UNIVERSITEIT ANTWERPEN

UNIVERSITAIRE INSTELLING ANTWERPEN

DEPARTEMENT GERMAANSE FILOLOGIE

ASPECTS OF A MODULAR THEORY OF LANGUAGE

voL 11.

Froefschrift ter verkrijging van de graad van Doctor
in de Letteren en Wijsbegeerte aan de Universitaire

Instelling Antwerpen te verdedigen door luc STEELS

Promotor:

. B dt-C ti
H. Brandt-Lorstius Wilrijk,1977

§ 2. THE PROCESS THEORY -

In this chapten we present a theory about Language processes
which {4 based on the wodular grammarn theony discussed 4in
previous chapien.

In a §inst section we present a parsing system for natural
Language. After an introduction fo the parsing problem and

an intuitive gueruiew of the model we degdine in full detall

| the nepresentation construets, the sont of Lingu,{'_‘»sﬂc !teaéorbéﬁg
and the control siructure of the system. Aften that we

discuss an example and shontly indicate how structunes can

be extracted from the resubt of the parsing process.

In a second bection we present very briegly some ideas
fon a natunal Language producing sysiem which consults the Aame
Linguistic infonmation as L8 used by Lhe patsing sysiem.

§ 2. THE FROCESS THEORY

2.1. The parsing process

2.1.0. Introduction to the parser

2.1,1., Particles

2.1.2. The parsing predicates and their combination
2.1.3. The creation of new particles

2.1.4. The general control structure

2.1.5. Example

2.1.6. The computation of the resulting structures

2.2. The production process

2.2.0. Introduction
2.2.1. The tasks
2.2.2. The process
2.2.3. Example

introduction

2.1. THE PARSING PROCESS

2.1.0. Introduction

In this section we present an exact model for the analysis of
natural language based on the linguistic principles discussed
in previous chapter. In this introductory part we define the

parsing problem itself and present an overview of our system.

Normally the parsing problem for natural language is defined as
the problem of how to find for a given natural 1anguage sentence

the structures upon which an interpretation can take place.

However recently it has become more and more clear'that this

goal is not reachable simply because the input Sentence i£5elf

does not contain enough information for an effective interpfetation
to take place . Based on the principle that the more intelligent
the receiver the less explicit information you need to transmit,
the information in a natural language sentence is restricted

to the minimum.

S0 we restate the problem as follows: A parsing system extracts -
from the natural language sentence as much as possible information.
which is relevant for the interpretation process as can be

done on the basis of a grammar.

The parsing ﬁroblem consists then in the construction of a parsing'

system,

If we stick to our terminology of language phenomena and
language factors, we can define the main problem in the

design of a parsing system as follows. How can one observe the
presence of -a certain language factor. In the past two basic
methods have been introduced and we want to add a third method
here. '

The first method is the inductive method (called bottom up
parsing in the computational linguistics jargon). It proceeds
‘as follows: You start from cbserving certain phenomena amd by
gradual abstraction over the phenomena you try to relate a

certain phenomenon to a certailn factor.

= 2.1, -

introduction

A typical notion in this context is that of a surface structure
(first level of abstraction) and one deeper structure and

maybe even later still a more semantic structure, etc; .

The second method is the deductive method(called topdown
parsing in the computational linguistics jargon). It proceeds
Vas follows: You start from certain grammatical expectations
and you gradually traﬁslate these expectatiodns up to a point
where you are able to conmpare thém with the langﬁage input.
Notice the same ideas about small steps {(but now in

a reverse direction) leading from 'deep' structures to

surface structures. .

The third method, and the one that will be followed here,

is what we will call the method of falsification . Iﬁ proceeds

as follows: the input elements themselves define a set

of hypotheses about the factors being signalled. The system
knows the relation between a factor and a pheﬁomenon. Thus
it can compute the implicatiohs of a given factor for the
language situation. If these impliciations are not pfesent,
the hypothesis is falsified, else it is acéepted, at least

for the time being.

So, in thé first methods you consider a certain phenomenon
over a given input element and ask the question what pattern
of my grammar applies. Suppose you have found the pattern then
you ask what - pattérn applies next, etc.

In the falsification method a given input element tells right.
from the start what things it may be used for. Then you go
to the grammar and ask suppose I use that input element for

X, what'iﬁplicatidns does this have as regards the language
phenomena over the input elements. Then you go back to the

input situation and check whether it is as predicted. -

In general the falsification method assumes an active
'-grammar consultant that computes implicitions whereas the
other methods assume an active representation that changes

from surface to deep in small steps.

