicon of 1 by 1']
The procedure is hsre 'deling’ (division) , it takes two arguments both of a
number type, howesver the first argument has the indicetion with preposition
'van' (of}. and the second with preposition 'door’(by).
Rules in the grammar would look as follows:
(NUM, prep:VAN )’ (NUM, prep:DO0OR) —3 DELING —3NUM
((NUM,prep: OF) (NUM, prepiby) -—= DIVISION —~3NUM )

[iij Prepositions seem to be procedures that aod only & characteristic feature
to the type cf thse output but do not change the valus. '
=S "VAN 1!
(of 1)



NUM

prep!

van (type)

,1 (value)

@ (OF)
N (typse)

! (name)
1 {value)

An important observation is that the proposition of a noun which is itself a procedure
(rather than an argument as in tha previous example) goes over to the output argument
o that procedurs.
E.g.: 'De deling van het verschil! van 4 en 2 deor 2°
(the division of the substraction of 4 and 2 by 2’

The relation structure:

NUM

(civision)

UM NUM

prep:van prep:door

(by)

NUM
NUM 1 - {fype)
p {name)
(substraction)
2 (valug)
NUM : NUM
prep: VAN prep:EN

(of) _[and]

NUM
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After execution of 211 functions:

NUM (type )

{value)

s (division)

NUM NUM ¢
(type}
orep: VAN prep:DO0R
. {value)
{of]
(type]
) 2 (name)
{gubstraction) (value)
NUM
prep:
4
[and)
NUM NLM
4 z
4
2

Clgaerly the finel result is 1.

(i1i) Plural =ndings of nouns seem to indicate the size of the output for a given

procedurs. Singular denotes one single element {as was the caze in all examples up

to now) or a set [seen as a whole) whereas plu 1 is an indication thet more than

ocne element is to be expected 1n the place of the output argument.



_29_

In this way singular/plural information acts as a sort of mechanism by which
storage 1s provided for one pr more elements [cf..dimension statement familiar
from some programming languages).

We indicate this by adding plural or singular to. the argument fype of the

output argument.

{iv) Determiners seem to organize 'loops’' (in the programming sensel) upen

the exscutlon of the noun phrase, or otherwise a final mechanism of selection
acting upon the elements in the output argument.

E.g. 'an,a’ : takes one arbitrary number of the set, if tha set contains only one
glement than the choice is no more arbitrary.

'samé’: returns more than one arbitrary element of the set, ..

E.gs 'Een deler van 18'
( A divisor of 186)

'Deler’.(divisorl 1s a function computing all numbers by which another number

can be divided. The divisors of 16 eg. are 1,2,8,4,16.

After execution of the procedures for the expression 'Een deler van 16' we get:

NUM

{al

NUM

|

1,2,4,8,16

(dtviscr)
NUM
prep: VAN (of?
16
NUM
16 °

18
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(iv) Finally adjsltives and adverhs ‘séem to be pracadurss ‘that' take the outgut

of the noun as inpu+ and per.orm a further compdatlon on thisy

E.g. 'De grobtate even deler van 16"

(the greataat BYEN divisor of 18)

After execution of tha functions the structure loocks as follows

ging

18 '

(the) - - R

o [

16

{greatest)

NUM

2,4,8,18

EVEN (even)

NUM

1,2,4,8,
16

{divisor)

NUM
prep: VAN

{of)

NUM (type)
18 [name)

15 | [value)
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We stress that all our remarks on the nature of the procedures'aré véry tentétivs.
It is not a subject of this paper and we only want to show how the underlyihg'

framework works. Let us now construct a fuil_grammar for arithmetic expressions:

Let G ={Voa, VYha, Vp, § ) be a closed completion grammar-whera Voa = {Nuﬂ. Hoeveel..wats
Vha ~{NUM, (NUM, prep:VAN), (NUM, prep:DO0OR] , (NUM, prap-ENJ'\ : _

and V {DE HET, EEN, SOM, VERSCHIL, PRODUCT, DELING, DELER(S), GROOTSTE, KLEINSTE.
EVEN .. ONEVEN, ENKELE, VIERKANTSWDRTEL, TWEEDEMACHTSWORTEL.-? }

" and § contains the following patterns:

100 NUM o X, > NUM .
2. (NUM, prep: VAN) (NUM,prep: EN - ') = .X2 - NUN =
3. (NUM, prep:VAN) (NUM,prep:000R) - XB -+ NUM

4, (NUM, prep:VAN] - X4 - NUM

5, NUM = VAN - NUM,prep:VAN

B. NUM -+ EN - NUM,prep:EN

7. NUM - DOOR - NUM,prep:DOOR |

>
n

{DE, HET, EEN, GRODTSTE, KLEINSTE, EVEN, ONEVEN, ENKELE, ?}
{sOM, VERSCHIL, PRODUCT}

(DELING }

[DELER(S), VIERKANTSWORTEL, TWEEDEMACHT }

(Note that the grammar is cleerly not meant for production. A refinement of the
argument types should be introduced to rule out certain possibilitiles. For analysis

however the grammar is all right:)

An sxample of a derivation:

NUM = DE NUM = 'DE GRODTSTE NUM =% DE GROOTSTE EVEMN NUM
=3 DE GROOTSTE EVEN DELER (NUM,prep:VAN) =) DE GROOTSTE EVEN DELER VAN NUM

The corresponding relation structure:

NUM

(the) (greatest ) (even) Tdivisor)
' NUM

prep VAN

{af )

NUM
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The procedures for the predicates are rather pbvious. They simply
éorrespond to their arithmetic egquivelents. and we won't discuss
them in full length.

We did some experiments with an L.U.system based on the above mentionned
grammar, the arithmetic procedures and the algerithms 1.1. and 1.2..
The procedures are aonly defined for integers. Real numbers, 1f they

arise during'cnmputatiun are truncated to integers.

Results of our implsmentations are illustrated. by the following computer
output. The same conventions hold as for our experiments with the PC-language
in prefix notation. We glve 2 'literal’ English tramslation of the expressions

after wards.

