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ABSTRACT 

Three new types of grammars: open~ closed and complex comple~ion grammars, are 

formally defined and their relative parsing systems are discussed. 

Also it is shown how these systems together with interpretation mechanisms 

make up complete language understanding systems. The applicability is illustrated 

bY computer programmed experiments in natural and artificial language processing. 

The basic novelties are a new approach towards the internal order of the elements 

in a languqge expression, the introduction of structures, distinct from constituent 

structure trees, for representing the informatio~ necessary far semantic 

interpretation and a strong procedural attitude towards language theory, as well 

an a syntactic as a semantic level. 

Complet~pn grammers in general can serve as a model for functional or relational 

grammars in that the emphasis on order, which is basic to the concept of constituent 

structure grammars, is r~placsd by emphasis on internal relations due to semantic 

properties. As a result the currently widely accepted distinction between deep 

and surface structure~ becomes unnecessary. Indeed with the grammars defined it 

is possible to map ths language input directly into structures which contain all 

the information for a semantic interpretation. 
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Introduction 

This paper is devoted to the study of ey~tem~ designed for the task of 

language processing. The main theme is the investigation of one part of 

such systems, namely the one by which analysis is be~ng done. Analysis 

is the task of mapping the language input into a formal structure upon 

which interpretation takes place. 

In the following sections we will introduce three types of grammars designed 

for the purpose of analysis: open completion grammar (! 1) , closed completion 

grammars (§ 2) and complex completion grammars (§ 3) • We will also define 

parsin~ systems for the three types of grammar~ and interpretation mechanisms. 

This paper is a stat.emet"'t on :re;!search in progress. Therefore we· do not present 

fully worked out discussions, but only giver·an indication of the way in which 

research proceeds. The emphasis is on the definition of a fundamental framework, 

applying it to the data is another matter. 

This does not mean however that we do not give any explicit information at all. 

The systems will be formally defined, the al-gorithms are all programmed and 

we will present concrete experiments in natural and artificial language processing. 

In particular we programmed and implemented experimental versions of language 

processing systems based on the 3 types of grammars and do experiments with as 

source languages the Propositional Calculus (in infix, prefix and postfix notation) 

and (subsets of) a natural language. 

We thank the members of the reading committee especially prof. De Schutter, 

prof, Goossens, prof. Tasmowski because they accepted the paper for publication 

and made some very helpful remarks to improve the text. We also thank prof. Rozenberg 

D. Vermeir and H. Daman for discussing the matter and providing new insights 

into _.it, Of course rasponsibili ty for all remaining errors and deficiencies 

remains by the author. 
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0. FUNDAMENTALS OF SEMANTIC INTERPRETATION 

Basically we assume that a predicate is a procedure or function name. The meaning 

of a predicate is equal to a procedural definition of its corresponding function 

and the interpretation of a predicate is equal to the execution of the procedure. 

Consider e.g. 'SUM'. The procedure 'sum', familiar from simple arithmetics, takes 

two numbers as input and returns another appropriate number (sometimes called the 

'value' of the procedure) as output. Understanding what'sum'means is considered 

to be the same as knowing what the procedure is and being able to execute the 

procedure on a given input. 

A procedure calls for certain arguments (also called operands or cases) as 

input. These arguments are either resulting as values from other procedures (then 

the arguments will be called hidden) either directly present in the language 

expression {then the arguments will be called occurred). 

Consider 'the sum of 1 and 1'. The procedure here is qgain 'sum', arguments are 

'1' and '1'. Similarly consider '2 times the sum of 6 and 2'. 'Sum' takes now 

'6' and '2' as arguments, the result is B. This result together with '2' is 

input to the procedure 'tim~s'. Note that '8' is an hidden argument, '6', '2' and 

'2' are occurred ones. 

In a text -one does of course not meet expressions as 'a,b and c are input to 

the procedure A and f is output'i this would be a tedious way of communicating 

Instead we find simply 'A a b c ' or ' a A b c ', i.e. input arguments and procedures 

are written after each other and finding the exact input and outputrelations is 

left to the person trying to understand. So~ a language expression will be considered 

as a series of procedure names and arguments. 

The task of understanding consists in: 

(i) finding out how the procedures denoted by these procedure names are inter~ 

related with the arguments (this phase is called analysis) and 

(ii) executing the procedures (this phase is called interpretation). 

The problem of analysis or in ather words the problem of extracting from a natural 

or artificial language input the corresponding semantic structure, will be 

solved by the definition of grammars (in particular completion grammars) and parsers, 

being systems computing the structures assigned by the grammar to an arbitrary 

combination in the language. The solution to the problem of interpretation 

involves a definition of all the procedures for a given language and a description 

of the way in which the procedures appearing in a given structure are executed. 

A system that is able to perform the task of understanding will be called a language 

understanding system (for short L.U.system) 
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Definition 0.1. A tanguag~ u~d~tandi~g 4y4tem S is defined by a 

quadruple S = (G, IT , P, r ) where G is a grammar, IT is a parsing system 

accepting G, P is a set of procedures and r is a function relat~ng procedure 

names to procedures. 

An L.U.system is such that ll is depending on the type of grammar being used 

while once the tips is fixed G is variable to the system. 

Definition 0.2. The 40~C~ tang~g~ for a given L.U.system is the language 

being accepted bY the system. 

This involves the fact that the parser is capable of analysing by means of the 

grammar all combinations of the source language and thatP contains procedural 

definitions for all procedure nam~s in the lexicon of the language. 
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l. CLOSED COMPLETION GRAMMARS 

1. 1. BM.i.c. de6-&Ullow.. 

Definition 1.1. A c.to~ed c.omp£e.tio11 gJtammaJt is a quadruple G = ( Voa, Vha, Vp, 8 > 

where 

Voa is a finite nonernpVy· set of arguments called the set of occurred arguments, 

Vha is a finite nonempty set of arguments called the set of hidden arguments, 

Voa U Vha = Va and Va is called the set of arguments, 

Vp is a finite nonempty set of procedure names and Vp (\ Va = 0 , 

S is a finite set each element of which is a finite ternary relation included 

* in Va X Vp X Vha ~ relating arguments to procedures. 

If ('Y, A, E1 ) E 8 * where 'Y EVa , A E Vp and a E Vha , then we write 'Y -Jo A -.. a , 

'Y ~ A --jo- a is called a rule. The arguments appearing on the left of a rule 

are called the input arguments and the arguments appearing on the right of the rule 

the output arguments. 

Example l.l. Let 

Voa = { a,b,c,d) 

G = (Voa, Vha, Vp, 

Vha = [e,f ,g) and 

l.ab~A-+e 

2. e f c ~ B ~ g 

3. d -+ c -+ f 

tl ) be a closed completion grammar where 

Vp = {A, 8, C l and 8 : 

A closed completion grammar G describes a language (called L(G)) in the following 

way. Starting with an arbitrary hidden argument, replace it by a procedure name 

of which this argument is output and add all the input arguments to the combination. 

If there is a hidden argument among these arguments, again replace it by a procedure 

of which these argument is output and add all the input arguments to the combination. 

If after a finite number of steps all elements are either procedure names or 

occurred arguments, the combination is complete. 

More formal: 

Definition 1. 2. 

* (il If there is a combination xu y (x,y possibly empty) where x,y E[VaUVpl and 

u EVha and if there is a rule in the grammar a
1 

.• , an-+ A -+ u (n ~ l) where 

and A E Vp, then we say that x u y Plleoeltentia.Uy dhtecJ:ty cte!Uvu al' ' a E Va 
n 

X A al ... a y 
n 

*~ (ii) Let 

denoted as x u y =='t X A a
1 

.. , a y 
. n 

be the transitive reflexive closure of the relation ~ If 

X y then we say that x p!te6e~te11tiatty delt.i.vu y. 

(iii) The 

* X~ y where 

language of 

X E Vha ! , 
G, denoted as L.(G) is defined by L(G) = j y 1 y E[VoaUVpl* and 
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Example 1.2. Let G be the closed completion grammar of example 1.1. then the 

following derivations are possible. (The index on =t is the applied rule 

of the grammar) 

(i)f~Cd 
(ii) e 4 A a b 

(iiil g ~ B s f c ~ 3 B A a b f c ~ B A a b C d c 

Example 1.3. Let G = ( Voa, Vha, Vp, 5 ) be a closed completion grammar and 

Voa = (a,b,c,d} , Vha ={e,f\ Vp ={A. B, C. 0 f and 5 : 

l.abe -+A-+e 

2. c e f -+ B -+ f 

3. d -+ c _,. e 

4. d _,. 0 _,. f 

some derivations: 

( i) f ;:;, B c e f l,. B c A a b e f ~ B 

l.. BcAabCdBcAabef 

(ii) f 4 0 d 

c A a bCdf~ BcAabCdBcef 

(iii) f ~ B c e f ~ B c A a b e 

(note that L(G) is infinite) 

~ B c A a b C d B c A a b C d f 

itscAabCdBcAabCd Dd 

f~ BcAabCdf~ BcAabCd D d 

In our definition of a direct derivation there is something that needs a bit more 

explanation, namely the word preferential, 

It is well known that the formal theory of languages,dealing in particular with the 

so called Chomsky or phrase structure grammars, their related automata and their 

possible qugmentations, has been exclusively based on strings formed by the operation 

of concatenation. Indeed the essence of these systems is that they define ·a strict linear 

order on the elements of a language and 'grammatical' means that a particular order is 

present. 

What we propose here is to consider language utterances not as strictly ordered as it 

is usually done~ rather we will introduce the concept of preferential order, being 

en ader which is most likely to occur. In this respect the occurrence itSelf of an 

element is more important than the moment when it oqcurs. 

We hope to gain by this approach not only a greater flexibility, a possible cure for 

the britleness of current natural language processing systems~ but also a means of 

dealing with other levels of language than syntax and morphology, notably those where 

order is not as relevant as occurrence. 

In linguistic theory strings are defined as objects consisting of an ordered set of 

occurrences of the elements of an alphabet. Now we introduce a 'weaker' object, called 

a combination, where the order is not so relevant anymore. 
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Definition 1.3. Let D be a finite alphabet then a combin~on over D is a set 

of occurrences or tokens of the elements of ~ . 

Notation: As the distinction between combinations and strings is relative to the 

point of view# combinations will be written as strings. 

Example 1.4. Let ~ = { a,b,c \ then examples of combinations are a b c , a b , 

a a b c , etc ..• 

From the definitions it follows that if a combination is canside~ to have 

a particular ordering (e.g. the precedence order) then the combination will 

be called a string. E.g. if o = a b c is considered to be a combination then 

a a b c 

a b c t b a 

L:St us now 

we defined 

* y =')X 

b a c cab, etc .•• , whereas if 

c t cab 

a is considered as a string 

study the implication for our definition of the language . Recan that 

the language of a completion grammar G as L(G) = [x ~ .x E lVoa Vpl*and 

where y E Vha J . This language we will call the preferential language of G. 

To have a mathematical way of talking about nanpreferentially obtained strings, .,.._.. 
we introduce the concept of the associated language of G called L(GJ:and 

'UGJ = { y l .x E L(Gl and y is a permutation of x ~ • 

So what we mean by 'is preferentially derived from' is that the precedence order 

imposed by this relation was preferential and in producing or generating this order 

is the goal. However if this order is not present because of a failure in the production 

or by influence of higher language levels (e.g. pragmatics), the analysis syStem 

does not block, as would be the oase for phrase structure grammars. Also in 

cases of ambiguity, the order most approaching the preferential order will be the 

one chosen as the right analysis. 

The problem in making these decisions is one of parsing and we will with this in 

1.2 •• 

Let us now discuss the format of the structures assigned by the grammar. These will 

not be labelled plane rooted trees or constituent structure trees. but a formally 

distinct structure to be introduced in this section. The significance of taking another 

format for the structures assigned by the grammar should not be underestimated. The 

validity will follow from its usage. 

We reprent procedures as circles, called procedure circles, with the name of the 

procedure in it~ and arguments as squares called argument squares. The input and 

output relations will be represented by directed lines from the arguments to the 

procedure circles. These lines can be labelled if there is any need to do so. 
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Example 1.5. Let a,b,c be input arguments and d output argument for a given 

procedure A, then this information is represented as fallows: 

The whole graph is called a relation structure, b~cause it represents the functional 

relations among the elements. 

Definition 1.4. A JLei.ctUOI'l 4bw.c.tu1Le is a construct (;Vp,Va, R ) where Vp is a set 

of procedures, Va is a set of arguments, R C (Va x Vpl u lVp x Val is a set of 

ordered pairs describing input relations (Va x Vpl and output relations (Vp x Val. 

In this paper we will not investigate formally relation structures and for ease 

of discussion alway use the graphic representation. 

Let us now define relation structures in relation to combinations. 

Definition 1 .• 5 The JLel.atioVt 4~U~U1Le 6oJL a givencombil'lcttioVt is a set sf procedure 

circles representing the procedures in the combination ,a set of argument squares 

representing the arguments occurring in the combination itself or as an output 

argument of a procedure and a set of directed linSs between the squares representing 

input and output relations. 

Clearly a line leaving a circle is denoting an output relabt:on whereas a iine leaving 

a square is denoting an input relations. 