- 2.2. =

introductian

From this option follows the way in which the next
main problem is approached: How are you going to bring
the variety of knowledge sources relevant for parsing

in motion.

In the recent history of parsing systems the discussion
has been centered around the dichotomy between syntax
vs. semantics directed parsers. Let us introduce these
two modes of thinking briefly before we present our

own position.

The first attempts (around 1960C) to analyse natural language
mainly from the point of view of automatic translation were -
mostly directed towards morphological processing and the
construction of large dictionaries (see Vauquols, 1976, for

an overview) .

The second school of thinking {(around 1965) was strongly syntax
based. The problem of analysis was split up in two subproblems
(a) the discovery of preliminary structures representing the
syntactic properties of the input, and (b) the discovery

of the actual semantic structures.

In the syntax-directed parsers designed during this period,

the preliminarv structures repréesent the syntactic aspects

of the sentence (in particular functional relations albeit thét
functional relations are sometimes indirectly represented in
terms of constituent structure trees }. To construct these
preliminary Structures a grammar in the usual sense is consulted
as source of knowledge. The semantic structures are obtained by
still quite complicated mappings starting from the preliminary

structitre.

A typical well known example of such a parsing system is

the Woods' transition network parser (Woods, et.al.,1972). In

this system recursive transition networks augmented with tree
trangforming actions and register manipulations are used to

obtain the preliminary structures. To compute the semantic
structures semantic rules are applied. These rules have two

parts : a left part with 'templates consisting of a(syntactic)

tree fragment plus additional semantic concidtions '({ibid. 2. 18)
and a right part with 'forms or schemata' upon which the evaluation

can take place.

- 2.3, -

introduction

The mapping of rules proceeds by matching a syntactic structure
with the left part of a rule, and if successful the result is
the right part.

Another example is Petrick's tranformational recognition procedure
which uses a reverse transformational grammar to obtain the
pteliminary structures and a mapping based on patterns Eq'compute.
the semantic structures stated in some predicaté leogic ianguage
(Petrick, 1973). |

It may be of interest to point out the parallellism with the

so called standard theory of transformational grammars as
presented in Aspects (Chomsky,1965). The preliminary'structures
correspond to the deep structures in this theory and the
semantic structures which in . a Katz-Fodor conception often
associated with this standard theory, consists of featufe_
sequences, are cbtained by some system of projection rules
(Katz,1973). '

The third school of thought (around 1970) which is said to

i

perform semantics-directed parsing does not use the intérmediary

step of having preliminary structures in which {unctional,re;ations3
or category information plays a role. Here one starts -immmediately
"on the level of cbnstructiﬁg structures which are to. be used.

in the interpretation. A typical well.known example here is

Wilks' analyser(Wilks,1975)or Riesbeck's parser (Riesbeck,1976) .
Wilks uses templates and other forms of semantic knowledge '
_to discover the semantic structures directly .on the basis’

bf the input. The parallel to the generative semantics viéwpbint

should be obvious here.-

_In the light of our own parser it seems that the syntax/semantics
directed dichotomy can be resolved into an option for ‘
all available knowledge directed parsing . It is only'because

an hierarchical dimension was introduced in the parsing system
that the gquestion arises. We will see that this hierarchical

thinking need not be the only way. In particular we will show

introduction

the various knowledge sources can act in parallel and can

be brought together by a supefvising control structure.

We stress that these two developments, i.e. the falsification.
method and the parallel application of knowledge is an
immediate result of the linguistic theory presented in previous
chapter, mere in particular of the modular property of

this theory and of the fact that the grammatical rules

define a relation between a factor and a language phenomenon.

The intuitive model: the particle theory

Let us now create a picture of the language process as we
see i1t happening. {(Theoretically of course. No c¢laim is made about
the psychological reality of thé whole thing, although we hope
psychologists may find inspiration in the model.) The description
here will seem to be rather intuitive. But our aim at_the moment
is to evoke understanding of the general spirit and underlying
ideas. The exact account up to the level of computer programs
simulating the language process, as we will depict it here,

will follow later.