MCR>REUN STEELS
n

TpE saM veAN 1 EN 1 7
INFUT 1: DE SOM VAN L EN 1 7
auT: 2

CA o ,
"UHET VERSCHIL VAW 5 EN & “
INPUT 2: HET VERSCHIL VAN 5 EM 4 7
auT: 1 _

HET PRODUCT YAN & EN & 7
INPUT F: HET PREODULCT ¥AN 2 EH X 7
aut:. 27 : ’
?
[E DELIMG WAN 27 bLoOow 207
INFUT 4 DE [ELING VAWM 27 DGR 3 7
GUT : 2
GELERES WRN 16 7
INPUT 5: DELEES VAN 16 7
ouT: £z 4 B 16

EVEN DELERS VAN 16 %
_INFUT & EWEN DELERS VAN 16 7
ouT: 24 e i

ONEYEM DELERS VAH 16 7
INFUT 7. OMEVEN DELERS VAN 1§ =
ouT: 1

ONEVEN DELERS VAN 15 7

INPUT 8: OMEVEW DELERS VAN 15 2

GUT: 4 3 5 15

ENEELE ONEVEN DELERYS VAN 15 7

TNEUT 8 EMKELE ONEVEN DELERS VAN 15 7
qutT: LS

EEN ONEVEN DELER VAN 45 7

INFUT 18. EEN OMEVEN DELER VAN 15 7
auT: Et

SE KLEINSTE OMEVEN DELER MAN 45 &
INPUT 11. DE KLEINSTE GNEWEM DELER VAN 45 7

ouT 1

fE GEOOIETE OHNEYEN DELER WAN 45 7

IMRUT 42 DE GROOTSTE ONEVEW [DELER YAN 435 7 _
ouT: 43

EHHELE ONEYEM SELERS WAN 43 7
INFUT 13: ENKELE OWEYEMW DELERS WAN 43 ™
nurT 1 5 15 .
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DE VIERERMTSWORTEL YAH 1 7
INPUT 14. DE VIERKRNTSHWORTEL VRN 16 7~

ﬂ__ﬁﬁﬁ?iﬁ_a_
':) -
""DE THEEDEWMACHTSHORTEL WAM 4 7 o T e e
UNKNDNH WORD, INFUT NOT HQAEE[“Q““ e

ouT: 16
LouT: L6

DE THEEDEMHCHT WAN 4 7

INFUT 15: DE TNEEPEHHCHT VAN 4 7

DE SGW VRN DE KLEIMSTE EVEN DELER VRN 16 EN 2 7
INPUT 1€&: DE SOM VAN DE KLEINSTE EVEM DELER VAM 16 EM & 7
UUT;”.WQN

e DE GROUTSTE DELER WRAN DE WIERKANTGSWORTEL VAN 8L 7
INFUT 47: DE GROOTSTE LELER WRNH DE UIERVHHTSNDRTEL VAN 81 7
.mm_“ﬁLT_ﬂ_ﬁmmmmﬁqa,w“w..m_mmwyw”, e e “‘W_' - - —
DE 50M WAN HET YERSCHIL VAN HET FRODUCT YAM % EN 4 EN 3 EM % 7
INFUT tB: DE SOM VAN HET VERSCHIL VAN HET PPDDUET VRN I EM 4 i B
— . EM 2 EN 3 7 . _
puUT: 412 i S T T T
? — TR ——— i — 113 S - T - e S s AR g 1 ] 8 it AR+ | an i -y 8 A
) +N“STRUCTURES
2
BE YIERKRNTSHWORTEL “AM DE SOM MAM 2 EN 2 7 - i
~ INPUT 49: DE VIERKANTSMORTEL VRM [E SOW WAN 2 EN 2 7
BuT: 2 ' ' - -
e STRUCTURES & .. - . - e -
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Tranelation:

1. The sum of 1 and 1 7

2. 'The substraction of 5 and‘ﬂ 7
3. The product of 9 and 3 ?

4, The division of 27 by 3 ?

5. Divisecrs of 16 7

6. Even divisoré of 16 7

7. Un*even divisors of 16 ?

8. Some uneven divisars of 157

9. An uneven didisor of 15 7

10. The smallest uneven divisor of 45 ?

11. The greatest uneven divisor of 45 ?

12. Some uneven divisaors of 45 ?

13. The square root of 45 ?

14, The powersquare root of 4 7

15, The second power of 4 7 '

16, The sum of the smallest even divisor .of 16 and 2 ?
17. The greatest even divisor of the square root of 81 7
18, The sum of the difference of the product of 3 and 4 and 3 and 3 7
19. The square root of the sum of 2 and 2 ¢

[+ 1llustration of the structures switch)
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1.56. Some nemarnks on the distinction between closed completion ghammars and
phrase sthucture grammas

Intuitively there is a relation between context-free grammars and closed
completion grammars. Indeed, if we have a closed completion grammar

G =(Voa, Vha, Vp, & 7 then we can turn it intd a cfg. by considering
g1l hidden arguments as nonterminals and all procedure names and occurred
arguments as terminals.

If we have a rule a, ... an —3 A —Ia then the eguivalent ore 1in

1
a cfg. would be a—pA @y rer 8
And clearly it is not too difficult to prove that the languages generated

by closed completion grammars-are contained in the class of context-free languages.

However the following distinctions can be recognized:
(i) In & cfg. framework we deal with strings, not combinationsg
(11) The theoretical status of the Hidden argumente is distinct from the one of nonterminals
(1ii) In a‘phrase structure ' we can express a prscedence relation
and a dominance relation. In a 'relation structure' we can express

& (preferential) precedence relation and a functional relation.

To copelude the distinction between closed comp grammars and cf.grammars
lies in the strong generetive capacity rather than the weak generative capacity.
There remain of course a lot of theoretical problems and we hope te investigate

them in the near future,
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.2. OPEN COMPLETION GRAMMARS
2.1, Basic defanitions

Now we turn to another type of system generating combinatiops and assighing

relation structures to these combilnations, namely an open completion grammar.

Definition 2.1. An open compleifion ghammat is a construct G = (Voa, Vp,8)

where Voa is a finite nonempty set of arguments called the set of occurred
arguments, and Vp is a finite nonempty set of procedure names where Vp N Yoa = @.
5§ is a finite set sach element of which is a finite ternary relation included
in VDB*X Vp X Voe , relating arguments to procedures.

If(o,A, 2a)E & where ¢ EVa*, A€Vp and a€Voa then we write ¢ > A = a ,
If {o,A , aﬁ € 8§ whare o EVétf and o = 8ps ver 8 and A E Vp then

the argument appearing on the right of the rule (the output argument) g, is

equal to the first argument appearing on the left of the rule. For this

reason we also write - an =+ A

1
So the difference between closed and open cumpletibn grammars is that the output
argument 1ip the second type of systems has already appeared .(cr is to appear)

in the structure, whereas in the first type the output is always an element that

must be added to the structure.

Example 2.1. :
tet G = {Voa, Vp,d ? be an open completion grammar and Voa ={a,b.c.d !
ve = {a, s, cl ang s |

1. abc —+ A -+ a
2, deb = B ->d
3. ba =+ C =+ b

An cpen completion gremmar G describes a language called L(G) in the following way.

Let R be the set of arguments that eppear as output of a procedure ([ R&Voal

then starting with an arbitrary element of R, put the procedure name of wkich this

argument is output after this element and add all other input arguments to the combination.
If there is an argument in the combinatian that is in R, either the combination is

considered complete, or the same method is applied. More formal:

Defintion 2.2. Let =% denote the relation 1s 'prefenentially directly derived from'
y (x,y possibly empty) where x,y €(Voa vp 3 *

If there is & combination x a1

and a, ER and if there is a rule in the grammar 8y «ue an - A = a1

(n 2 1) where ay » ;8 € Yoa and A € Vp , then we say

X a,y =» X s, A 8, =er 8 Vs

(Note: when n = 1, with a rule of the form 8, = A - a, , then x a, ¥ = x a1A y )

.
Also =2 is the reflexive transitive closure of =% and =;§ will be called

'prefenentially derived from'.
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The language generated by an open completion grammar G, called L(G) is defined

: * *
as LIG) = {x [ %« € Vea and & = x whers y €R 3

Example 2.2.