Example 1.6, Let a, b. c be input arguments and d output argument for a given procedure 

A, and let d and e be input arguments for a given procedure B where f is the output 

argument then the relation structure for the combination A a b c B e is: 
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It is easy to see how to obtain relation structures (as defined in definition 1.5.) 

during the derivation process. Given an hidden argument as output, draw a square 

for it, connect it with an arrow to the procedure circle and for all input arguments 

draw squares and make connections to the procedure circle. For derivation (i) in 

example 1.3.) this would result in the following structure: 

Definition 1.6~ A completion grammar is detVUnU1iJ~Q if for each procedure in Vp there 

is one and only one rule in the grammar. 

A completion grammar is non..de:teJUn-i...J1...i..btic. if there is more than one rule for the 

same procedure. 

All examples up to now were examples of deterministic closed completion grammars. 

Example 1.7. Let G = (Voa, Vha, 

Vha = fa,b,c j, Voa =~e,d,f) 
1. a d _,.A """' c 

2. e f-+ A-+ b 

3, b -+A~ a 

Clearly G is nondeterministic. 

Vp,6 be a closed completion grammar and 

Vp = {A ~ and 6 : 
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PROBLEMS l. 

(i) Are the combinations d 0, A a b e , B c C d 0 d in the language generated by 

the grammar of example 1.3. ? 

(ii) Construct other closed completion grammars and generate same combinations. 

1 • 2. The. paMin.g piLO b.te.m 6oJt cxo~ e.d ccomp.te.tio n. gJtammaM 

In linguistic science, a recognizer is a system that takes a grammar and an input 

string and decides whether or not the string is in the language (supposed to bel 

described by the grammar or not. 

A parser on the other hand is a system that takes· a grammar and an input string and 

produces the structural description assigned to this input string by the grammar. 

Of course if the input is ungrammatical there ~an be no structural description, 

so a parser implies a recognizer (but not vice-versa). 

Let us now deal with the parsing problem for closed completion grammars by ·giving 

an algorithm that solves the problem. Due to spacelimitati~s. we will only deal 

with deterministic closed completion grammars here. 

Algorithm l.l. Let there be a pushdown stack (for short pds.) T1 where all procedures 

are stored and a pds. T2 for all arguments. Although in a concrete implementation 

the (partial) relation structure is stored in a list structure or a table representation 

of a list structure. for the ~ke of clarity in the exposition we will here use 

a graphic representation. Let a be a given input combination and a. the· i-th element 
. l 

of the combination. 

Scan the input from left to right: 

A. if a. is a procedure: 
l 

1. create a procedure circle in the structure and put the procedure on T1. 

2. (a) check whether there are any arguments on T2 which can be input to the 

procedure according to the grammar, if so connect and take that particular 

argument from the pds. T2. 

[b) if all input arguments are found (we say that the procedure is complete) 

remove the procedures from T1. put the output element as argument square in 

the structure and connect it with an output relation to the procedure circle; 

then execute the B.2. part of this algorithm. 

B. if a. is an argument: 
l 

1. Create an argument square in the structure 

2. Check for all procedures on T1 whether this argument can be input to it. If so 

connect. else put it on T2. If the procedure is complete, do the same as was 

specified under A.2. (b) of this algorithm. 

To be grammatical there should be one and only one element on T2 and none on T1 after 

scanning the whole input. The final element on T2 is the initial paint in the derivation. 
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Example 1.8. 

Let the grammar be G =1Voa, Vha, Vp, ~ 

Vha =(e,fl Vp ={A, B, c, D\ and ~ 
l.abe-+A-+e 

2. c e f -+ B -+ f 

3. d -+ c -+ 8 

4.d -+0 -+f 

Derivation 1: 

e 4 A a b e'4 

a A a b c d 

(i) a1 A 

1. 8 
T1: A 

2. T2 is empty, 

(ii) · a 
2 

a 

1. 0 
G 

(iii) "3 b 

1. 

2. 

A a b C d 

no checking. 

T1 : A 

T2: -

T1 : A 

TZ: -

T1 : A 

T2: -

T1: A 

T2: -

and Voa {a,b,c,dj, 

(create a procedure circle in the structure 

and put the procedUFe on T1) 

(create a square in the structure) 

(according to the grammar a is input to A, so 

we connect a to Al 

[create a square in the structure) 

(according to the grammar b is input to A, so we 

connect b to AJ 



(iv) a
4 

C 

1. 

2. T2 is empty: no checking 

(vJ a = d 
5 

1. 

2. 

3. 
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(create a procedure circle- for C and put 

Con T1) 

T1 : C A 

T2: 

T1: C A 

T2: -

(create an argumentsquare in the structure] 

(As d is input for C according to the grammar, we 

connect d to C. By this C is complete and we 

add the output of C to the structure. 

This output is according to the grammar 

input to A, hence we make a connection to AJ 

T1: A 

T2: -

(By adding the output of C 

also A is complete) 

T1: -

T2: e 

i.e. s~ to the structure 

Note that the final element on T2 is the initial point of the derivation. 
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Derivation 2. 

f~ Beef~ BcAabef~ BcAabCdf~ BcAabCdDd 

At each step we now give only the partial structure and the contents of T1 and T2. 

u = B c A a b C d D d 

( i) 01 B 

0 
(iila

2
= c 

~ 
(iii) 03 = A 

~ 
8 

(ivl a 
4 

= a 

Cv) 05 b 

T1: B 

T2: 

T1 : B 

T2: -

T1: A 

T2: -

B 

T1: A B 

T2: -

T1 : A B 

T2: -



,(vil u6 c 

~ 8 
(vii) u7 d 

(viii l 
D 
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d 

T1: c A B 

T2: -

T1: B 

T2: -

T1 : 0 B 

T2: -

(C is complete by d and A is 

complete by adding the output of C) 
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T1: -

T2 : f 

(D is complsts and B is complete by output of 

OJ 

In the next example we show what happens with an input combination which is not in a 

preferential order. Let us take the reverse of the combination obtained by derivation 1~ 

namely o = d C b a A 

(i) 01 d 

[iii) 03 b 

~ T1 : -

T2: d 

T1: -

T2: e 

T1: -

T2: b s 



(ivl a 
4 

= a 

(v l A 
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T1: -

T2: e 

T1: -

T2: a b e 

The reader is advised to compare this parsing process with the one used far a 

preferential order on this combination, and to parse other orderings over this combination. 

He will see that the same result is obtained. Some combinations will lead to a very 

clumsy parsing process. The easiest parsing will be the one with a preferential 

precedence order'on.the input combinations. 

PROBLEMS 2. 

[i) Construct a program for algorithm 1.1. in an available programming language and 

test the examples given. 

[ii) Let G = <Voa, 

Vha = fd, e \ , Vp 

Vha, Vp, a 
(A, B, C ~ 

be a closed completion grammar where Voa ={a,b,c~ 
and a 

d ~ A -+ d 

Describe the language generated by this grammar. 

(iii) Let G =( Voa, Vha, Vp, 8 be a closed completion grammar where Voa fa,b,c~ 
Vha ~d. e\. Vp = {A, B, C \ and a 

1. a b e ~ A ~ d 

2. d b c ~ B ~ d 

3. b ~ C 4 e 

Parse the following examples with algorithm 1.1.: [1) A abC b 

(iii) B A a b C b b c 

[ ii l b C b a A 
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Bef'ore we deal with the application of completion grammars two important remarks 

should be made on the nature of the arguments: 

1. Contrary to intuition, we think that the:r.-e are no real or 'occurred' arguments 

appearing in any language input itself. Some examples will make this clear. 

Take the sign '12', it may be thought that '12' is a simple argument for an 

arithmetic procedure or sa, however 

decimal number system: 

understanding 

1x10
1

+2x 

'12' involves a computation 

10° • So, although '12' does baseq on the 

not take any input arguments, it implies a procedure to which it is input. 

As 'another example take the sign 'p' as it is used in the propositional calculus, 

i.e. a propositional variable. 1\Vw again understanding 1 -p 1 involves a procedure: 

checking whether 'p' has already a value and if not store a new variable name of 

yet unknown value. 

Similarly a pronoun involves a procedure computing the reference of the pronoun 

a proper name involves checking where the name appears in the memory (data basel. etc .•• 

So, what one normally thinks to be simple arguments are erguments for a procedure that 

is supposed to be known by the understander. Far ease of discussion we will from now 

on treat these objects as arguments appearing in the combination itself, and call 

them occurred arguments as opposed to hidden arguments. 

2. Although arguments were represented (in a formal treatment) by single letters, 

they have in fact an internal structure, in particular an argument has an 

argument value • an argument type and an argument name , that is a sign by which 

a particular argument is denoted. 

When an argument has not yet a value it is called a dummy argument. 

When en argument has not yet a name, it is called an anonymous argurnent. 

E.g. when talking about the variable I2, we could say that it is: 

(il an integer 

Ciil called I2 

(argument type) 

(argument name) 

(iii) having e.g. the value 20 (argument value) 

We have now another way of making the distinction between hidden and occurred arguments: 

all hidden arguments are anonymous and all occurred arguments are not anonymous. 
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1.3. Apptication to the P.C.!anguage 

We have now reached the point where we can put this formal framework to use. 

We will do this by discussing a language which is certainly known to anyone 

and which has such properties that one can deal with it by means of closed 

completion grammars. The language we have in mind is the simple propositional 

calculus (for short PC-languagel in Polish notation. 

We hope that by giving a fully worked out example the reader will see the 

relevance of our approach and is encouraged to read on. 

(a] Current descriptions of the language. 

A Log~~ would define the SYNTAX of the PC-language as follows. 

Let there be a set of propositional operators: f NOT, AND, OR, IMPLIES, EQUIVAL l and 

a set of propositional variables or elementary propositions {i.e. propositional 

variables having a truth value), then 

1. Every elementary proposition or propositional variable is a propositional 

expression. 

2. Every propositional expression preceeded by NOT is a propositional expression. 

3. Every combination of two propositional expressions by means of one of the other 

propositional operators is a propositional expression. 

4. The PC-language consists solely of propositional expressions. 

Examples: NOT p, AND p q, IMPLIES p q , etc •.• 

A ting~t would define the syntax of the PC-language as follows. Let 

G = ( Vn, Vt, P, EXPR ) be a context-free grammar where Vn ={EXPR, OPER ~, 
Vt ={AND, OR, IMPLIES, NOT, EQUIVAL, p,q,r, ••. -~ and P: 

1. EXPR ~ OPER EXPR EXPR 

2. EXPR ~ NOT EXPR 

3, EXPR -+ p , q 1 r 1 

4. OPER ~ AND, OR, IMPLIES, EQUIVAL 

This way of defining the language has the advantage that a structure can be recognized 

in a propositional expression and this helps when calculating truth values. 

(b) Closed completion grammars for the PC-language 

How should we deal now with the PC-language from a completion grammars point of view. 

First of all, we make a distinction between procedures and arguments. Procedures 

are clearly NOT, AND, OR, IMPLIES, EQUIVAL. We add also the function SET by which 

one can assign a truth value to a propositional variable (e.g.'SET P TBUE'Jand the 

function '?' by which one can ask the truth value of a propositional variable or 

expression (e.g. '? P', '?AND P Q'l • 
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"The grammar is the follow!rig one. Let G = ( Voa~ Vha, Vp,6 ) be a closed 

completion grammar where Voa ={LOG\, Vha =[LOG I Vp = fND, OR, NOT. IMPLIES, 

EQUIVAL, SET , I ~ 
and s 

l. LOG LOG _.. AND _.. LOG 

2. LOG LOG -+ OR """"' LOG 

3. LOG _.. NOT -> LOG 

4. LOG LOG -> IMELIES -+ LOG 

5. LOG LOG -> EQUIVAL _.. LOG 

6. LOG LOG .. SET ... LOG 

7. LOG .. ) .. LOG 

It is easy to see that one can abstract ·patterns and make the grammar simpler-. This 

can be done by using more than one possible instantiation of the procedure name in 

a rule. In this way classes of procedure names can be definied. 

X
1 

= {AND, OR, IMPLIES, EQUIVAL,\ 

X
2 

= ~NOT, ? , SET } 

The patterns: 

l. LOG LOG-> X
1 

-> LOG 

2. LOG -> x
2 

_..LOG 

Warning: The symbols x
1

, x
2 

should not be considered as a sort of nonterminals as 

one, used to the p.s.grammars framework,might be tempted to do. 

Note also that LOG is the argument type , The argument name can be anything, 

e.g. TRUC FALSE, P, Q, R, ••• or even no name (for anonymous arguments). and the 

argument value is either assigned by means of the set-function or fixed as for 

TRUE whic.h is always true, The value is of course either true, false or unknown. 

Some derivations: 

( i l LOG =='> AND LOG LOG ==> AND NOT LOG LOG ~ AND NOT LOG OR LOG LOG 

(iil LOG =9 IM~LIES LOG LOG 

(iii l LOG =9 SET LOG LOG =9 SET LOG NOT LOG 

The relation structure for derivation (1) is: 

LOG LOG 

LOG 



Example 1 o 9 o 

(il SET P TRUE 

(type) LOG 

(name) p 

(value) 

(ii) ? AND OR AND R S S R 

LOG LOG 

-·--
R s 

true true 

LOG (type) 

TRUE lname) 

true (value) 

(wHere R and S are true ) 

LOG 

R 

true 
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7. 4. The bt.tVtpJtet<LUon pJtobtem. 