Language can best be seen as a form of energy exchange between
two information processing systems. What interests us is how the
exchange takes place. Cbviously there is a system which emits’

the energy and a system which accepts the energy. First we discuss

the accepting process, normally called language understanding.
'Language understanding 1s the evocation of a series of éctions

caused by the incoming energy of a language sentence. Imagine
a sort of work space, which we will call the state space:

state space

- 2.5. -

introducition

Each time an element of a language sentence comes in, it

provides the energy to create one or more particles:

state space
O P

INPUT 1

time: t1

The particles are numbered for ease of reference. The time
dimension 1s very important. Indeed, at the next moment of time,

a new pulse of energy comes in (but the old particles
remain in the state space of course):

O
10 72
O
3
0. state space
0O 5
v G

INPUT 2
time: t2

Now comes the second sort of action : the combination of two.
particles to form'a new one. This combination i1s caused by the
activation of a number of forces which are resident in the

state spéce. The word force is important here. Think about physical

forces as magnetism or gravity. Although certain conditions should

- 2.6. -

Anthoduction

be met with by the particles for a force to become active, the
force should be seen as a glcbal phenomenon, present in the
complete space. '

state space

time £2"

There are some general conditions for the combination of two particles,
such as (i} particles created due to the same input pulse are never
combin ed (ii) a particle that was combined earlier to a
certain particle c¢an later not be combined again to this particle,
(iii) it is allowed however to combine the same particle with more
than one other particle.

Another interesting thing is of course the investigation of the forces
tHemselves. We will see that there are two types of forces: (i) Forces
which incorporate aspects of the system of conventions that the language
users agreed upon [in such a case an alternative word for force is
knowledge source‘ and (ii)_forces which incorporate results of previous .
actions by the system, 'e.g. the status of the state space as

a whole is (paradoxicaily ty a fofcé in the state space. '

Note that the newly_forméd particles may still combine later with
other particles which float arond in the state space. As a whole
you get a regular pulse of incoming energy creating particles, and
of subsequent combination processes.

//for-ces |
60 /

state gpace

forces

INPUT 3
time: 3
1+4+48 ‘(/1/////////’-
O1 40 £
647 (:) .
245 .‘_-——-""'-_-_—--—-_/
O Q2
C)E state space
9 10
O O
O11 \
INPUT 4
time: t4

Now comes the second part of the story. Imagine

a second work space which we will call the cognitive space on
top of the state space.

intrhoduction

cegnitive

space

state space

inputpulse

The particles travelling through the state space are
now to be seen as input energy for action in the cognitive
space:

coghitive space

N _

inputpulse for ' -~

cognitive space

state space

INPUT for

state space.

- 2,9, -

Lathoduction

Actions in the cognitive space can take the form of changing
the memory structures, causing sequences of commands for
physical action, causing the evocation of thought processes,etc.
The particles enter a new sphere s0 to say, they become

forces themselves.

The first type of actions (creation of particles and their

combination) are called analysis actions. The second type

{(where particles themselves become forces) the interpretation

actions. It is fruitless to assume that the two types of actions
occur after each other in time, rather we say that the two

rhases occur in parallel, even more, although the second operates
on output of the first, it turns out that the interpretation is

(paradoxically)one of the forces in the analysis phaée itself.

When reading this short description of the language process,
.the analogies with chains of chemical reactions or with interactions
of physical forces will readily come into the reader's mind.

We do not discourage these analogies.

too mechanistic conception of the language processing systems'
and the lanquage process itself. Instead one should see it as

a "living" phenomenon, in the biological sense. Typical are
the goal directedness, the interaction with the environment
(made up by other information processing systems), the constant
evolution known as linguistic change, the maintenance of a
steady state, the high interaction of the subsystems, the
interconnectivity of everything, etc.. See for a general
discussion of this Steels(1976,b)

A great number of guestions are raised by the above description
of the -language process. The gquestions that will concern us
most are:

l.what is the nature of the particlesl

2. what forces are operating 1

3. what are the mechanics of each force!

These questions will be our main concern in the next paragraphs.

- 2.10. -

introduction

First we will discuss the interior details Qf the particles
themselves (2.1.1.).then - we will formalize the sort of
reasoning that is embodied in the forces and how the results
of reasoning interact. (2.1.2.).

The next topic is the construction of new particles: the
merging process (2.1.3.). Then we discuss the general control
‘structure of the system (2.1.4.) and give a detailed example
of a complete process for one sentence (2.1.5.). We close this
section by showing how structures can be extracted from the
particles (2.1.6.)}.

Numerous examples of parsing processes will be given in next

chapter when we present the experimental results.