Ltet G bé the completion grammar of example 2.1. then the following derivations
are possible:

(1) =& l% aAbec g% aAbCac ii} ceAbCaAbecec

(i1) d %% dBcbh i% cBecbCa

During the derivetion process relation structures are obtained in the following
way ! _

Given an occurred argument as output , draw a square for 1t, connect it with an
input AND output relation to the procedure sircle and for all input arguments
draw squares and make a connettion to the procedure circle. For the derivation (i)

in example 2.2. this would result in the Folldwing structure:

Note that from this example 1t is very clear that relation structures ars

graphs and not trees.
To ease our discussion we introduce the followipng additional terms:

Defirmtion 2.3. Procedures af which the output is an hidden argument will be

callsd nondepending procedurss. Procedures which are not nondepending will be
called depending.
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The procedures for closed completion grammers are clearly all nondepending

while in open completion grammars all procedures are depending.

The remarks we made about preferentlality for closed completion grammars

also hold here. The definition of the assdciated language of an open completion
grammar is left to the reader. ' '

Now we turn to the parsing problem for open completion grammars. Again we only
“treat deterministic open completion grammars due to space limitations.

2.2, The parsing problem fon open completion grammars

Algorithm Z2.1. Let there be a pds. T1 where procedures are stored, a pds.T2

where arguments found in the input but not yet conpected in the graph are stored
and a pds T3 for all arguments found in the input and connected in the graph.

A graphic representation is used for the relation structure.

Let ¢ be a input combination and Ui the i-th element in the combimaticn.
. Scan the input from left to right.

(a) 17 Ui is a procedure

1. create a procedure circle inm the structure and put the procedure on T1.
2. check whether there aré any arguments on T2 (or on T3 for the first
input argument) which can be input to the preccedurs. If so connect
with input relations end {for the first argument) also with an output
relation, and put the argument on T3.
If all arguments are found, that is if the procedure is complete,
ramove the procedure from T1, and if the output of tThe procedure
is not yet connected to another.prbnedure. put it on T2 and execute
the (b) 2 part of this algorithm.

(b) 1if o is an argument:

1. Create a point in the structure
2. Check for all procedufes en T1 whether this argument'can be input to it.
“If so, connect and put it on T3, else put the argument on T2.If
the procedure is complete, do the same as under (a) 2. for complete
procedures.
To have a grammatical input expressibn, T1 should be empty, TZ should contain
one and only one element (the atarting paint in the derivation) and the rest should

“be on T3.
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Let us take the grammar G of example 2.41. and parse some combinaticns of L(G).

derivation 141

a L#- aAbec é% aAbcCac

¢ = aAbCac
(1) 0, =3
a. T2: a {argument on T2, cregate point in structurs.)
(11} a9, = A
T1: A {create procedure circle and put the element on T1
T2 a
T1: A : (output was on T2, so connect and put on T3)
T2: - ’
T3t a
(iii} o 5 " b
&
Tt A
T2: - (new input element is argument of procedure
A T3: b a
b
g =
(iv) 4 C
T1: C A (C as new procedure on T1 and in ths
8 . T2: - gtructure)
A (:::) T3: b a
b
T1: C A
T2: - )
T3: b a b 1s the output/input of C




- a0 -

(v 0‘5 = a
T1: C A
° ‘ T2: -
A b : T3t aba (a is input for C}
c
a
C is complete therefore: T1: A
' T2: -
T3: aba
i 0O =
(vi) 5= C
a
(& is ipput for A, hence A is completel
A
T1: -
b © T2: a
T3: ca b
C
=]
derivaticn Z:
d é dBcbéidBcha
& = dBegcbCa
g =
(i) 1 d
d T2: d
(ii) o, = B
T1: B

n‘ e T2: -
%‘ - T3: d
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(i11) o, = o

d _ ‘ T1: B
B - T2: -
T3: c d
(iv) Oy = b
e -
T2: d
Ta: b c
C
(v) 05 = C
T1: C
d B T2: d
@ T3: b o
c b
(vi) Go = @
T1: -
d g T2: d
T3:r abec

c =N ol » a8 l

The same remarks on preferegntiality of order should be made here ag for algorithm 1.1..
Also non preferentially ordered input combinations are to be accepted by the system,

As an 1llustration of this we parse the reverse of derivaticn 1: recall thet

0 =g AbCac now g =calCbA

!
] 01 = c
£1i) 02 = 3

[ a T2: a c©
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3
— T1: C.
\_I": g T2: c
c TS: a
(iv} 04 = h
< 2 T -
0 H " T2:bc
. : T3: a -
[VJ05=A
A
T1: A
c b T2: -
T3: c b a
a
(vi) UB = a
T -
A | T2: a
' C © T3: che
b
a
c _ a
PROBLEMS 3

1i) Construct a program for algorithm 2.1. in an available programming language
and test the examples given.
(ii} Let G ={Voa, vp. § ) he an open cdmpletion grammar where Voa =[a.b.c,d} ’
Vp = {A. B, CS and &

1. gab * A -»a

2. bed *B~* b

3. d » C * d
Parse the following examples with algorithm 2.1,
(i) aAbbBcdC (ii)CdcBbAa (iii) A a
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Now we discuss the way in which instant or delayed interpretation
influences the parsing process.
Recall from section 1.4. where we discussed the interpretation problem
for closed completion grammars that i1t is possible to define {at least) two
interpretation modes: lnstant or delayed. Suppose now that all procedures in
an open completion grammar are considered as instant, tﬁen we cobtain a situation
where it is not possible anymore to use arguments that have been input to some
procedﬁre again in ancother procedure, because i1f an argument is used, 1t should
be removed from T2 or T3.
Consider e.g. the expression '1 + 1 x 2'. If we leave out all priority rules
among the arithmetic procedures, rﬁles which do not count in natural language
anyway, then we can have two ways of interpreting "1 + 1 x 2':

(a) (1+1)x2 and (B) 4+ (4x2)

The first interpretation is obtained by an inatant interpretation mechanism:

step 1:
after execution: *
] af +
NUM NUM _ NUM= NUM
1 1 1 4
1 1 2 1
step 2:
3
NUM
oA
1

and after executlon of X:

NUM
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The second interpretation is obtained by a delayed interpretation mechanism.

The second argumeni remains on T3 and is thus Dben fur further connections.

Step:1:
NUM NUM
1 K
© 1
step 2:
NUM “NUM P
1 1
1 1
NUM
2
.