Recall definition 0.1. where an L.U.system was defined as a quadruple 

S = ( G, IT , P, r ) . In previeus sections we specified G, in particular 

a closed completion grammar.and IT the parser, in particular algorithm 1.1 .• 

In this section we briefly discuss P and r Briefly, because this paper 

concentrates an analysis rather than interpretation. Indeed, interpretation 

should be more sophisticated then we will present it here. 

(a) The set of procedure P. 

A tog-i.cA.a.n would deal with ths SEMANTICS in the following way: 

If p and q are propositional expressions, AND p q is true just in case both 

p.add q are true, otherwise false. 

If p and q are propositional expressions OR p q is true just in case p is true 

or q is true of both~ otherwise it is false. 

If p is a propositional expression, then NOT p is true just in case p is false, 

otherwise it is true. 

If p and q are propositional expressions, then IMPLIES p q is false when p is true 

and q is false, otherwise it is true. 

If p and q are propositional expressions then EQUIVAL p q istrue when p is true 

and q is true, or p is false and q is false, otherwise it is false. 

LinguAh.t-i.C6 semantics is currently still a matter of debate and the procedural 

view which is basic to the approach presented in the following paragraph is nat yet 

accepted by the whole linguistic community. 

Let us give some procedures for the predicates of the propositional calculus. Let 

true be denoted by 0 and false by l. 

(There are other solutions possible) 

(i) AND: if the sum of the values of the input arguments is 0 the value of the output­

argument is 0, else it is 1. 

(ii) OR: if the sum of the input values is smaller or equal to 1, the output value is 

0, else 1. 

(iii) IMPLIES: if the value of the second input argument minus the value of the first 

one is equal to 1, the output is 1, else 0. 

(ivl EQUIVAL: if the input values are equal, the output is 0, else it is l. 

(v) NOT: the output value is 1 minus the input value. 

(vi) SET: store the value of the first input argument in the value place of the second 

argument and set the output equal to this value. 

(vii) ?: print the value of the input argument. 

(b) The interpretation mechanism. 

There are in general two ways of doing semantic interpretation or in other words 

organizing the subroutine calling the procedural definitions of the predicates and 

connecting them to the input arguments according to the relation structure. 
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Definition 1.7.- An interpretation process is said to be ~nhtant if procedures 

are executed as soon as this is possible during the parsing process. 

An interpretation process is said to be delayed if procedur~are executed when 

the complete structure is available~ or in other words after the parsing process. 

The distinction between instant and delayed mode is very important. Nat so much 

far closed completion grammars, but we will see that with open completion 

grammars, to be introduced in next sections, different structures (and thus 

interpretations) are obtained depending on whether the mode is instant or delayed. 

Clearly the difference between instant and delayed interpretation is related to 

the compiler/interpreter distoiriction known from translators of programming languages. 

Definition 1.8. A procedure is said to be ~tant if it must be executed as soon 

as all its arguments are found in the input. 

A procedure is said to be delayed if it is executed after the parsing process 

is completed. 

When interpreting in instant resp. delayed mode~ all procedures must be instant 

resp. delayed. Also it is possible to organize a mixed interpretation process~ 

where instant and delayed procedures occur , 

Let us now give algorithms for interpretations. As the instant mode is the easiest 

one, we deal with it first. 

Algorithm 1.2. r in instant mode. 

As soon as a procedure is complete, i.e. if the parser has discovered all the 

input arguments~ execute it. 

Algorithm 1.3. r in delayed mode. 

We start by the argument left on T2 ~i.e. the initial argument in the derivation, 

then we go to the procedure circle for which this argument was the output. For 

all input arguments of this procedure~ check whether they are hidden or occurred. 

If hidden apply recursively r , else goto the next argument. If all arguments are 

worked out in this way, execute the procedure. 

Example 1 .10. 

' AND NOT P Q ' 

the structure: 

LOG 

p 

true 

(where P is true and Q is false) 

false 
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We start with the uppermost LOG-square, go to the AND-procedure circle and 

check far every argument whether it is hidden or occurred. Th9 first argument 

is hidden,so we start again with this one, go to the NOT-procedure circle 

and check its input arguments. This time the only input argument is an occurred 

argument; hence we execute the function NOT; Now we know the value of the 

first input argument of the AND-procedure and because the second input argument 

is an occurred argument we execute the AND-function. 

For example 1.10. the final result would be false. 

There ~s a lot more to say about techniques for carrying out semantic interpretation 

but this will do for the moment. 

It is a good custom of scientists to do experiments. In this spirit we programmed 

algorithm 1.1. and 1.2. in FORTRAN IV and realised an implementation on the PDP 11/45 

The performance of the system is illustrated by the following output. 

In general for all experiments we use the following conventions for communicating 

with the system. 

When the sign '?' appears, an input expression is being typed. The system will 

first return this input. preceeded by 'input ' and then start processing the expression. 

For ease of reference, the system automatically numbers the input according to their 

occurrence, Systems output is preceeded by 'aut:'. 

Example: 

1 

SET P TRUE 

INPUT 1: SET P TRUE 

1 

1 p 

INPUT 2: 1 P 

OUT: TRUE 

(request for input) 

(input expression of user) 

(system returns the input) 

(no output produced) 

(request for input) 

(input expression of user) 

(system returns the input) 

(result of processing) 

The following additional commands are accepted: +GRAMMAR (returns the grammar), 

+LEXICON (returns the lexicon) +END INPUT (means end of input stream). 

There is a switch to ask for additional parsing information +STRUCTURE is 

for on and +NO STRUCTURE is to put it off. 

Also all conventions for editing via teletype (e.g. RUBOUT) can be used. 
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SET P TRUE 
,l NPLIT , _1:, SET P ,TRUE 
? 

Here we start our. conversation with the 
9Y§tem by the assignment of the value true 
to' the propositional variable 'p'. 

____ , _____ +JiBBt!Ji~Ji ______ ,, __ ,. 
1. 3 10 10 10 
2. 310~010 
3. 3 10 10 10 

By giving in +GRAMMAR we can ask far the 
.grammar (coded of course) 

4, 2 10 10 
5. 3 10 10 10 
6. 2 10 10 _,_, __ ? ___ 2.10 i!J 
8, 3 10 10 10 
9, 3 18 10 11 

? 

+LEXICON 
·- J. __ R~_D __ _ 

2. OR 
3. I 11PLI ES 
4. NOT 
5. EQUn'AL 

- ,,:J, J.. _jl__ 0,, 
2 2 0 0 
3 3 e 0 
4 4 o e 
5 5 0 0 

6. ? 6 6 a o 
--------- _L XRM.L _____ ?.__ ? .. o. _p 

8. SET 8 8 0 0 
9, ( 9 9 0 0 

10. LOG 10 0 10 2 
li,' , TRUE 10 0 1,1 0 
12, FALSE 10 a 12 1 

By glVlng in +LEXICON we can ask for the 
lexicon. Note that the variable • p • Which 
is initially unknown to the system has been 
added, 

u. ) 11 e 13_,.JL ____ _ 
·- ----- -14. - P" -To, -il -:c.r--e--· ------

? 

SET Q FALSE 
INPUT 2: SET Q FALSE 
? 

______________ ,s E T __ f__.!:!Q T_J ~_!,IE ___ ., 
INPUT 3: SET R NOT TRUE 
? 

+LEXICON 
1 AND 
2. OR 
l, .!!ifJJE5 
4, NOT 
5. EQ~I'IAL 

6' ? 

, , __ __ ?. PRO_QF 
B. SET 

~ ~~' - ~ -·-- - -~ >' -_,--~-· -· ,.!.; ·~---- A" 

10, LOG 
,_11 TRUJ, 
12, FALSE 

1_ 
2 

? 
8 

______ L 
10 
Ul 
10 
11 

1 0 
0 0 < 
_3 ,_@ 
4 e 
5 0 
6 0 

0 
0 
E< 

0 
0 
0 

7 - 0 - 0 
8 0 0 
9 _____ 0 ,,, 0 
0 10 2 

- 1~. 
14. 

... _!p_. 

0 11_ ' 0 
0 12 1 
o n o 

p '10 0 14 0 

16. 
? 
? p 

q_ _j,_O _ ,0. ~~- J 
R 10 0 16 1 

INPUT 4: 

By INPUT: 2 and INPUT 3 we introduce new 
variable names and values for them. 

When asked for the lexicon again, one can 
_see that 'q' and 'r 1 have been 'learned' sa 
to say by the system. 

OUT: TRUE Input 4 and 5 illustrate how the truth value 
. can be asked for a simple variable 

? Q 
II~PUT 5: ? Q 
OUT. FALSE 

? AIW P Q 
HIPUT 6:? ANt' P Q 

OUT: FALSE 

From input 6 onwards we give in some more 
complex expressions. 

? 
o RIW P HIH> Q R 
INPUT .. ? ? AND P AND Q R 
OUT: FALSE 

? AND P AND A AND -u 
• AND P RND Q AND Q R 
INPUT 8 • AND P. AND Q AND Q R 
OUT: FALSE 

o OR Q R 
INPUT 9: ·;· OR Q R 
OUT: FALSE 

Here a typing mistake was made and corrected 
by means of the telet'ype conventions. 
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? 
? IMPLIES Q R 

... INPUT 10: i -I/1PLIES Q R 

. - -·..-~"-

JHIT_: TK~L __ 
? 
? IMPLIES p Q 

INPUT 11: ? IMPLIES p Q 

OUT: FALSE 
? 

? Il'!f..!-1 1;:2. _Q L 
INPUT 12: ? IMPLIES Q p 
OUT: TRUE 
? 
• EQUIVAL IMPLIES P P IMPLIES Q Q 
INPUT 13: ? EQUIVAL IMPLIES P P IMPLIES Q Q 
OUT TRU!O 
? 

SET S NOT IMPLIES P Q 
INPUT 14: SET S NOT IMPLIES P Q 
? 
? 5 

.INPUT 15 .. £ ... ~ 
OUT: TRUE 
? 
? IIOT P 
INPUT 16: ? NOT P 
OUT: FALSE 

? 
• AND or.: fMPLIES ErWIVAL P P a R s 
INPUT 17: • AND OR IMPLIES EQUIVAL P P Q R 5 
OUT: FALSE 

+STRUCTURES 
? 
• AND OR AND R S 5 R 
INPUT 18: ,. AND OR AND 
OUT: FALSE 
STRUCTURES 

NODES 
1. 6 6 
2. 1 1 
1. 2 2 
4. 1 1 
5. 10 4 
6. 1B 4 
7. 18 J 
B. 10 3 
9. 10 2 

10. 10 2 
11. 18 1 
12. 10 0 
RELATIONS 

1. 2 0 
2. 3 8 
3. 3 B 
4. 3 [i 

T2 12 

1 
2 
3 
4 
4 

-~-
4 
5 
4 
5 
4 
(1 

12 
11 

9 
? 

0 6 
0 1 
0 " ~; 

a 1 
1 16 
0 17 
1 14 
a 1? 
0 1'" 0 

1 16 
1 16 
1 0 

11 
9 10 
7 8 
5 6 

R 5 5 R 

Now we illustrate the structures switch~ 
+STRUCTURES puts it on, and for all input­
expressions from now on the relation structure 

· (in a coded form) is produced. 
For a graphic representation of this structure 
we refer to example 1.9. 

+IW STRUCTURES By +NO STRUCTURES we put the switch off again. 

p ? 
I l·lf'UT 19. P '' 
OUT: TRUE 

F' AIID Q '" 
IIIPUT 20: P AND Q o 
DUT: FALSE 
? 

P l11PLIE5 Q ·; 
IIIPUT 21: P IMPLIES Q ' 
DUT: FALSE 

P AND P IMPLIES P OR A ? 

From input 19 we start to experiment a little with 
ather orderings aver the input. Recall that the 
input expression is considered as a combination not 
a string. In this spirit also not preferentially 
ordered inputs must be· processed, This is clearly 
the case. as one can see from the examples. 

INPUT 22: P AND P IMPLIES P OR A ? 
OUT. FALSE 

As there are no sophisticated error mechanisms. 
unknown variables will not necessarily block the 
interpretation process. 
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_____ ]_ ___ B____ -------- -·-

HIPUT 2>: ? A 
OUT: _ _I,'_ALUE UNKNO~_H 
? 
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That the system knows very well that A is of un­
known valus is illustrated by input 23. Note that 
A has been introduced in the middle of an expression 
and not elsewhere. 

_______ P __ jlND_ P _ _jJ:JPL_tg_S. __ f_ OR Q ? From input 24 it is clearly to be seen that the mode 
INPUT 24: p ANc' p TMP"i.:iE_S __ p ___ OR-Q·-;, "of intsrpretation is instant, in fact the following 
OUT: TRUE - expression is processed: ( ( ( p and p J implies p J or 
? 

J _fiND f;l_ AND P AND (;! AND P JIIW R ? 
INPUT 25: P AND Q AND P AND Q AND P AND R ? 

___ o_wr : ___ .F:A.b.2_1;.___ __ _____ _ ______ _ 
? 

_ E_ AN_D _Q Q_R P ? 
INPUT 26: P AND Q OR P ? 
DUT: TR~_E 
? 