After execution of X

After execution of +

NUM 1 ‘

NUM NUM

1 -—;_*‘ '—7;—

3 X
2
2

final1r
result

This is a very nice illustration of how the way in which interpretation is arganized
does influeoce the result of interpretation. Instead of saying this expression is

ambiguous, so the grammar must assign more than one structure to it, we say there
are different ways of organizing the understanding process and according to the process,

we obtain different structures, with the same . rule of the grammar.,
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An interesting point is also that we can defins a more economical parsing
algorithm if we consider all procedures in an open completion grammar as 1lnstant,

The algorithm is the following one:

Algorithm 2.2,

Let there be & pds. T1 where all pracedureaﬂaré stored and a2 pds. T2 for the arguments.

We use again a graphic representation for the(partial) reletion structure.
Let o te a given Input combination and Ui the i-th element in the combination

Scan the input from left toright.
A. I o, is a procedure:
1. Create & procedure circle 1n the structure and put the procedurs on T1
" 2. a. Check whethar there are any arguments on T2 which can be input to the
procedure accarding to the grammar, if éo, connect and teke that particular
argument from the pds. TZ.
b. if all arguments are found, that is if the procedure is complete, remove

the procedures from T1, and execute the E.2. part of this algorithm with as

argument the output argument of the procedure.

B, if o, is an argument:
1. Create an argument sguare in the structure
2. Check for all procedures on T1 whether this argument can be input to it.
If so connegct, else put it on T2. If the procedure is complete, do the same as

was specified under A.2.b part of this algorithm.

Just as for closed completion grammars we will now apply the concept of an open
completion grammar to the PC-language, this time however preferentially in

infix-notaticon.
2.3, Appiication to the PC¥£anguage

In section 1.3. we showed that the PC-language in prefix notaticn could be treated
with closed completion grammars. What we do now is simply change all procedures from
nandepending into depending pfncedures and what we obtain is an open completion

grammar generating expressions in infix notatian,

Let G = {Voa, Vp,8 ) be an open completion grammar where Voa = {LDG k
and Vp = {NOT, AND, OR, IMPLIES, EQUIVAL, SET, ? } and & contains the following
patterns:

1. LOG LOG = X1 =+ L0G

2. LOG = X2 -+ LOG
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where X, = [AND, OR, IMPLIES, EQUIVAL, SeT §

X, {NDT, 2]

Note that again LOG is the argument type. The argument name cen be anything, e.g.
TRUE, FALSE, P, @, and the argument value is assigned by the set-function or fixed .

Saome derivations
_Ei] LOG = LOG AND LOG =y LOG AND LDG OR LOG
(ii) LDG = LOG 7.

Depending on whether we consider the procedures as instent or delayed we obtain
the following structurss for derivation (1):

(i) delayed:

T Ce

(i1) instant:

LaG LOG

OR

LOG

LOG

{Note that NOT comes preferentlally after the argument it is negating and not
in front of it, NOT seems therefore a procedure which is considemd as nondepending

gven if we have an infix notation)

There are a number of features of an instant interpretaticn process that makes

it more interesting than a delayed one. One of them is that there is less storage
reguired, because once a plece is interpreted, it does not need to be remembered anymore.
Also intuitively humans tend to interpret as they go ealong and not when a whole

expression has been produced.

There 1s howaver one deficiency, namely that neating to the right is not peossible
There is a remedy for this namely the punctuation acting either as a means to turn
an instant procedure into a delsyed one and vice-versa, sither as a means to prevent
an argument from being connected to a procedure. _

This last soluticn seems tD_be present in the case of the PC-language with thg use
of brackets. Take e.g. P AND ( § OR P) ., The first bracket preventé D from being
connected to the AND-procedure. As a result B remains on T2 and is ready to ect as
input for the next procedure. The last bracket is breaking up this prevéntiun and

" the result of § DR P [(stered in the Q-place) is input to the AND-procedure.



Let us now do some experiments again. We programmed algorithm 2.2. in
FORTRAN IV and together with the interpretation mechanisms used earlier,

the open completion grammar for infix notation and the same procedures
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as for prefix notation we have a complete L.U, system.

Results of our implementation onthe PDP 11/45 are illustrated bytthé

follewing output. The same conventions for communicating with the

system hold as for previous experiments.

r)"

P SET TRUE
IMPUT i:
!

P SET TRUE

7@ SET FRLEE T
2] SEI_FHLSE

INFUT 2:
Py

;o

" TINPUT 3
OuT: TRUE

h

P OAND @ 7

_PAND D ORF T
D P RHD @ DR P 2

INPUT  4-
OUT: FALSE
i

INPUT 5
OUT: TRUE
9
P OAND ¢ O
INPUT 6
oUT: TRUE
2
R SET HOT
INFUT 7
5
R 7
JAINFUT B
OUT: TRUE
Y S
¢ FIMFLIE
INFUT 9
OUT: FALSE
n .
¢ ¢ F AND
INFUT 48:
DUT: TRUE
o
+ETRUCTURE
E ERUIVAL

. ANFUT 11 F

STRUCTURES
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1. 18 @8
2. 5 5
5. 18 Z
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T2 1
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g 3
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B @ 14

t @8 5

3 B 14
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1
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OR <

a
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EQUIYAL ( B IMFLIES F O

» IMFLIES F 7
g8 AND P

» IMPLIES P

-
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© +LENICOH
1. AND
2. OF
3. IMPLIES
4. NDT
5. EQUIVAL
A
7 PRDOF
8. SET
5.
18. LOG
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12, FALSE
3.0
14. F 1m
15. @ 1B
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5

*

"

16
L@
14

i@

18
1t

N o

ii
la

L

11
14
15
1&

?
n 2
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o
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7

e
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9
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£
o
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F @ IMFLIES
CINFUT 18 F
OUT: FRLSE

§ F INFLIEG
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I

FLIES

FLIES

AND OF FMO F @ R 5 7

THRUT 26: A
U7 TELUE

M
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P AHNG & OFR E RAHD
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MR EmnoDoOmEmD DD @R

From input 15 we start to experiment
with non preferential orders, in particular

prefix and postfix.

o R Noterthat input 20 i5 équéi tb'input 21 ard
F &R :

Ln

23, only the prefersntial order is different.

OF RAND 7

OF AMD 7
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SET INPZ FALSE.

IHPUT 25: SET INPZ FALSE
n

CTOINPLNY ORNG INPTWE 7
INFUT 2g: INR! AND IHPZ 7

QUT: FALSE
o

TTALERTCON T

12, IHFZ 18
-

+END. INPUT

MERDFIP

.1 RRD Lt
Z. DR g 2
o3 INFLIES 3 3
4. NHOT 4 4
5. E@UIYRL 5 3
6. 7 £ €
7. PROOF. 77
B. SET g &
- TR 28
16. LOG 16 8 1
11. TRUE 18 B8 12
12. FALSE 16 @ 1
R 11 B 1
14. F 418 9 14 B
. 150 B 18 B 45 1
16. B 1B @ 1€ @
17. & 18 @ 17 @
1. INP! 18 @ 1B @
B 1% 1

T -~ B e e
TRoOMe IO E @D 0
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INP! en inp2 are two new variable names,
this just te illustrate that anything new

-+ -+ is conslde®d as a propositional variable
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2.4. Application to natural Language

In section 1.5. we showed that nominal groups can be treated with closed
completion grammars. In this section we will extend cur discussion to

other parts of speech which appear outside the nominal phrasas. We _

stress that we do not present a fully worked out theory but only indicate

a direction of research. The universe of discourse is again simple arithﬁetics.

and the language is Dutch.