_____ ~S_lRJLr:;__TURE~------ ----- -----------Another illustration of ths +STRUCTURES iiWitch 
? 
P AND Q DR P ? r r-iP liT -2 7: --P-AN 1)--g--oR P ? 

_ o_~T~ I_R u_~ __ 
STRUCTURES : 

-----~------- .. ~--------- ····-·-- . .---~-~ .. -.. ------·· ..... ~--"-·--·--· 

NODES : 
1. ~~ ___ 2_ 4 0 14 
2. 1 1 1 0 1 

_1_, - 10- 2 _5 1 15 
4. 10 5 4 1 1 

________ iL ---~--2_ __ 2 ____ e ____ 2 __ 
6. 16 5 5 0 14 
7_ 10 8_ 4 a 14 
8. 6 6 ] 0 6 
9._10 0 0115 

RELATIONS : 
-------.. -·- -~- i,;_ ___ --~;; -~ .. ---~!1: __ 1_~ -~~ __ ,_, __ _ 

2. 3 0 7 4 6 
3- _2 __ 0 7 - 7_ 

T2 : 9 

+flO STRUCTURES 
? 
P Q H1F'LI ES ? 
IIJp_UT 28;_ PG!_jMfL,I{oS? 
OUT: FALSE 

-- ...... ?._ __ - . ----
Q F' 111PLIES ? 
INPUT 29: Q P I11J:JJJ;S? 
OUT: TRUE 
? 

P Q R AI-W OR ? 
__ INPUT .1B: P Q R ANC• DR ? 

OUT: TRUE 
? 
'-~·- -·-· ---- , .. 
P P EQUIVAL ? 
INPUT 31: P P EQUIVAL ? 
OUT: TRUE 
? 

p 

Now we give in some expressions in postfix notation. They 
are all processed. Note that postfix is considered as 
the exact reverse of prefix as is illustrated by input 
28 and 29 

.. l.tlP~.L.d>~.- P 
~ 

Input 32 is a combination, nothing is as·ked nothing is 
being returned, the system only compute~ the value of p. 

_ SET SET 
!!<PUT 33: SET 
Uf!_GRAMI1AT I CAL 
? 

? 
+EfW INPUT 

SET 
HI PUT 

The only point were ungrammaticality is .noticed is with 

incomplete procedures. 

q)) 

[ 
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1. 5. AppUeatiovt.6 :to na:twr.al. language. 

Now we show that closed completion grammars can also be used as-a model for (subsets) 

of natural languages. In particular we will investigate nominal phrases from this 

point of view. We do not present a fully worked out discussion here~ only an 

indication of the direction in which more detailed research shou1lproceed. 

The examples will all be taken from Dutch, but an ,'literal' English translation is 

provided. The universe of discourse for the experiments is ths language of simple 

arithmetics. This is so because there are no complicated memory procedures (as 

storing or retrieving information) necessary. As the problem of memory organization 

is another (almost blank) page in the study of natural language behaviour~ this universe 

of discourse is avoiding the problem, such that experimentation remains possible. 

The basic ·hypothesis is of course that all elements in a noun phrase {nouns, determiners, 

adjectives, adverbs) are either procedures or arguments. Let us discuss very briefly 

how this would go. 

(i) Nouns are either procedure names, either ·arguments. 

(a) Arguments are such things as proper names, numbers, names for variables (e.g. the 

word 'number' , 'person' ) , pronouns, etc ••• 

[b) If a noun is a procedure than it takes other arguments as input. What arguments 

are input to the procedure denoted by a given noun depends on the argument 

type (as was the case for artificial languages) but also on additional information 

of a syntactic and morphological nature, i.e. prepositions or case endings. 

These will act upon the type of an argument. 

Convention Whenever mare than one specification concerning the type of the arguments 

that can be input appears in the grammar, we use square brackets and write all 

specifications in it separated by comma's. 

Now we can given an example of a noun being a procedure name{ 

'De deling van 1 door 1' 

['The division of 1 by 1') 

The procedure is here 'deling' [division) it takes two arguments both of a 

number type, however the first argument has the indication with preposition 

'van' [of), and the second with preposition 'door' [by). 

Rules in the grammar would look as follows: 

(NUM, prep:VAN [NUM,prep:DOOR) -->; DELING -';NUM 

[ [ NUM, prep: OF l [ NUM, prep: by l --'> DIVISION --+ NUM 

(ii) Prepositions seem to be procedures that add only a characteristic feature 

to the type of the output but do not change the value. 

e.g.: 'VAN 1' 

[of 1 J 



NUM 
prep: 
van 

(type) 

NUM Ctypsl 

(name) 

{value) 

An important observation is that the proposition of a noun which is itself a procedure 

(rather than an argument as in the previous example) goes over to the output argument 

of that procedure. 

E.g.: 'De deling van het verschil van 4 en 2 door 2' 

(the division of the substraction of 4 and 2 by 2' 

The relation structure: 

NUM 

prep:van 

(of) 

(of) 

4 

4 

(division) 

NUM 

prep:daor 

(substraction) 

NUM 

prep:EN 

(and) 

NUM 

2 

2 

(by) 

NUM (type l 

2 (name) 

z Cvaluel 
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After execution of all functions: 

NUM 

2 

4 

NUM 

prep:VAN 

2 

(of) 

(of) 

NUM 

4 

4 

NUM 

1 

(substraction) 

NUM 

prep:EN 

2 

Clearly the final result is 1. 

(type J 

(value) 

NUM 

prep: ODOR 

2 

(by) 

(type) 

(value) 

NUM (type) 

2 

2 

(name) 

(value) 

(and) 

NUM 

2 

2 

(iii) Plural endings of nouns seem to indicate the size of the output for a given 

procedure. Singular denotes one single element (as was the case in all examples up 

to now) or a set [seen as a whole) whereas plu 1 is an indication that more than 

one element is to be expected in the place of the output argument. 
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In this way singular/plural information acts as a sort of mechanism py which 

stor~ge is provided for one or more elements (cf. dimension statement familiar 

from some programming languages). 

We indicate this by adding plural or singular to the argument type of the 

output argument. 

(iv) Determiners seem to organize 'loops' (in the programming sense) upon 

the execution of the noun phrase, or otherwise a final mechanism of selection 

acting upon the elements in the output argument. 

E.g. 'an,a' : takes one arbitrary number of the set, if the set contains only one 

element than the choice is no more arbitrary. 

'sam~': returns more than one arbitrary element of the set, ~ .. 

E.g; 'Een deler van 16' 

( A divisor of 16) 

'Osler' (divisor) is a function computing all numbers by which another number 

can be divided. The divisors of 16 eg. are 1,2,8,4,16. 

After execution of the procedures for the expression 'Een deler' van 16' we get: 

(a) 

(divisor) 

NUM 

NUM 

NUM 

prep:VAN 

16 

(of) 

NUM 

16 

16 
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(ivl Finally adject':J.v~s ~11cl' adve~bs seem t5 b~ prdc~dures that take'th~ oiJtpdt 

of the noun as- inp·u·t·'aAd'- perfotm'"·a furt'her 'bam6ctatiorl·---·on this. 

E.g. 'De gro6tsts even deler van 16' 

(the greates'i: evi!n divisor· of 16l. 

After exect.:Jtion of the functions the structure looks as follows: 

NUM 

sing 

16 

(greatest) 

NUM 

2,4,8,16 

(even) 

NUM 

16 

(divisor) 

NUM 
prep:VAN 

16 

(of) 

NUM (type) 

16 (name) 

16 lvaluel 

: .l'_i 
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We stress that all our remarks on the nature of the procedures are very tentative. 

It is not a subject of this paper and we only want to show how the underlying· 

framework works. Let Us now construct a full grammar for arithmetic expressions: 

Let G =( Vt:h3, Vha, Vp, ~ ) be a closed completion grammar where Voa = {NUM, Hoeveel, Wat \ 

Vha ={NUM, (NUM,prep:VANJ. (NUM,prep:DOOR), (NUM,prep:ENJ \ 

and Vp ={DE, HET, EEN, SOM, VERSCHIL, PRODUCT, DELING, OELER(S), GRDDTSTE, KLEINSTE, 

EVEN , ONEVEN, ENKELE, VIERKANTSWORTEL, TWEEDEMACHTSWORTEL, ? } 

and 6 contains the following patterns: 

1 • NUM ... x1 -+ NUM 

2. (NUM,prep:VANJ (NUM,prep: EN ) -+ xz _. NUM 

3, (NUM,prep:VAN) (NUM,prep:OOORJ -+ X -+ NUM 3 
4. (NUM,prep:VANJ ... x4 ... NUM 

s. NUM ... VAN ... NUM,prep:VAN 

6, NUM ... EN ... NUM,prep:EN 

7. NUM ... DOOR -> NUM,prep:OOOR 

where 

x
1 

= {oE, HET, EEN, GRODTSTE, KLEINSTE, EVEN, ONEVEN, ENKELE, ?~ 
X

2 
fSDM, VERSCHIL, PRODUCT\ 

x3 = (DE LING t 
x

4 
(DELER(S), VIERKANTSWORTEL, TWEEDEMACHT ~ 

(Note that the grammar is clearly not meant for production. A refinement of t.he 

argument types should be introduced to rule out certain possibilities, For analysis 

however the grammar is all right;) 

An example of a derivation: 

NUM ~ DE NUM ~ .DE GRODTSTE NUM ~ DE GRDDTSTE EVEN NUM 

~ DE GROOTSTE EVEN DELER (NUM,prep:VAN) ~ DE GROOTSTE EVEN DELER VAN NUM 

The corresponding relation structure: 

(the) (greatest J (even) 

(of J 
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The procedures for the predicates are rather obvious. They simply 

correspond to their arithmetic equivalents and we won't discuss 

them in full length. 

We did some _experiments with an L.U.system based on the above mentionned 

grammar~ the arithmetic procedures and the algorithms 1.1. and 1.2 •• 

The procedures are only defined for integers. Real numbers~ if they 

arise during computation are truncated to integ·ers. 

Results of our implementations are illustrated by the following computer 

output. The same conventions hold _as for our experiments with the PC- language 

in prefix notation. We give a 'literal' English translation of the expressions 

after wards. 

11CR>RUN STEEI.S 
? -' 
[>E SOM 
IN P U.T 
OUT: 
? 

'IAN 1 EN 1 ? 
1: DE 5011. VAN 1 EN 1 " 
2 

HET VERSCHIL VAN ~ E~ 4 '' 
INPUT 2: HET VERSCHIL 'IAN 5 EN 4 > 
OUT· 1 
? 

HET PRODUCT 'IAN 9 EN 3 ? 
INPUT J: HET PRODUCT VAN 9 EN 3 ? 
OUT: 2? 
? 

DE DELING VAN 27 DODil J ? 
INPUT 4: DE DEL[NG VAN 27 DOOR 3 • 
QUT: 9 
? 

'''AN H ·,· [:•ELERS 
INPUT 
OUT· 

5: [)ELE,:S I,.'Rfl 16 ? 
i 2 4 8 15 

EVEN [•ELERS VAN 16 ? 

... INPUT 6 EVEN D.~LERS '··'Afl . 
OUT: 2 4 8 16 
? 
ONEVEN DELERS 'IAN l6 • 

16 '::• 

INPUT 7· ONEVEN DELERS IJRN 16 ? 
0 U T: 1 

ONE'.IEN 
INPUT 
OUT· 

C•ELERS VAN 15 ., 
8: ON EVEN C•ELERS 
1 3 5 15 

VA~J 15 ? 

ENKELE ONEVCN DELER~ 'IAN 15 ? 
INPUT 9· ENKELE ONEVEN DELERS 'IAN 15 ' 
OUT: 1 5 

EEN ONEIJEN DELER 'IAN 15 > 
INPUT 10: EEN ONEIJEN vELER 'IAN 15 ? 
0 U T : ,;;. ,, 
r:·E kLEHISTE DNEilEN 6"E L E R VAN 4· :, '? 
INPUT 11: DE !(LEINSTE ONEVEN C•ELER \'AN 
OUT: 1 
., 
C· E GROD1STE 011 E VEri DEl,ER 1/AN 4.5 ? 
UlPUT 12 [' E GPOOTSTE ON EllEN .C•ELEF: \'RN 
OUT: 4:• 
? 
Ul.k:ELE OIIH'i':N ,,ELERS \'AN 45 ? 
INPUT 13: ENKELE ONEIJEN DELERS VAN 45 ° 
OUT: 1 5 15 

45 ·-::· 

45 ? 
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DE VIERKAHTSWORTEL VAN 16 ? 
INPUT 14: DE VIERKANTSWDRTEL VAN 16? -------- --"-- - ----- --- ·--

OUT: 4 

. ---[iCti~E-EciEf1FiCHTSTWRTELVAN r? 
__ _ U l:!_K_l(O W J:LJ:!QB D , IJif.U.I __ f-lO _T __ ~_!;U P U I! __ . 

? 
DE TWEEDEMACHT VAN 4 ? 
iNPUT 15 ,-[..f ff.lE-Ef>Ef1RCHT VFiN 4 -? 
OUT: 16 

-"? 
DE SOM VAN DE KLEINSTE EVEN DELER VAN 16 EN 2 ? 
INPUT 16: DE SOM VAN DE KLEINSTE EVEN DELER VAN 

___ QUT: 4 
? 

16 EN 2 ? 

______ DJ;; .GRO!HSTE L•HH lf_flN_QE VLERKfiNT~·NDRIEL VAN _8~ ? ______ _ 
INPUT 17: DE GROOTSTE DELER VAN DE VIERKANTSWORTEL VAN 81 ? 

- _____ o l.!J ; ___ ;;____ --- -- . -- . - --- -- - . 
? 
DE SDM VAN HET VERSCHIL VAN HET PRODUCT VAN ] EN 4 EN l EN 1 ? 
INPUT 18: C•E SDI1 i·'RN HET VERSCH!L VAN HET PRODUCT. VAN l EN 4 

EN 1 EN 3 ? 
OUT: 12 

·-·------ -- ------- ·-- -----.-- --------------------------- ---
? 
DE V!ERKA-NTSI.ORTEL VAfl DE SOM 'IAN 2 EN 2 ? 
INPUT 19: DE VIERKRNTSWORTEL VAN DE SOM VAN 2 EN 2 ? 
OUT: 2 

_ --~ T F; UCTU8 E_2 _ 

NODES 
1. 1 1 
2 18 7 , 

4 ? 
~- " 
4. 1 ___ L ...... 
5. 7 5 

1 
2 
3 
4 
5 

1 1 
13 1B 

1 4 
1 1 

6. 4 2 6 1 4 
?. 28 6 4 2 33 
B. ~ 0__ 5 4 2 9 
9. 6 4 7 1 6 

" ·--·--·1 0_:.. --~-ll--~-· ,.-i,- 3 14 
11. 41 5 s ~3'-:f:C 
12. 20 4 4 2 6 
13. 20 l 4 2 ]4 
14. 4B 2 4 2 B 
15. 20 1 4 2 0 

_______ tL .... __2_~_, __ _o e 2 21 
1?. 21 1 8 15 21 
RELATIONS - -

-· -···-· _, __ _ 

1. 2 [1 16 15 
0 1~· 14 
0 14 

4. 
5. 
6. 
7 '. 
8. 

2 
13 

_?~-·--Q__,.,!} . . ! ~ 
3 €1 12 8 
2 [\ 8 7 
2 0 11 10 
2 0 16 16 

T2 16 
__ , ..... ..1.. ····- ... _ .... -- .. , ,, --- - -·~. 

+NO STRUCTURES 

+ EfW IflPUT 

11 
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Translation: 

1 • The sum of 1 and 1 ? 

2. The substraction of 5 anol ,4 l 

3. The product of 9 and 3 ? 

4. The division of 27 by 3 ? 

5. Divisors of 16 ? 

6, Even divisors of 16 ? 

7. un•even divisors of 16 ? 

8. Some uneven divisors of 15? 

9. An uneven di~isor of 15 ? 

10. The smallest uneven divisor of 45 ? 

11 . The greatest uneven divisor of 45 ? 

12. Some uneven divisors of 45 ? 

13. The square root of 45 ? 

14. The powersquare root of 4 ? 

15. The second power of 4 ? 

16. The sum of the smallest even divisor of 16 and 2 ? 

17. The greatest even divisor of the square root of 81 ? 

18. The sum of the difference of the product of 3 and 4 and 3 and 3 1 

19. The square root of the sum of 2 and 2 ? 

[+ illustration of the structures switch) 
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1. 6. Some JtemMIM on. the futin.won. be-tween. ci.Med c.omp!etion. g!tamma/l.6 an.d 

pivuu> e ot!tu.c.tuJte gJtamma/l.6 

Intuitively there is a relation between context-free grammars and closed 

completion grammars. Indeed~ if we have a closed completion grammar 

G =(Voa, Vha, Vp, !>) then we can turn it into a cfg. by considering 

all hidden arguments as nanterminals and all procedure names and occurred 

arguments as terminals. 

If we have a rule a
1 

••• an -l> A ~a then the equivalent one in 

a cfg. would be a ~A a 1 ••• an 

And clearly it is not too difficult to prove that the languages generated 

by closed completion grammars are contained in the class of context-free languages. 

However the following distinctions can be recognized: 

(i) In a cfg. framework we deal with strings, not combinationsf 

(ii) The theoretical status of the hidden arguments is distinct from the one of nonterminals 

' . (iii} In a phrase structure we can express a precedence relation 

and a dominance relation. In a 'relation structure' we can express 

a (preferential) precedence relation and a functional relation. 

To conclude the distinction between closed camp grammars and cf.grammars 

lies in the strong generative capacity rather than the weak generative capacity. 

There remain of course a lot of theoretical problems and we hope to investigate 

them in the near future. 



- 36 -

2. OPEN COMPLETION GRAMMARS 

Z. 1 • BM-ic. de.6-<J1.Lt1o n6 

Now we turn to another type of· system generating combinations and assigning 

relation structures to these combinations, namely an open completion grammar. 

Definition 2.1. An ope.n c.omple.ti.ort gJtammaJt is a construct G = ( Voa, Vp,b) 

where Voa is a finite nanempty set of arguments called the set of occurred 

arguments, and Vp is a finite nonempty set of procedure nam~s where Vp n Voa = 0. 

8 is a finite set each element of which is a finite ternary relation included 

* in Voa X Vp X Voa relating arguments to procedures. 

* If (a,A 

If (o,A 

a ) E li where a EVa , A. EVp and a E Vaa then we write o -+ A -+ a , 

* a EVa and o = 

the argument appearing on the right of the 

a
1

, •.• an and 

rule (the output 

A E Vp then 

argument) a
1 

is 

equal to the first argument appearing on the left of the rule. For this 

reason we also write ~ an -+ ~, 

So the difference between closed and open completion grammars is that the output 

argument in the second type of systems has already appeared (or is to appear) 

in the structure, whereas in the first type the output is always an element that 

must be added to the structure. 

Example 2.1. 

Let G = ( Voa, Vp,li 

Vp = {A. 8, C \ and li 

be an open completion grammar and Voe =(a,b,c,d \ 

1. abc ~ A ~a 

2. d c b ~ 8 ~ d 

3. b a -+ C -+ b 

An open completion grammar G describes a language called L(GJ in the following way. 

Let R be the set of arguments that appear as output of a procedure ( R~Voal 

then starting with an arbitrary element of R. put the procedure name of w~ch t~is 

argument is output after this element and add all other input arguments to the combination. 

If there is an argument in the combination that is in R, either the combination is 

considered complete, or the same method is applied. Mare formal: 

Defintion 2.2. Let ~ denote the relation is 'pJce.6e!le.l'l..t1a-Uy dAJte.c.ily deJUve.d 6"-om' 
If there is a combination x a 1 y (x,y possibly empty) where x,y E(Voa Vp" * 
and a1 
( n ;:,. 1 J 

x a
1 

y 

E R and if there is a rule in the grammar 

and A E Vp 

(Note: when n 1, with a rule of the form A 

* Also ? is the reflexive transitive closure of ~ 

a1 . • • 

, then 

a ~ 
n 

we say 

, then 

* 

A 

and ')o will be called 



The 

as 

language generated by 

LlGJ = fx I xE Voa* 

Example 2. 2. 
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an open completion grammar G, called 

and ry * x where y ER ! 
L[GJ is defined 

Let G be the completion grammar of example 2.1. then the following derivations 

are possible: 

(i) a 4 a A b c i4 aAbCac 4aAbCaAbcc 
;L, 3'" (iil d =, d B c b -, d B c b C a 

During the derivation process relation structures are obtained in the folloWing 

way: 

Given an occurred argument as outpUt , draw a square for it, connect it with an 

input AND output relation to the procedure circle and for all input arguments 

draw squares and make a connection to the procedure circle. For the derivation (i) 

in example 2.2. this would result in the following structure: 

Note that from this example it is very clear that relation structures are 

graphs and not 1rees. 

To ease our discussion we introduce the following additional terms: 

Defirtition 2.3. Procedures ef which the output is an hidden argument will be 

called nondepe~ding procedures. Procedures which are not nondepending will be 

called depending. 
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i-h8 procedures far closed completion grammars are clearly all nondepending 

while in open completion grammars all procedures are depending. 

The remarks we made about preferentiality for closed completion grammars 

also hold here. The definition of the assmciated language of an open completion 

grammar is left to the reader. 

Now we turn to the parsing problem for open completion grammars. Again we only 

treat deterministic open completion grammars due to space limitations. 

Algorithm 2.1. Let there be a pds. T1 where procedures are stored, a pds.T2 

where arguments found in the input but not yet connected in the graph are stored 

and a pds T3 for all arguments found in the input and connected in tbe graph. 

A graphic representation is used for the relation structure. 

Let a be a input combination and u
1 

the i-th element in the combination. 

Scan the input from left to right. 

(a) if a. is a procedure 
j. 

(b) if 

1. create a procedure circle in the structure and put the procedure on T1. 

2. check whether there are eny arguments on T2 (or on T3 for the first 

input argument) which can be input to the procedure. If so connect 

with input relations and (for the first argument) also with an output 

relation~ and put the argument on T3. 

If all arguments are found, that is if the procedure is complete~ 

remove the procedure from T1~ and if the output of the procedure 

is not yet connected to another procedure, put it on T2 and execute 

the (b) 2 part of this algorithm. 

is an argument: 

1. Create a point in the structure 

2. Check for all procedures on T1 whether this argument can be input to it. 

If so, connect and put it on T3, else put the argument on T2.If 

the procedure is comp1ete~ do the same as under (a) 2. for complete 

procedures. 

To have a grammatical input expression, T1 should be empty, T2 should contain 

one and only one element (the starting point in the derivation) and the rest should 

be on T3. 



Example 2.3. 

Let us take the grammar G of example 2.1. and parse same combinations of L(GJ. 

derivation 1.: 

a~ aAbc~ aAbCac 

t:r aAbCac 

(i) 01 = a 

8 
(ii) 02 = A 

GJ 8 

~ 
(iii) a 

3 
b 

(iv) c 

T2: a 

T1: A 

T2: a 

T1 : A 

T2: -

T3: a 

(argument on T2» create point in structure ) 

{create procedure circle and put the element on T1 

(output was on T2~ so connect and put on T3) 

T1 : A 

T2: -

T3: b a 

T1: C A 

T2: -

T3: b a 

T1: C A 

T2: -

T3: b a 

(new input element is argument of procedure 

(C as new procedure on T1 and in the 

structure) 

b is the output/input of C 



C is complete therefore: 

(vi) a = c 
6 

derivation 2: 

d ~dBcb4dBcbCa 
a d B c b C a 

( i) a = d 
1 

EJ T2: d 

( iil a = B 
2 

~ 
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T1: A 

T2: -

T3: a b a 

T1: -

T2: a 

T3: c a b 

T1: B 

T2: -
T3: d 

T1: C A 

T2: -

T3: a b a (a is input for Cl 

(c is input for A, hence A is complete) 
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(iii) a3 c 

( iv) a 
4 

b 

(vi) a 
6 

= a 

T1: B 

TZ: -

T3: c d 

T1: -

T2: d 

T3: b c 

T1: C 

TZ: d 

T3: b c 

T1: -

T2: d 

T3: a b c 

The same remarks on preferentiality of order should be made here as for algorithm 1 .1 •• 

Also non preferentially ordered input combinations are to be accepted by the system. 

As an illustration of this we parse the reverse of derivation 1: recall that 

a a A b C a c now a = c a C b A 

~ TZ: c 

( ii) a 
2 

= a 

GG TZ: a c 



(iii) u , c 
3 

GJ ~ 
(ivl u4 = b 

~ 

(vJ u 5 A 

(vi) a = a 
6 

PROBLEMS 3 
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T1: c 
T2: c 

T3: a 

',·'· 

T1: 

T2: 

T3: 

T1: A 

T2: -

-
b c 

a 

T3: c b a 

T1: -

T2: a 

T3: c b a 

til Construct a program for algorithm 2.1. in an available programming language 

and test the examples given. 

(ii) Let G ~<voa, Vp. 5 be an open completion grammar where Voa =[a,b,c,d\ , 

Vp = [A, B, C \ and 6 

1. a b ~ A ~a 

2. b c d ~a ~ b 

3, d ~ c ... d 

Parse the following examples with algorithm 2.1' 

(i) a A b B c d C (iil c d c 8 b A a (iii) A a 
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Now we discuss the way in which instant or delayed interpretation 

influences the parsing process. 

Recall from section 1. 4. where we discussed the interpretation problem 

for closed completion grammars that it is possible to define (at least) two 

interpretation modes: instant or delayed. Suppose now that all procedures in 

an open completion grammar are considered as instant, then we obtain a situation 

where it is not possible anymore to use arguments that have been input to some 

procedure again in another procedure, because if an argument is used, it should 

be removed from T2 or T3. 

Consider e.g. the expression '1 + 1 x 2'. If we leave out all priority rules 

among the arithmetic procedures, rules wh.ich do nat count in natural language 

anyway, then we can have two ways of interpreting '1 + 1 x 2'.: 

(a) ( 1 + 1 J x 2 and (b) 1 + ( 1 x 2 J 

The first interpretation is obtained by an instant interpretation mechanism: 

step 1 : 

step 2: 

NUM 

2 

2 

NUM 

1 

2 

1 

NUM 

1 

1 

NUM 

1 

1 

after execution: 

of + 

and after execution 

2 

2 

1 

2 

1 

1 



- 44 -

The second interpretation is obtained by a delayed interpretation mechanism. 