(i) Nouns are the only pessible way of expressing erguments. For this purpose

we will use them but leave in this section all nouns out which are prbcedures.

(i1) Prepesgitions. We have seen in section 1.5. some prepositions which were only
used as indioators ef a certain relationship. Now we discuss some prepositions which.
are more than this. E.g. PLUS (plus) MIN (minus), MAAL (times, there is & difference

here between English and Dutch,'maal’is a preposition but 'times' isn’'t]

Eug.: 2 PLUS 2
( 2 plus 2)

the relation structure:

NUM NUM
2 2z
2 2
after execution:
NUM NUM
: :
4 2

To illustrate the embiguity and distinction betwesn delayed and instant procedures
cansider the following exemple:

4 MAAL Z PLUS 1

(4 times 2 plus %)

(1) instant:

NUM AR NUM

4 2
4 2 &-

PLUS

NUM
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(11) delayed:

{iii) Verbs: Although the matter needs further investigetion verbs seem tc be depending
procedures. The first input (also output) argument is what is traditionally called the
subject of the sentence. This is in accordance with the fact that the subject of

a sentence is standing preferentially in front of the sentence and also that subject
and maln verb agree in number. .

When verbs are used in the imperative (and interrogative] they are preferentially

in front position. This seems to be because then the output 1s not present in the

input combination but 1s created as an hidden argument. In other words when verbs are
used in imperative or interrogative, they shift from depending into nondepending

procedures

{iv) participles are used in thé same way as verbs. Consider e.g.
VERMENIGVULDIGD [multiplied}, VERMEERDERD (zsugmented], VERMINDERD (decreased),
GEDEELD (divided).etc.. _ '
E.g.: HOEVEEL IS & GEDEELD DOOR 2 ?

HOWMUCH IS 6 DIVIDED BY 2 ¢

structure:
NUM NUM ' _ NUM
HOEVEEL 5 : prep:00OR NUM
: | 5 i _ DOOR 2
2
fdivided) o (by)

{how much) f[is )

after execution of the functions:

NUM NUM NUM NUM
HOEVEEL w g prep:DOOR 2
3 3 - 2

(Note that 'door’ is a nondepending prncedure).

(v) in an esguivalent way adjectives when appearing after a noun (instead of in froent
of 1it) sre used.
E.g; EEN GETAL KLEINER DAN 7

(& number smeller than 7

NUM

NUM EEN NUM ‘
getal @

prep AN
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There is a lot more to say (e.g. about relative clauses and ponjunction]

but this will do as an 1llustration.

Thé reader may have felt the need for a system in which both depending

and nondepending procedures are appearing. We will introduce such a system
called a complex completion grammar in the next section. Experiments

on natural language processing far the pérts of speech that were discussed

in this section will be postponed till then.



3. COMPLEX COMPLETION GRAMMARS
5.1, Basdic definitions

Now we define a 'mixed’ type of grammar, which accepts tHe unicn of the

language accepted by open and closed completion grammars,

Definition 3.1. . A complex comptetion grammat is a quintuple G = (Voa, Vha, Vd, Vn,s )}
where .

Voa is a finite nonempty set of erguments called the set of'occdrred arguments

Vha 1s a finite nonempty set of srguments called the set of hidden arguments

Vog U Vha = Va , is the set of arguments

Vd 1s & finite set of procedure names called the set of depending procedures

Vn is a finite set of procedure names calied the set of nondepending procedures.

vd Uvn = Vp, is the set of hrocadures and Vp M va =R

] 5§5Va* x Vp x Va 1s a complex funmction relating arguments to procedure names.

%

If (o,A, a)E § then we write o> A —a where ¢ € \a , A€ Vp and

a € Va .

Definition 3.2. Let =Y denote the relation '{s preferentially ditectly derdived grom’
- If there is & comblnation xiu ¥ (x,y possibly empty) where x,v E(Va U Vp)*

u € Vha and if there is a rule in the grammar of the form ay wee 2y - A &7 =&
(n 2 1) where 8, + ++» s 8, SVaand AEVUn, then we say that
XUy = xA Qpeee ALY :

- Or if there is combination x u y [x,y, possibly empty) where x,ye{ValJVpJ*;
U € Voa and if there is a rule in the grammar ua,l read, > A = U
where a, sees anE Va and A € Vd, then we say that  x u Yy =Fx U A 51 vee @_ Y

1 R n
' * . .
3  is the reflexive transitive closure of =5 and we call =3 'is phegerentially
derived grom'.

The language generated by a complex completion grammar G, denoted as L(G] is
defined as

: * *
L(G) = {x { x (Voa ©Vp) and-y'=% x where y € Va}

Example 3.1. Let G = {(Voa, Vha, Vd, VYn & } be a complex completion grammar
where Voa = {a,b,c,d} vha - {a} vd ={A,BB Vn =<C,DS and &

1. d b=+ A - d
2. c a—»gC = =a
3. b d -0 @

4, c += B =+ ¢
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Some derivations:

{1} a %% Ceca iﬁ CcBa 2% CeceBDbAG
- 1y
(ii) d = dAb
RElation structures are obtained in the same way as for open and closed cohpletion
grammars. I.e. when there is a nondepending procedure, connect the output with

only cne line, wheress 1f the procedure is depending, connect the o-utput with an

input and output relation.

The relation structure for derivation (1) is:

3.2, The parsing probfem forn complex completion grammars

The algorithm that solves the problem is basically a composition of algorithm 1.1

and algorithm 2.Z..

Algorithm 3.1,

Let there be a pds. T1 for the procedures and a pds. T2 for the arguments,

Let @ be & given input combinaticn and G& the. 1-th element in the combination.
Scan the input from left to right.

A, IT GE is a nondepending procedurs.

1. create & procedure cirele in the structure and put the procedurs on T4,

2. (a) Check whether there are any arguments on T2 which can be input to the
procedure according to the grammar, if so connect and take that particular
argument from the pds. T2.

{(b) If all arguments are found, that is if the procedure is complets, remove
the procedures from 71, put the ocutput element as argument squars in the
structure and connect it with an output relation to the procedure, then execute

the C.Z2. part of this algorithm.
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B. If Ui 1s a depending procedure:

1. create a procedure circle in the structure and put the procedure on T1.

2. [(a) Check whether there are any argumehts on TZ which can be input to the
procedure according to the grammar, if so, conneet ahd take that particulér
argument from the pds.T2; Note that we connect with input and output relations
if it is the first input argument. '

(b} If &ll arguments are found, that is if the procedure is complete, remove
the procedure from T1 and execute the C.2. part of this algorithm with as

argument the output argument of the procedure.'