The second argument remains on T3 and is thus open fur further connections. 

Step:1: 

NUM 

1 

1 

step 2: 

After execution of x 

NUM NUM -1 ro-...,r,..,-....~ 1 r---"' 

After execution of + 

NUM 

1 

3 

final 11' 
result 

2 

NUM 

2 

2 

NUM 

2 

2 

This is a very nice illustration of haw the way in Which interpretation is organized 

does influeoce the result of interpretation. Instead of saying this sxpression is 

ambiguous, so the grammar must assign more than one structure to it, we say there 

are different ways of organizing the understanding process and according to the process, 

we obtain different structures, with the same rule of the grammar. 
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An interesting point is also that we can define a more economical parsing 

algorithm if we consider all procedures in an open completion grammar as instant. 

The algorithm is the following one: 

Algorithm 2.2. 

Let there be a pds. T1 where all procedures are stored and a pds. T2 for the arguments. 

We use again a graphic representation for the(partial) relation structure. 

Let a be a given input combination and a i the i-th element in the combination 

Scan the input from left to right. 

A. If o
1 

is a procedure: 

1. Create a procedure circle in the structure and put the procedure on T1 

2. a. Check whether there are any arguments on T2 which can be input to the 

procedure according to the grammar. if so. connect and take that particular 

argument from the pds. T2. 

b. if all arguments are found, that is if the procedure is complete, remove 

the procedures from T1, and execute the 8.2. part of this algorithm with as 

argument the output argument of the procedure. 

B. if o1 is an argument: 

1. Create an argument square in the structure 

2. Check for all procedures on T1 whether this argument can be input to it. 

If so connect, else put it on T2. If the procedure is complete, do the same as 

was specified under A.2.b part of this algorithm. 

Just as for closed completion grammars we will now apply the concept of an open 

completion grammar to the PC-language, this time however preferentially in 

infix-notation. 

2.3. ApptiQation ~o ~he PC-language 

In section 1.3. we showed that the PC-language in prefix notation could be treated 

with closed completion grammars. What we do now is simply change all procedures from 

nondepending into depending procedures and what we obtain is an open completion 

grammar generating expressions in infix notation. 

Let G = ( Voa, Vp,6 ) 

and Vp = {NOT, AND, OR, 

patterns: 

1 • 

2. 

LOG LOG .,.. X -+ 
1 

LOG 

be an open completion grammar where Voa {LOG\ 

IMPLIES, EQUIVAL, SET, ? 1 and r contains the foUowing 

LOG 
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where X1 = [AND, DR, IMPLIES, EQUIVAL, SET l 
X2 = {NOT, ? \ 

Note that again LOG is the argument type. The argument~ can be anything, e.g. 

TRUE, FALSE, P, Q, and the argument value is assigned by the set-function or fixed 

Same derivations 

( i) LOG =% LOG AND LOG =? LOG 

( ii) LOG =) LOG ? 

AND LOG DR LOG 

Depending on whether We consider the procedures as instant or delayed we obtain 

the following structures for derivation (i): 

li) delayed: 

(iil instant: 

(Note that NOT comes preferentially after the argument it is negating and not 

in front of it. NOT seems therefore a procedure which is conside~ as nondepending 

even if we have an j_nfix notation) 

There are a number of features of an instant interpretation process that makes 

it more interesting than a delayed one. One of them is that there is less storage 

required, because once a piece is interpreted, it does not need to be remembered anymore. 

Also intuitively humans tend to interpret as they go along and not when a whale 

expression has been produced. 

There is how~ver one deficiency~ namely that nesting to the right is not possible 

There is a remedy for this namely the punctuation acting either as a means to turn 

an instant procedure into a delayed one and vice-versa, either as a means to prevent 

an argument from being connected to a procedure. 

This last solution seems to be present in the case of the PC-language with the use 

of brackets. Take e.g. P AND [ Q OR Pl • The first bracket prevents Q from being 

connected to the AND-procedure. As a result Q remains on T2 and is ready to act as 

input for the next procedure. The last bracket is breaking up this prevention and 

the result of Q OR P (stored in the Q-placel is input to the AND-procedure. 
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Let us now do some experiments again. We programmed algorithm 2.2. in 

FORTRAN IV and together with the interpretation mechanisms used earlier, 

the 9pen completion grammar for infix notation and the same procedures 

as for prefix notation we have a comPlete L.U. system. 

Results of our implementation onthe POP 11/45 are illustrated by:.the 

following output. The same conventions for communicating with the 

system hold as for previous experiments. 

? 
P SET TRUE 
INPUT 1: P SET TRUE 
? ------ .. ---· --··------
Q SET FALSE 

_____ IJIP!JJ ... 2: Q !:;J.L FAL_!'&···--·--·---······· 
? 
p ? 
INPUT 3: P? 
OUT: TRUE 
? 

_______ E A)"!~~-{;11. 

INPUT 4: P AND Q? 

OUT: FALSE 

P AfW Q_()R P ~· 
INPUT 5: P AND Q OR P ? 

____ ou.r TX\i.L ..... _ 
") 

P AND ( Q OR P ) ? 
INPUT 6: P AND .; Q .OR P. l ? 
OUT: TRUE 
? 
R .. gT N_Q_T _FR.b-2_E 
INPUT 7: R SET NOT FALSE 
? 
R ? 

INPUT 8: R? 
OUT: TRUE 

-··-~-? -·-·· ----· 
( P II1PL!ES 
INPUT 9: ( 
OUT: FALSE 

~.. --

Q l EQUIVAL C Q IM\MPLIES P l ? 
P IMPLIES Q l EQUIVAL C Q IMPLIES P l ? 

( ( P AND Q l OR ( Q AND P l l IMPLIES P ? 
INPUT 10: C ( P AND Q l OR ( Q AND P l l IMPLIES P ? 
OUT: TRUE 
? 
+STRUCTURES 
? 
P EQUIVAL P 

. ItiPLIT :1,1..:. P EOUI~'BL E 
STRUCTURES 

NODES 
1 10 B 
2. 5 5 
3. 10 2 

RELATIONS 
1. , 0 

T2 1 

0 [1 14 
1 0 5 
5 B 14 

1 1 3 

+IW STRUCTURES 
? 
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1. 3 10 10 10 
2. 3 10 10 10 
3:. 3 10 10 10 
4. 2 10 10 
5. 3" 1,0 .10. 10 
6. 2 10 10 , 
'. 2 10 10 
8. 3 10 10 10 
9. 3 10 1[1 11 

0 

+LE.XICOH __ 
1. AN[' 1 1 1 0 
0 <. OR 2 2 1 0 
3. IMPLIES :; 3 1 0 
4. flO T 4 4 1 0 
5. EQUI'.IAL 5 5 1 0 
6. ? 6 6 1 " 7 PROOF { 7 1 0 
8. SET E: 8 1 0 
9. ( 9 9 0 0 

10. LOG 10 0 10 2 
11 TRUE 10 0 11 [1 

12. FHLSE ..1~ 0 .1_2 1 
13:. > 11 0 13 0 
14. p 1B 0 14 0 
15. Q 10 0 15 1 
16, R 10 0 16 0 
? 

5 SET f!OT Q 
. 

Ill PUT 1"'' ". 5 SET NOT Q 

? 

Q ? 

INPUT 13: Q 0 

OUT: FALSE 
? 

Q NOT ? 
INPUT 14: Q NOT ? 

OUT: TRUE 
? 

AflD P Q ' 
From input 15 we start to experiment 

INPUT 15: AND P Q • 
OUT: FALSE 
? 

with non preferential orders, in particular 

prefix and postfix. 

I!1PLIE5 P [.1 '? 

INPUT 16· IMPLIES P Q ' 
OUT: FALSE 

li'IF'LIES Q P ., 
INPUT 1?: IMPLIES Q P ? 
OUT: TRUE 

P Q HIPLI ES .,. 
INPUT 18: P Q IMPLIES ' 
OUT: FALSE 

Q P HIPLIE5 ? 
INPUT 19: Q P IMPLIES • 
OUT: TRUE 

AN~ OR AND P Q R 5 o 
INPUT 20· AND OR AND P Q R 5 ? 

OUT: HUE 

P AND Q OR R AND S ? 
INPUT 21· P .AND Q OP P AND 5 • 
OUT: TRUE 

5 R P Q AND OR AND ' 
INPUT 22: 5 R P Q AND OR AND' 
OUT: FALSE 

5 R Q P RND DR AND • 
INPUT 2~: 5 ~: Q F' AI~[) OF: A~W ? 
OUT: TRUE 

SET HW: TRUE 
UlF'UT 24: SET I 1-JF' I TRUE 

Note that input 20 is equal to input 21 and 

23, only the preferential order is different. 



? 
SET INP2 _FALSE __ 
INPUT 25: SET INP2 FALSE 
? 
IflP1\! -A-ND IHPT\2 ? 
INPUT 26: IHP! AfW INP2_ ? -··----·ouT':- i=A'LSf- -- ~----·- .. - ·-·--
? 

+LEXICON 
1 AND 1 1 1 0 
2. DR 2 2 1 0 
3. !nPL_gs_ 3 

------- <1:- NOT ·-4-3 
4 

1 B 
1 0 

5. EQUIVAL 5 5 1 0 
b. ? 6 6 1 0 
7. PROOF 7 7 1 0 
8. SET 8 8 1 0 
9. . 9_ 

-- --·····-iii. LOG 0 
9 

10 
0 0 

10 2 
11. TRUE 0 10 11 0 
12. FALSE 0 10 12 1 
13. l B 11 13 B 
14. P 10 B 0 14 
15. Q ML_ a -~5__ 1 
16. R 10 0 16 0 
17. s 10 0 17 0 
18. INP' 10 0 18 0 
19. !NP2 10 B 19 1 

+ EJH'- HlP LJT 

11CR>PIP 
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INPJ en inp2 are two new variable names,. 

this just to illustrate that anything new 

-· is conside(9 as a propositional variable_ 

--- ----· --
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2. 4. AppUea.Uon ;to MtU!l.at la.V19uage 

In section 1.5, we showed that nominal groups can be treated with closed 

completion grammars. In this section we will extend our discussion to 

other parts of speech which appear outside the nominal phrases. We 

stress that we do not present a fully worked out theory but only indicate 

a direction of research. The universe df discourse is again qimple arithmetics, 

and the language is Dutch. 

(i) ~ are the only possible way of expressing arguments. For this purpose 

we will use them but leave in this section all nouns out which are procedures. 

(iil Prepositions. We have seen in section 1.5. some prepositions which were only 

used as indicators of a certain relationship. Now we discuss some prepositions which 

are more than this. E.g. PLUS (plus J MIN (minus J, MAAL (times, there is a dHference 

here between English and Outch~'maal'is a preposition but 'times' isn't) 

E.g.: 2 PLUS 2 

2 plus 2) 

the relation structure: 

NUM 

2 

2 

after execution: 

NUM 

2 

4 

2 

NUM 

2 

2 

To illustrate the ambiguity and distinction between delayed and instant procedures 

consider the following example: 

4 MAAL 2 PLUS 1 

(4 times 2 plus 1) 

NUM 

NUM 

2 

2 



(iil delayed: 

NUM 

4 

4 
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NUM 

(iii) Verbs: Although the matter needs further investigation verbs seem to be depending 

procedures. The first input (also output) argument is what is traditionally called the 

subject of the sentence. This is in accordance with the fact that the subject of 

a sentence is standing preferentially in front of the sentence and also that subject 

and main verb 3gree in number. 

When verbs are used in the imperative (and interrogative) they are prefer~ntially 

in front position. This seems to be because then the output is not present in the 

input combination but is created as an hidden argument. In other words when verbs are 

used in imperative or interrogative, they shift from depending,into nondepending 

procedures 

{iv) participles are used in the same way as verbs. Consider e.g. 

VERMENIGVULDIGD (multiplied], VERMEERDERD (augmented], VERMINDERD (decreased], 

GEDEELD (divided],etc,, 

E.g.: HDEVEEL IS 6 GEDEELD DOOR 2 

HOWMUCH IS 6 DIVIDED BY 2 

structure: 

N~M 

HOEVEEL 

? 

(how much) (is 

NUM 

6 

6 

after execution of the functions: 

NUM 

HOEVEEL 

3 

NUM 

6 

3 

(divided] 

(Note that 'door' is a nondspending procedure) 

NUM 

prep:DOOR 

2 

(by) 

NUM 

2 

2 

(v) in an equivalent way adjectives when appearing after a noun (instead of in front 

of it) are used, 

E.g; EEN GETAL KLEINER DAN 7 

(a number smaller than 7 

NUM NUM 

prep:DAM 

NUM 

7 

7 
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There is a lot more to say (e.g. about relative clauses and conjunction) 

but ~is will do as an illustration. 

The reader may have felt the need for a system in which both depending 

and nandepending procedures are appearing. We w~ll introduce such a system 

called a complex completion grammar in the next section. Experiments 

an.natural language processing for the parts of speech that were discussed 

in this section will be postponed till then. 



3. COMPLEX COMPLETION GRAMMARS 

Now we define a 'mixed' type of grammar, which accepts the union of the 

language accepted by open and closed completion grammars. 

Definition 3 •. 1. A eomp.tex eomp-tetiol't gJu:tmmM is a quintuple G 

where 

( Voa, Vha, Vd, Vn,5 ) 

Voa is a finite nonempty set of arguments called the set of occurred arguments 

Vha is a finite nonempty set of arguments called the set of hidden arguments 

Voa u Vha = Va , is the set of arguments 

Vd is a finite set of procedure names called the set of depending procedures 

Vn is a finite set of procedure names called the set of nondepending procedures. 

Vd UVn = Vp, is the set of procedures and Vp n Va = ~ 

* 5 c= Va x Vp x Va is a complex function relating arguments to procedure names. 

If (a,A, a )E ~ then we write 

a E Va • 

where a E Vat A E Vp and 

Definition 3,2. Let ~ denote the relation 'i& p~en~ent£a.e.ey ~ect.ey d~ved n~om' 

-If there is a combination xu y (x,y possibly empty) where x,y E(Va u Vp)~ 
a 

n 
u E Vha and if there is a rule in the grammar of the form a 1 
(n ~ 1 J where a

1 
, an E Va and A E Vn, then we say that 

x u y ~ x A a 1 .•• any 

- Dr if there is combination x u y (x,y, possibly empty) where x,yE(Va UVpJ*", 

u E Voa and if there is a rule in the grammar ->A u 

a 

and A E Vd, then we say that xu y =+xu A a
1 

,,, any 

~ is the reflexive transitive closure of 9 and we call ~ 'M plteo~ent£a.e.ey 
d~ved nMm', 

The language generated by a complex completion grammar G. denoted as L(G) is 

defined as 

L(G) = f X I X * (Voa u Vp) * and y ~ x where y E Va} 

Example 3.1. Let G 

where Vaa = {a.b,c,dJ 

( Voa, Vha, Vd, Vn 5 ) be a complex 

Vha = fa J, Vd =(A,B) Vn =~C,O) 

1. d b-> A -> d 

2. c 

3. bd-+0-+a 

4. c -+ B -+ c 

completion grammar 

and 5 



Some derivations: 

( i} a4 4 
Cca""? C c B a ~ C c B 0 b d 

(iil d 4 d A b 

RElation structures are obtained in the same way as for open and closed completion 

grammars. I.e. when there is a nondepending procedure, connect the output with 

only one line, whereas if the procedure is depending, connect the o-utput with an 

input and output relation. 

The relation structure for derivation (i) is: 

3.2. The p~~ng p~oblem uo~ complex camplet£an g~m~ 

The algorithm that solves the problem is basically a composition of algorithm 1.1 

and algorithm 2.2 •• 

Algorithm 3.1. 

Let there be a pds. T1 for the ~rocedures and a pds. T2 for the arguments. 

Let ~be a given input combination and ~. the i-th element in the combination. 
l 

Scan the input from left to right. 

A, If 0'"; is a nondepending procedure. 
l 

1. create a procedure circle in the structure and put the- procedure on T1. 

2. (a) Check whether there are any arguments an T2 which can be input to the 

procedure according to the grammar, if so connect and take that particular 

argument from the pds. T2. 

(b) If all arguments are found, that is if the procedure is complete, remove 

the procedures from T1, put the output slement as argument square in the 

structure and connect it with an output relation to the procedure, then execute 

the C.2. part of this algorithm. 



- 55 -

B. If a 
i 

is a depending procedure: 

1. create a procedure circle in the structure and put the procedure on T1. 

2. (a) Check whether there are any arguments on T2 which can be input to the 

procedure according to the grammar~ if so, connect and take that particular 

argument from the pds.T2. Note that we connect with input and output relations 

if it is the first input argument. 

(b) If all arguments are found, that is if the procedure is complete, remove 

the procedure from T1 and execute the C.2. part of this algorithm with as 

argument the output argument of the procedure. 

c. If ~~ is an argument: 

1. Create an argument square in the structure 

2. Check for all procedures on T1 whether this argument can be inpt.1t to it, 

If so connect, else put it an T2. If the procedure is complete and depending, 

execute the 8.2. part of this algorithm. If the procedure is complete and 

nondepending, execute the A.2.b, part of this algorithm. 

The reader is advised to work out some examples himself. He will see that the parsing 

process is identical for depending procedures with the one introduced by algorithm 2.2. 

and for nondepending with the one introduced by algorithm 1.1 •• 

We promised in section 2.4. to do experiments with a grammar containing depending 

as well as nondepending procedures in a natural language environment. 

The grammar is the following one: 

Let G =(Voa, Vha, Vd, _ Vn. 5 ) be a complex completion grammar and 

0 

Voa { HOEVEEL, WAT ~ and all natural numbers 

Vha (NUM,(Num,prsp:VANI (Num, prep:METI, (NUM, prep:DOOR), (Num,PREP:enl} 

Vd {rs, VERMENIGVULDIGO, GEDEELD, VERMINDERO, VERMEEROERO, PLUS, MAAL, MIN l 
Vn {oE, HET, EEN; VAN, DOOR, EN, SOM, VERSCHIL, PRODUCT, OELING, OELER, DELERS, 

GROOTSTE, KLEINSTE, EVEN, ONEVEN, ENKELE, VIERKAN$WORTEL, TWEEDEMACHT, MET J 

contains the following patterns: 

1 • NUM -> x1 -> NUM 

2. NUM -> VAN -> (NUM, prep/VAN) 

3. NUM -> EN -> (NUM,prsp:ENI 

4. NUM -> DOOR -> (NUM,prep:DDOR) 

5. NUM -> MET -> (NUM, prep: METl 

6. (NUM,prep:VANI (MUM,prep:ENJ -> xz -> NUM 

7. (NUM.prep:VAN7 (NUM,prsp:DDDR)-> DELING -> NUM 

8, NUM NUM -> X4 -> NUM 

8. NUM (NUM, prep: MET)-> x5 -> NUM 

1 D. NUM [NUM, prep: DOOR)-> GEDEELD -> NUM 
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We made an implementation with this grammar, the interpretation 

mechanism and alQorithm 1.2 •• The procedures should be rather obvious 

·here • Note that e.g. VERMINOERD (diminished), VERSCHIL (substraction), 

MIN (minus), make all use of the same procedurel definition. 

Our usual conventions hold for comm~nicating with the system. 

An ENglish translation will be given afterwards. 

? 

HOEYEEL IS 1 PLUS 1 7 
_!fjPUT___L_HQ~gL_ IL.t EL~!S. 1 __ ?_ 

OUT: 2 

HOEYEEL IS 3 MIN 2 
INPUT 2: HDEYEEL 
OUT: 1 - -

-------H-oEv£El.. Ts--:l -Mffi'iC 
INPUT 3: HOEYEEL 
OUT: 6 
? 

? 

IS 

2 ? 
IS 

3 11I N 2 

3 11AAL 2 

HOEYEEL IS 6 GEDEELD DOO~ 3 ~ 

7 

7 

INPUT 4: HCIEYEEL IS 6.JlEDEELL:_DOOF: 3 ? -------- --- ou·r-- --2 --- - -- --

HOEYEEL IS 7 VERMINDERD MET l > 
UNKNOWN NOR[•, INP~T NOT ACCEPTED 
? 

____ H_DJ;'i~E~ __ Is ;'_v~,;;11IND~RC•_ 11p 3 L. __ 
INPUT 5: HOEVEEL IS 7 VERMINDERD MET 3 ' 
0 U T: 4 

WAT IS DE SUM _YAN 4 _EN 5 GEDEELD DOOR l • 
INPUT 6: NAT IS DE SOM VAN 4 EN 5 GEDEELD DOOR l ? 

HOEYEEL IS 7 GEDEELD DOOR DE SDM VAN 4 EN ! ? 
INPUT 7 HOEVEEL IS ? GEDEELD DOOR DE SOM VAN 4 EN 3 ? 
0 U T: 1 

HOEVEEL IS DE VIERKANTSWORTEL VAN 16 MARL 4 ? 
IIH'Li"T "8:---HbEVE-EL -IS C•( 'lfERKANTSIWRTEL VAN 16 t1AAC4 ?. 
OUT. 16 
0 

VAl-l 1 EN 1 [>E ~.OM IS HOEVEEL ? 
INPUT 9: VAN 1 EN 1 DE SOM IS HOEVEEL o Note the non prefe rential input 
OUT. 2 .. , 
7 MARL ; GEPEELD DOOR ? MIN 1 PLUS 7 IS HOEVEEL ' 
INPUT 10: 7 MARL 7 GEDEELD DOOR 7 MIN 1 PLUS 7 IS HO£VEEL ? 

OUT: U 
.. ., 

DE GROOTSTE DNEVEN DELER VAN DE VIERKANTSWORTEL VAN 81 PLUS 1 ° 
INPUT 11: DE GROOTSTE ONEVEN DELER VAN DE V!ERKANTSWDRTEL VA 

81 PLUS 1 "' 
OUT: it~ 

10 J1RAL 10. --:· 
INPUT 12: 10 

ii:) t·1ARL 10 --:. 

INput 12 is Hot accepted because the character '0' 

was given instead of the number '0'. 

INPUT 13: 10 MARL 10 ? 
OUT: 100 
? 
100 GEDEELD DOOR DE TNEEDEMACHT VAN 10 ? 
INPUT 14: 100 GEDEELD DOOR DE TWEEDEMACHT VAN 10 ? 
DU T: 1 

DE KLEINSTE ONEVEN DELER VAN 100 VERMENGl\~iGVULDIGD MET 15 ? 
!flP.JT 15: [:oE KLE!t15TE DIIEVEN DELEF: 'iAN __ 100 VEF:/1~1-HGVLILC•!Gc• M 
T 15 " 
ri!IT · 
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HOEVEEL IS 17 GEDEELD DOOR 17 VE!l11ENIGVULDIGD MET 2 GEDEELD 

-------I NP U r16-~---H-OEVEEL ls17GEDEETD'DiioRiTVER!1i:NTGVULDI ri"D -MET 
GEDg_ELD _DOOR 2 _? 

OUT: 1 
~TRUO~BE~ 

_____________ NDJ'.E.B:~------------- ---- ......... 
1. 20 0 0 2 22 
2_. _ 2_4 B 1 16 2 4_ 
s. 20 2 5 2 3.3 
4. 26 10 2 6 26 
5. 5 3 3 - ( 5 
6 20 5 4 3 34 

-~· ~---·--- -- --··-;:,-... ---42 ____ 4 ___ 5---·3.--3:"4--

8. 2_5 __ 11 4 5 25 
9. 29 9 5 1 29 

10. _?Q 9 4 4 35 
11. 43 B 5 4 37 

------------ .U __ _?Ji_1JL _f ____ 6_?.6_ 
13. 5 ::.t 7 1 5 
14. 20 13 4 5 36 
is ---4i 12- 5 5 35 
_16. _g_:t, 1 __ B_t~ 21 
RELATIONS 

____________ __L _____ ] ___ ~ --~ ___ 3 _____ --- -----------
2 3 0 1 1 7 
_3. _? 0 7 6 
4. 3 e 1 1 11 
5 , _2 0 11 10 
6. 3 a 1 1 15 

. ----- __ .L-- _____;; __ a __ 15 __ .J.± 
8. 2 0 1 1 

T2 __ 1 
? 
+NO 5 TRUCTURES 
' 
DE VIERKRNTSNORTEL VAN DE SOM VAN 4 EN 4 EN 4 ? 
INPUT 17: DE VIERKRNTSNORTEL VAN DE SOM VAN 4 EN 4 EN 4 7 
D.U.T _: __ 4 __ __ 
UNGRAMMATICAL INPUT 
? __ _ 
DE VIERKANTSWORTEL IS ? 

________ Jl!f:JJ.L.1B_;_ _ _[>_f.:_..'11..ERKill!T5flORU.L. I~-_] 

UNGRAMMATICAL INPUT 
' . _,. -·· . - -
I 5 I~ AT DE EEN 

_ _UIPUT__19: 1_5 I·IAT DE EEN 
UNGRAMMATICAL INPUT 

-·-·--.----·-··? ·--------·---·----- -. ·-
VAN 16 DE VIERKRNTSNORTEL GEDEELD DOOR 4 o 

DOOR 2 ? 

INPUT_2B: VAN 16 DE VIERKANTSWDRTEL GEDEELD DOOR 4 o 
ouT : 1 From input 20 WS ___ start -f0.8Xpsrim8il-tsyst-9~~-tic~lly 

' +STRUCTURES 
with non prefsrentiaE~' orderings. They a.i-9 all being 

--~-.:...-._ 
.. processed as one can sse. 

1,/Rfl 16 [>E 
INPUT _21: 

VIERKANTSWORTEL DOOR 4 GtD~tLD ? 
1,/RN 16 DE 'iii;RKRfiTSNORTEL C•OOR 4 GEDEELC• ? 