C. If % 1is an argument:
1. Create an argument square in the structure .
2., Check for all procedurss on T1 whether this argument can be inpat to it,
If so connect, else put it on T2. If the procedure is complete and depending, -
execute the B.2. part of this algorithm. If the procedure is complets and

nondspending, execute the A.2.b, part of this algorithm.

The reader 1s advised to work out some examples himself. He will see that the parsing
process 1s identical for depending procedures with the one introduced by algorithm 2.2,

and for nondepending with the one introduced by algorithm 1.1..

3.3. Application to natuwral Language

We promised in section 2.4. to do experiments with a grammar contalning depending

as well a5 nondepending procedures in a natural lenguage environment.

The grammar is the following one:
Let G ={Voa, Vha, Vd, Vn, & } be a complex completion grammar and
{1oEveeL, waT § and 21l natural numbers
{ NUM , (Num, prep:VAN] . (Num, prep:MET), {NUM, prep:DOCR), [Num.PREP:enJ}
{IS, VERMENIGVULDIGD, GEDEELD, UERNINDERﬁ. VERMEERDERD, PLUS, MAAL, NINE
{DE. HET. EEN: VAN, DOOR, EN, SOM, VERSCHIL, PRODUCT, DELING, DELER, DELERS,
GROOTSTE. KLEINSTE, EVEN, DNEVEN, ENKELE, VIERKANBWORTEL, TWEEDEMACHT, MET }

Voa
Vha
vd
vn

8 contains the following patterns:

1. NUM o= X, > NUM

2. NUM = VAN ~  [NUM, prep/VAN)

3, NUM = EN - [NUM,prep:EN)

4, NUM -~ DODOR - (NUM,prep:DCCOR)

5. NUM > MET ~— (NUM, prep:MET)

B. [(NUM,prep:VAN) (MUM, prep:EN] - X2 - NUM

7. (NUM.prep:VAN3 (NUM, prep:DOCR) = DELING - NUM
B. NUM  NUM X, o NUM '
g. NuMm  [NUM, prep:MET) Xg = NUM

10. NUM fNUM, prep : DOOR) = GEDEELD = NUM
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We made an implementation with this grammar, the interpretation

mechanism and algorithm 1.2.. The procedures should be rather gbvious
here . Note that e.g. VERMINDERD (diminished), VERSCHIL (substraction),
MIN (minus), make all use of the same procedural definition.

Qur usual conventions hold for communicating with the system.

An ENglish translation will be given afterwards.

?

" HOEVEEL IS 1 PLUS 1 7
_LMEOTY 4 HOEWEEL I5 1 FLUS 2 2~

GuT: 2
-

HDEWEEL IS 2 MIN 2 7

INFUT 2: HDEVEEL IS X MIN 2 7
pur: i
4

THFUT HOEYEEL I5 X MPAL 2 7

z
ouT: T &

?

MHT IS DE S0OM VAW 4 EN 5 GEDEELD DUDP =7 _
IHFUT &: WAT IS5 DE SOM VAN 4 EM 5 GEDEELD DGUR 7
auT. 3.

HOEVEEL IS 7 GEDEELD DOOR DE SOM WAN 4 EN T 7
IHFUT 7. HDEYEEL 1S 7 GEDEELD BOOR CE SOM YAN 4 EM
nuT: 1

HOEVEEL 1§ DE_ VIERiHHTfMDRrEL YAN 16 MRAL 4 7 o
INFUT 'B: HUEVEEL 15 DE VIERKAWTSWORTEL WAN 16 MAAL

auT: 16

VAN t EN 1 DE SOM IS HOEVEEL 7

INFUT & VAN 4 EM t DE SOM IS MOEVEEL 7  Note the non prefe rential input
ony: :

7 MAAL 7 GEFEELD DOGR 7 MIN 1 PLUS 7 IS HOEVEEL 2

INFUT 16: 7 MRAL 7 GEDEELD LOOR 7 MIN 1 FLUS 7 IS HOEVEEL 7

11
.‘J

-
w3

UT 42

E GRGOTSTE CHEVEN DELER VAN DE YIERKANTSWORTEL VAN &1 PLUS 1 7
HPUT 11 [E GRCOODTSTE OMEVEN DELER VAN DE YIERKANTSWUORTEL VA

g1 PLUS 1 % ' i

ouT 18 )
:D WRAL 10 7 - INput 12 is riot accepted because the character 'O’ ]
TNPUT 12; 10 was given instead of the number '@'.
".! .
16 HAAL 48 7

IWPUT 1Z: 18 MARAL 18 7

ouT: 1es

z‘

1”@ GELEELL DOOR DE TWEEDEMACHT YRN 18 7
14 1@ GEDEELD DOOR DE TWEEDEMACHT VAN 18 7
EdT. 1

b
el |
-n
—
—

PE KLEIMETE CHEVYEM DELER VAN 1@ YERMEMGISMIGYULDIGE MET 15 7
IHFUT 23: BE KLEIMSTE CNEVEM DELER VAN 188 VERMEMIGWULDIGE M
T 15 7 o ’
nuT - 15

JINPUT _ 4: HOEWEEL I5 & GEDEELD DOOR 3 7 - . e
ouT: z
= o o
"HOEWEEL IS5 7 VERMIHDERD WET = >
UNKNOWMN WORD, INPUT MOT ACCEPTEL
__ HOEVWEEL 1% E“,EEMINDEDD MET e e e
INFUT S: HOEYEEL IS 7 YERMIMDERE MET % %
aut: 4
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HOEVEEL IS5 17 GEDEFLD DOOR 17 WVERWENIGWULDIGEL MET = GEDEELD LODR 2 7

INFUT 16; HDEYEEL IS 17 GEPEELD DOOR 17 VERMENIGVULDIGD HET
_ - ~ GEDEELD GOODR 2 7 L o e -
ouT: i : T
STRUCTURES . o B} , . _
e v MDDES e e e et e e e e+ i e e S
1. 2B ® B 2 22 -
2. 24 B 1 16 24 _ 3 e
T 28 2 5 ¢ 22 T T
- 4. 26 1B 2 6 26 .
5 3 2 3% 1 3§ - -
e v e B 2B B4 3 34 e o i e e o e e e o
7 42 4 5 2 34 T T T
. 5. 23 11 4 5 23 — o o o -
9. 29 ¢ 5 1 29 -7 T N
- , ig. 2@ % 4 4 i3S - _
11 42 8 5 4 37 N - o )
- B T - - T4 S R
13, 5 ¥ rf 1 9 T
— 4. 28 13 4 5 ZE& _ } .
15 42 12 § § 3% T o
L 46, 23 t B 15 21 . . - _ . B}
RELRTIONE
S TS SO - A S S S — T —_
2 T B 1L 1 7
. 2, 2 B 7 6 . — - _
4. 38 1 11t
S o8, 2 B 11 18 - _
6. 0B 1 115
S AT~ SURDD - N = N X S, . - e e e e it e e e
g g 8 1 1
B -T2 o % B B} .
?
i ~ +HO STRULCTURES .
-
DE WIERKAMTSHORTEL WAN DE SOM YAM 4 EM 4 EN 4 7
INFUT t7: DE YIERKRMTSWORTEL YAN DE SOH WAN 4 EN 4 EN 4 7
ouT: 4
UNBPHHHHTICHL INFUT
DE WIERKANTSWORTEL IS 7
N INFUT iB: [DE VIERKAWTSWORTEL IS % . e
UHEEHMMHTIEHL INFUT
1= WAT DE EEN
i i CINFUT 1% IS5 WART DE EEN . ) ) )
UKGRAMMATICAHL IHPUT
bl
WAM 16 DE VYIEREKANTSWORTEL GEGEELD DOOR 4 % ‘ T o
INFUT 28: VAW L6 DE VIERKANTSWORTEL GE&EELD COGR 4 7
ouT: 1 From input 20 we start to expemment systematlcally
- +STF‘LICTUF‘ES with non preferentialiy orderings. They até all being
—e o b ' processed @s one can see.
WAM 16 DE VIEREANTSWORTEL DOOR 4 GELEELD 7
B INFUT 24: YAW 16 DE YIERKRHTSWORTEL DOOR 4 GEDEELD o 7
ouT: 1
_ STRUCTURES
- S MODES oo e in e o e e e+ e e e ot o
1. 4 2 1 1 4 ' ' o
B 2B 1 4 2 33 -
.48 5 4 2 i
4. .1 1 2 L 1 ) B i
S 1B 7 ¥ 1F 18
_— 6. 2B 4=4d4 1 4 —— - . e e e e et e o
7.o.oo20 B 4 1 23
g 5 3 4 1 5 o
Coa. 42 1405 %05
1. 28 8 B I I4 ) ~
11, 26 18 5 €& Z&
12, 214 1 5 15 2 e et — . e e -
RELATIONS
1. - R i ) i
2. 2 8 7 8,
. & B X 3
4. 2 B 7 7 -
- T S < S 8 S S e e e e e e rean -
£ > @ i8 1@ ' - -
I;T‘ T A_Q Lil 7 i] N Y T N J;i
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BODE 4 GEDEELD DONE ~U _
BOOR 4 GEDEELD DE YESIERKANTSWORTEL YAM 16 ? B
INPUT 23: GOOR 4 GEREELD DE Y1ERKANTSMORTEL VAN 16 7
Caut: 1
STRUCTURES

' "THNODES X i o T
1, 5 % 1 4 B
2. 29 1 4 2 2%
I. 42 4 5 2 1 )
4. 26 4B 2 £ 26
€. tB ? 4 1T 1E
7. 4 2 5 1 4
B, 2B 7 4 3 24
9. 4 E 4 1. S
18. 20 5 4 T 34
— oLy oes B3 2 28 . S e,
1277721771 e s 24
RELRTIONG :
1 2 B 3z 2z
2. 2 @111 I
3. 2 8 11 1@
4. 2 BAR_ 2 S - .
5. 7 B 9 B
g, 2 B 11 11 )
T2 11
? ) .
LOOR 4 [E WIERKANTSWORTEL YAN 16 GEDEELD 7
. INFUT 24: DOPR 4 LE YIERKANTSWORTEL VAN 16 GEDEELD 7 .~
auT: i : ’
)  ETRUCTURES N
~ MDDES ;. _ 3
1. 5 2 1 & 5
e B.2B L4 BT I
I 4z 115 3 1
4. 1t o2 11 B -
5. 18 7 2 1T iE
] 6. 4 2 &4 1 4 .
7.z & 4 3 34
. . 8...4B 5 4 2 R4 _ o S I
9, A 4 4 2 &
g 18, 2@ B 8 I 34
11 26 1B S & 2E
12 21 1 & 15 24
RELATICHNS : :
e 4.2 B3 2 . e e e e e I
: 2, ER: R -
. 2 B 2 &
4. 2 8 & 7
5. % @8 z 18 3 )
£. T 8 16 1@
_____ U I~ 2NN 4 © S e e e e e e e e
DOOR ¢ VAM 16 DE VIERKANTSMORTEL GELEELD 7 )
INFUT 25: LDOR 4 VAM 16 DE WIERKAMTSWORTEL GEDEELD 7
puT: 1
CTRUCTURES
NODES -
. 1. 5 % 1.4 5
2. 28 1 4 2 3T
Z. 42 14 05 2 1 i )
4. 4 2 2 1 4
- ..®. EB 4 4 2 Zd4 I -
€. 48 B 4 I 4
101 03 101
g 18 7 4 13 1®
w9, Z6 7 4 I 5§
1R, 28 B @ 3 34
14, 26 1B 5 € &6 i ) _
12, z4 1 £ 15 z4
RELRTIGNS
1. P B S
2. 2 B £ 5
I B oL@ o
2

o
m
Loy
m
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o B2 B 18 18 _ B o e N
T2 18 :
: - ? . ———— - pa— mm me immem 4 e em W - T e s = n e 4 kel A e = mm s e = . d— i tn . = — e e i ———— s —
_EEDEELD DOOR 4 VAN 4& DE YIERKANTSHORTEL 7
- IRFPUT 26 GEDEELD DOOR 4 WAM 16 DE WIERKANTSHWORTEL 7 S
0Ot 1 :
; SSTRUCTURES . 3 S - . o .
- HODES . L L ; N o o
1. 26 1@ 1 E 26
2 B B 5L R
' 7. 28 ¢ 4 2 33 '
o4 42 15 24 . . 3 o )
5. 4 2 3 1 4 T
. b 2B 35 4 3 34 _ } - .
748 v o4 2 1 o )
i B L a4 1 4 e e e e e e e e -
9. 18 7 5 LE iE ' ' ST o
) _ 18 2p B 4 3 24 e -
11. 28 @ 3 3 26 o
. ootz 211 6 15 2% , _ e e y .
FELATIONE T
SRR WO S - N % S ¥ S, SO _— I _ o
z. z2 8 4 I "
R 3. 2 B _F_ E } _ S i
' 4. B 11 1@
5. 2 8 ¢ 7
£ 20 @ 11 11
. T2 ;41 O - o
-
_“__m__wxgg&umﬂ . S
1. LAl L
SR 3 I_-!_E_I.__ - TN N B S . . ok
3. EEM 1 B 2
o L4 MAN 4 2.8 1 D e
5. LODR s z @8 1
6. EMN € 4 @ 1
7. SOM 7S B 3
e B, MERSCHIL 8 _S._ B _4 . B} R e . e
2. PRODUCT 9 S5 B 3
. 1#, DELING 18 & _8 & o _ ) e .
11. DELEFR 1t 7 @8 7 ]
R 12, DELERS 42 7 B 7 o . -
1z, GRODTSTE 12 t @ =&
.. 14 KLEINSTE 14 L B @ . . i - )
15. EVWEN 15 1 § 18
o _ 16, QHEYEM 16 1 B 11 i ~
"17. ENKELE 17 1 @ 12
e 4B VIERKERMT LB 7 B 132 U . I . N
{9  TWEEDEWA 18 7 @ 14
28, NLH ch o8 20 4 i
21 7 24 1 1 15
i 22, HDEVEEL 2@ 8 22 1 i o 7
3. MAT 8 @ 23 1
R -1 PO 5 S 5. S - SO S § - S
25 VERMEHWIG 25 1t 41 5§
26. GEDEELD 26 18 1 € i
27, VERMIMNDE 27 11 .1 4
_ _ 2B, VERMEERD 2& 11 1 X I e .
29, MET 6 & @ 1
e 2B RLUS 2B B L3 o e g e+ oo e o e e e mepee e s — .
2T TRIN i1 B 1 4 T - e
Tz, MAAL 22 8 1§ )
; _
+GRAMMAR o
1. 2 @ 28
. 2. .2 48 28 . S e e .
z. > o4z 20
4 ® 41 2B
5 T oZe 48 41
£ I ZE 4B 47 i .
7. 2 oZp 48
. __3_ 8 28 z8 e e e e e e e ..
9. 2 4% 2@ ' o T s
18, I 2B B 4z B B
11. I f@ 2B 43