OUT: 1 
~TRLICTPRES 

"" ~-- ·- N.DDf.:L.,. •-- -oc -··~-~-"·--

1. 4 
2. 2[1 
:s. 40 
4. .1 
-5 18 

(, 20 
8 5 

2 1 
1 4_ 
5 4 
1 - 2 
7 3 
4 ,_ .. 4 

8 4 
3 4 

1 
2 
2 
1 

iS 
1 
1 
1 

9. 42 11 5 3: 
ill 20 0 B } 
11. 26 10 5 6 
1 __ 2. " .2A 1 -~- J,_:j 
RELRTIO~l5 

1. ,2 e 3 2 
2 
~-
4 
5. --
6. 

2 
2 
2 

_} 
2 

£1 ?· 6' 
B 3: 3 
0 { { 

j) . 9 ~0 
0 10 10 

4 
D 

1 
1 

iS 
4 

3 :~ 
5 
5 

34 
26 
21 

9 

-~ 
I 



- - ,._, ___ " 

--·-·---- .. 

-

-- ~-- --·· - 58 -
DOOR 4 GEl)EELD DO\E -u 
DOOR 4 GEDEELD_DE VE\IERKANTSWORTEL VAN 16 ? 
INPUT 21: DOOR 4 GEDEELD DE VIERKANTSWORTEL VAN 16 ? 
OUT: 1 
STRUCTURES : 

NODES 
1. 5 l 1 t 6 
0 
"· 20 1 4 2 33 
3. 42 4 5 2 1 
4. 26 1~ 2 6 26 

~- - _1_ .:I. _): 1. .. l 
6. 18 ? 4 F 18 
?. 4 2 5 1 4 
8. 20 ? 4 3 34 
9. 40 6 4 3· 5 

10. 2B 5 4 3 34 
20 a 

-·- ~-----

.. _J1". 2C--i - .. ~ .. J g_§_ . . .. ·-~""~ ·~·"'' ··-- ··~-~-

12. 6 15 .21 
RELATIONS 

1. 2 0 3 2 
2. 3 e 11 11 3 
3:. 2 e 11 10 

__ 4 .. -- _? 0 _10 9 .--- ........ ____ 
5. 2 0 9 8 
6. 2 6 11 11 

T2 11 
? 

DOOR 4 DE VlERKANTSNORTEL VA~ 16 GEDEELD ? 

__ IJif.liT .. !t<! .. DDDR 4 l':E. \1 IE_Rt;BNT~HORJE.L _II~~ 1..9. GEDEELD.? 
our: 1 
5TRUCTLI.H5 

HOC>ES 
1. 5 3 1 1 5 

~----
2 .. - .Vt J. .. 4 2. 3:} __ . 
3. 42 11 5 3 1 
4. 1 J .. 2 1 1 
5. 18 ? 3 p 18 
6. 4 2 4 1 4 
? 2£t 6 4 3 34 
8. ··-· 11)._ . ?. 4 _3 3 .. 4. ·----- .. , __ 
9. 29 4 4 3 5 

10. 20 a a -. 34 .::. 
11. 26 10 5 6 2£, 

12 21 1 6 15 21 
RELATIONS 

1 _£ ___ 0 .. J__ .? .. 
0 2 0 10 9 <. 

]. 2 a 9 8 
4. 2 0 8 ? 
5. 3 0 3 1(1 3 
6. 2 0 10 10 

. L2 1_0 . " ----
? 
~OOR 4 VAN _16 DE VIERKANTSWORTEL GEDEELD ? 

INPUT 25: DOOR 4 VAN 16 DE VIERKRNTSWORTEL GEDEELD ? 
0 U T: 1 
SH:UCTUF:ES 

NOC•ES 
L 5 :, L 1 5 
2. 2@ 1 4 2 33 
3. 4.2 11 5 ,S 1 
4 4 2 2 1 4 
5 ~B _4 4 .. ~ 14 
6. 4ll 8 4 3 4 
? 1 1 3 1 1 
8. 18 7 4 u 1E: 
9. 2ll ' 4 1 5 

1!:.1. 2 [1 [1 [1 - 34 :._; 

i·i 26 10 5 6 26 
1 :~. 21 1 6 15 21 
RELRTIO~JS 

J.. 
,, 
" B .;.> 2 

2 2 0 6 5 
:;, 2 [1 J. 0 9 
4 2 B 6 6 

... , - ... 
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5. 3 0 3 10 3 
6. 2 0 10 1_0 

T2 10 
? 
GEDEELD L'0-0R·4-·IIf1H- -16 DE VJERKANTSMORTEL-?- ------

··-. ___ JJ!.~ I,!_Lg_L .. M DE Eb.D .. .!i.P.o.L'L .'!..~1-t .. 1§.J!.~ __ y I ~_R.'5~JUS..~9B.Tg __ , ________ _ 
OUT: 1 
STR~P.URES 

~OQE5 __ : 
1. 26 10 1 6 26 
2 53 2._)~~-5. -------- •-'•- --~·~···2·0-----~::' 4 2 33 

4, ____ 42 .. 1 5 2 4 
5. 4 2 3 1 4 
6. 20 5 4 3 34 
? . 40 9 4 .. 3 1 

- _____ jl_. 1 1 4 1 1 
9. '18---,;- -5 "i:'i 18---

10. 20 8 4 3 34 
11. 20 0 3 3 26 
12. 21 1 6 15 21 
IHLATIONS. ,-

1. 3 0 11 11 4 

----~---

~-- ---.----2.·-·-··-2- · o-·---4--~ .. 3--------- --~-~- · ·-- · -- .. --------... ---o----- · ---- .. --~--- ---·- ·- ···--- ---·--·- ··· 

3. 2 0 7 6 
4. 2 0 11 10 
5. 2 B 7 7 
6. 2 B 11 11 

_ --'----. .±J..L'!ll!U:t ____ ----------· __ _ 
1. DE 1 1 0 1 
2 .. HEL_ 2 1 0 __ 1 
3. EEN :l 1 0 2 

. _4. VAN .. _ 4 _ 2 _0 _1 
5. DOOR 5 3 B 1 
6. EN 6 4 0 1 
7. 5011 7 5 0 3 

.. ___________ L_I/ERS.Ptl 1. .. 8 __ ::L 0 __ 4 
9. PRODUCT 9 5 0 5 

________ iBc __ DELtN.!L ... 10. 6._0 .o 
11. DELER 11 7 0 7 

--~i~~"'•----!!~~~~~frTH--1 -~ ~ ·- - --- -----· --------- ·· ----- ------
1_L ~L_EINSTE 14 :1,_ 0 9 
15. EVEfl 15 1 0 10 
1§. OJIEVEfl 16 1 0 11 
17. ENKELE 17 1 0 12 

-------- 18. VIERKRNT 18 X 0. 1J 
i"Tf' -THE·E-DE11 A 19' 7 0 14 
20. ~WM 2E1 0 20 1 
21. ? 21 1 1 15 
22. HQEVEEL 20 0 22 i 
23. WAT 2B B 23 1 

------ --~-4_, __ !.L ______ ;~ ~ 1 1§ ------·-· ---------·------------ ____ ·-----------------
25. VERMENIG 25 11 1 5 
26. GEDEELD 26 10 1 6 
27. VERMINDE 2? 11 1 4 
28. I'Efi1EER.C• 28 11 . l 3 
29. 11ET 29 9 B 1 
30 PLUS Jll 8 J, .. _L_. _ . --- ---~- ·::1~-i-ii"N----- ----31--8' 1 4 

32. MRAL 32 8 1 5 
? 

?. 
B. 
9. 

41) 
20 20 
20 

10. 20 •}2 
11. 3 20 2B 43 
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Translation: 

1 • How much is 1 plus 1 ? 

2. How much is 3 minus 2 ? 

3. How much is 6 divided by 3 ? 

4. How much is 7 diminished by 3 

5. How much is 7 diminished by 3 1 

6. What is the sum of 4 and 5 divided by 3 ? 

7. How much is 7 divided by the sum of 4 and 3 ? 

8. How much is the square root of 16 times 4 ? 

9. Of 1 and 1 the sum is how much ? 

1 o. 7 times 7 divided by 7 minus 1 plus 7 is how much ? 

11. The greatest uneven divisor of the square root of 81 plus 1 ? 

12. 10 times 10 ? 

13. 10 times 10 ? 

14. 10111 divided by the square root of 10 ? 

15. The smallest uneven divisor of 10111 multiplied by 15 ? 

16. HOw much is 17 divided by 17 multiplied by 2 divided by 2 ? 

(with structures switch) 

17. The square root of the sum of 4 and 4 and 4 1 

18. The square root is ? 

19. Is what the an 

20. Of 16 the square root divided by 4 ? 

21. Of 16 the square root by 4 divided ? 

22. Of 16 the square root divided by 4 ? 

23. By 4 divided the square roibt of 16 ? 

24. By 4 the square root of 16 divided ? 

25. By 4 of 16 the square root divided ? 

26. Divided by 4 of 16 the square root ? 



4. PERSPECTIVES AND CONCLUSIONS 

4. 1. PeMpec.tivM 

Although some insights may have been achieved, a lot of problems remain. In 

particular how world knowledge should be represented and incorporated in the process 

of parsing. 

The following points should be investigatsd further: 

(i) Refinement of the types within an argument. The type information that forms 

the basis for a connection in the structure during parsing was here presented as 

being a simple and straightforward matter. This is clearly not the case, also the-re 

some preferentiality is involved, as was recognized and worked out by WilRs (1975), 

(iil Lsxical ambiguity. The definition of nondeterministic parsing algorithms 

should be undertaken for the three types of systems. Clearly nondeterminism (as 

defined in definition 1.') is equal to a certain typs of lexical ambiguity, 

(iii) Refinement of the interpretation mechanism. When an understander meets· the 

expression 'Give ·me the names of some human beings', he cannot start to enumerate 

all beings, then compute the subset of human bsings and finally return a subsst of 

this, simply because the set -Of beings is an infinite set. What we need therefore 

is a sort of intertwined interpretation mechanism , where each procedure is not 

executed seperatiy. 

In particular it should be partially executed till information can be passed 

to the procedure from which the output of the current procedure is depending. 

Then this procedure is partially executed and so on. Semantic interpretation in 

this way runs up and down a structure, preventing excessive compute. tion. 

(iv) Procedural definition of predicates. A lot of work remains in discovering 

what procsdures are used for the different predicatss. The problem is a difficult 

one b~cause it hangs together with the way in which the memory for data base) 

is organized. 

We refer in this context to recsnt work of Hewitt (1973,1975), Winograd (1975) and 

others. 

(v) Intermediate representations . Another way of solving the problem of 

excessive computation is by introducing intermediate representations for sets. 

It may be thought that the procedures can only be direct mappings, i.e. functions 

themselves, however it is perfectly possible to let the procedures be such things 

as 'set~builders'. E.g. 'Some numbers smaller than 6'. 'Number' can be considerd 

as a procedure_ having as output {xI Number(x) \ 'smaller' takes this set and 

turns it into a new form: { x I· NUM(.x) and x .( 6\ ,etc, .. 

Ws will deal with these mattsrs in forthcoming publications. 
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To conclude we state some of the insights we hope to have made clear. 

1. The understanding mechanism is basically a set of processing systems that 

bring about understanding by the manipulation of information structures. One 

of them is a parser~ that is a system extracting structures according to a 

given grammar for an arbitrary input. Another is an interpreter, a system 

carrying out the interpretation of the meaning elements in the structure obtained 

by the parser. So the parser and interpreter communicate via a structure 

(called ths relation structure in this paper). 

Contrary to structural (and in particular Chomskyanl linguists we do not 

think that structures (structural descriptions on ths level of syntax and 

unordered (or ordered) lists of semantic markers on the level of seman~ics) 

are a final and sufficient explanation for understandiqg. 

Instead of studying structures, we should study procedures. Structures are 

only a by-product of ths functioning of ths proceosing procsQurss. 

2. One of the main novelties introduced is the attitude towards order. Order 

is hers not simply a feature of ths structure of a language, but is something 

that can bs understood from ths way in which the parsing proceeds. In other 

words, order is not an end in itself, but motivated by the understanding process. 

It is no coincidence that ths subject of ths sentence is stand~ng preferentially 

in front of the verb, that the adjectives and adverbs stand in front of the noun, 

that prepositions come before every other word in the noun phrase ,etc •. 

This can all bs explained from ths role they play ln ths parsing process. 

A very strong result is also ths flexibility of ths parsing process, something 

completej·y lacking from phrase structure parsing. 

3. Another interesting point is that semantic interpretation is not taking 

place w n syntactic processing is finished for the whole sentence. We showed that 

there ars other ways of doing this and also that ths interpretation itself is 

depending on the way in which the process of interpreting is conceived. 

4. Other ways of extracting semantic structures without doing first phrase 

structure parsing are Riesbeck's parser (Riesbeck,l974} producing Schank's 

conceptual dependency graphs and Wilks' analyzer (Wilks,l975l • Our approach 

differs from those mentionn~d above, especially the first one, in that we 

tried to dsfins underlying systems, instead of just designing a program doing 

the job. 

The need for relationa-lly directed descriptions of language is something also felt 

mars and more felt in structural linguistics (cf. Johnson,l974). 
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There remains a lot to be discovered and investigated. We personally feel that the 

systems described have a great potentiality in them. 

We hope that completion grammars will turn out to be an interesting tool enlarging 

our capacity to deal with language. 
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