a
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- Translation:

1. How much iz 1 plus 1 ?

2. How much is 3 minus 2 ?.

3. How much is 6 divided by 37

4, How much is 7 diminished by 3

5. How much is 7 diminished by 3 %

6. What 1s the sum of 4 and 5 divided by 3 ?

7. How much is 7 divided by the sum of 4 and 3 ?

" 8. How much is the square root of 16 times 4 ?

9. Of 1 and 1 the sum is how much ?

10. 7 times 7 divided by 7 minus 1 plus 7 is how much ?

11. The greatest uneven divisor of the sguare root of B1 plus 1 ?

12. 10 times 10 ? -

12, 1@ times 10 ¢ _ _

14. 189 divided by the sguare root of 18 ?

15. The smallest uneven divisor of 1@@ multiplied by 15 ?

16. HOw much is 17 divided by 17 multiplied by 2 divided by 2 7
{with structurés switch) '

17. The square root of the sum of 4 and 4 and 4 ?

18. The sguare root is ?

19. Is what the an

20. Of 16 tha square root divided by 4 ?

-21. Of 16 the square root by 4 divided ?

22. Of 16 the square root divided by 4 7

23. By 4 divided the sgquare roét of 16 7

24, By 4 the sguare root of 16 divided 7

25. By 4 of 16 the square root divided ?

26. Divided by 4 of 16 the sguare rcot ?
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4. PERSPECTIVES AND CONCLUSIDNS

4.1. Pernspectives

Although some insights may have been achieved, a lot of problems remain. In
particular how world knowledge should be represented and incorporated in the process
of parsing.

The following points should be investigated further:

(i) Refinement of the types within an argument. Ths type informafion that forms

the basls for a connection in the structure during parsing was here presented as
being a simple and straightforward matter. This is clearly net the case, also there

gome preferentiality is involved, as was facognized and worked out by Wiltks {1975).

(i1) Lexical ambiguity. The definition of nondeterministic parsing algorithms
should be undertaken for the three types of systems. Clearly nondeterminism (as

defined in definition 1.6 ) is equal to a certain type of lexical ambiguity.

(1ii) Refinement of the interprstation mechanism. When an understander meets the

gxpression 'Give-'me the names of éome human beings', he cannot start to snumerate
all beings, then compute the subset of human beings and finally.return a subset of
this, simply becawmse the set of beings is an infinite set. What we need therefore
is a sort of intertwined interpretation mechanlism , where each procedure is not
executed seperatdy.

In particular it should be partially executed till information can be passed

to the procedure from which the output of the current procedure is depending.

Then this procedure is partially executed and so.on. Semantic interpretaticn in

this way runs up and down a structure, preventing excessive computa tion.

(iv) Procedural definition of predicates. A lot of work remains in discovering
what procsdureas afe uéed.fdr the differsnt predicates. The prcblem is a difficult
one because it hangs together with the way in which the memory f{or data base)

is organized. _

We refer in this context to recent work of Hewitt (1873,1875), Winograd [1875) and

others.

(v]l Intermediate representstions . Another way cf solving the problem of

excessive computafion is by introducing intermediate representaticns for sets.
It may be thought that the procedures can 5nly be direct mappings, 1.e. functions
themselves, however it i1s perfectly possible to let the procedures be such things
as 'set+builders'. E.g. 'Some numbers smeller than 6'. 'Number' can be considerd
as a procedure having as output x| Number[x]} 'smaller' takes this set and
turns it into a new form: {x I- NUM(x) and x& 6 } .etc,..

We will dezl with these matters in forthcoming publications.



- 82 -

4.2, Conclusdions
* To conclude we state some of the insights we hope to have made clear,

1. The understanding mechanism is basically a set of probessing systems that
bring about understanding by the manipulatlon of information structures. One

of them 1s a parser, that is a system extracting structures according to a

given grammar for an arbitrary input. Another 1s an interpreter, a system
barrying out tha interpretation of the meaning elements in the structure gbtained
by the parser. So the parser and interpreter communicate via a étructure

[called the relation structure in this paper).

Contrary to structural [and in partisular Chomskyan) linguists we do not
think that structures (structural dascriptioné on the level of syntéx and
unordered (or ordered) lists of semantic markers on the level cof semantics)
are a final and sufficient explanation for understanding.

Instead of studying structures, we should study procedures. Structures are

only & by-product of the functioning of the processing procedures,

2. One of the main novelties introduced 1s the attitude towards order. Order

is Here not simply & feature of the structure of a language., but is something
that can be understood from the way in which the parsing proceeds. In other
words, order 1s not an énd in itself, but motivated by the understanding prbbess.
It i= no coincidence that the subject of the sentence is standing preferentially
in front of the verb, that the adjectives and adverbs stand in front of the noun,
that prepositions come befﬁra avery other word in the noun phrase ,etc..

This can all be explained from the role they play in the parsing process.

A very strong result 1s also the flexibility of the parsing process, something

completely lacking from phrase structure parsing.

3. Ancther interesting point is that semantic interpretation is not taking
place w n syntactic praocessing is finished for the whole sentence. We showed that
there are other ways of doing this and also that the interpretation itself is

depending on the way 1in which the process of Interpreting is conceived.

4. Other ways of extracting semantic structures without doing first phrase
gtructure parsing are Riesbeck's parser (Riesbeck,1974) producing Schank's
conceptual dependency.graphs and Wilks' analyzer (Wilks,1875) . Our approach
differs from those mentionned above, especially the first cne, in that we

tried to define underlying systems, instead of Just designing & program daing

the job.

The need for relaticnally directed descriptions of langusge is something also felt

mere and more felt in structurel linguistics (cf. Johnson,1974).
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There remains a lot to be discovered and investigated. We personally feel that the
systems described have a great potentiality in them.
We hope that completion grammars will turn out to be an interesting tool enlarging

our capacity to deal with language.
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