- 2,11, -

particles

2.1.1, Particles

We said already that a particle is a linguistic object that
contains sequences of primitive information items in a
structured way. The following principles will be used

for the design of these information sequences:

(i) Only the information necessary to run the process
is included. This implies that information which is available
at other places (e.g. the dictionary) is considered to be

superfluous in the particle.

(i1i) We try to preserve ambiguity as much as poésible,
that means until it can be resolved. In practice this leads
to the following options:

-a=~ An initial particle should be maae for every
possible function and for every predicate/viewpoint, i.e.
for every sequence in the lexicon .

-b- Ambiguity as regards syntactic features and
semantic featureg is preserved due to our feature complex
calculué.

-c- Ambiguity as regards states in transition networks
(both syntactic and semantic)is preserved. ‘

-d- Only if due to a certain merging (on the basis of
an object relation) more than one case comes out, it proves to
be necessary to construct more than one resulting particle.

In all other cases the combination of two particles yields
only one new particle. This is a very strong result.

-e- Lexical ambiguiy which has no influence ‘on the
parsing process is preserved, even up to the level of semantic
structuring . In other words some sorts of ambiquity cannct

be resolved on the basis of the grammar alone.

(iii) It should be possible to compute the functional,
case and semantic structures, as defined earlier, immediately
on the basis of the particles. In other words no other sort

of processing is allowed as interface for the semantic component.

- 2,12, -

particles

We now define the particles in full detall. A particle
contains mainly 'configurations' linked with each other.

So we first define the notion of configuration.

Definition

A configuration is an n+2 tuple:

(al,... ,an+2? ny 0

such that

a, 1ls a word

1
a, is an information seguence

a

Biqar mre oy

042 for i » 0, n 2} i other configurations

Definition

An information sequence i for adjuhcts and functionwords is a 6-tunle:
i = {i1,i2,i3,i4,15,i67

such that

i1 is the hypothesis of the word under consideration; we
number hypotheses according to the moment of input: INP1,INP2Z,...

i2 is the function name of the word for that hypothesis

i3 the state in syntactic network
according to cur principle of the préservation of ambiguity we
allow there to be a set of states;

i4 the state in the semantic network, also here we will
allow there to be a set of states;

i5 the internal syntactic feature complex {the extension)

i6 the qual/mod/undet characteristic

An information seguence i for objects consists of a 7-tugle

i :<§1,12,13,i4,is,16,17>
such that
ir,i2,13,14,i5 are as for adjuncts
i6 is the extension of the semantic features associated
with the viewpoint of the word for the predicate in the lexicon

sequence that immmediately caused this information sequence
i7 the case.

- 2.13. -

particles

An information sequence is initially constructed on the
basis of the grammar but may be changed during the parsing
process. According to our first principle, we need

a special reason to incorporate an item. Let us therefore
now give arguments for incorporating the above information

pieces and no other ones in an information seqguence.

(i) The hypothesis is necessary because one word may have
different hypotheses.

(ii) The function is there because we want it to be possible

to extract a functional structure directly from a configuration.
{iii) The state of the function in its syntactic network is
incorporated because it can be changed during parsing.

(1v) The state in the case network is only relevant if

there are objects, but if so, it is obviously necessary

because the state in the case network changes for every

. object that comes in.

For adjuncts

{(v) The qual/med/undet characteristic relevant for the
semantic feature matching e.g. is incorporated because it
is worked cut (sometimes) by the parsing process which
characteristic holds.

(vi) The internal feature complex is incoporateéd because
it may be changed by a syntactic feature match or by
features being added to it due to the send-thwough rule.
Consiétency must be kept, i.e., if a match was successful
for a particular subset, then later on the same subset

must be used.

For cobjects:

(v) For the samé reason the syntactic feature complex of
objects is incorporated.

{vi) And for the same reason the semantic feature_Complex
is necessary. If an object fills a slot inh one frame

on the basis of a particular subset, then if a test is made
whether it fits in another frame this can only be based

on the same feature set.

(vii) The case itself is a necessary element for objects
(except for the subject of the sentence) because it is
computed during parsing time and the same initial hypothesis

may later lead to different cases.

particles

Besides a configuration a particle contains the following:
(i) The range of the configuration, i.e. from which word
to which word the configuration goes,
(ii) whether the particle is open for further combination
processes or not (if not we add the label LOCKED to a configuration),
(iii) the state in the syntactic network of the topword
in the configuration when the reduction relation is proceeding
from left to right.

In the discussion and examples (i) and (ii) will often be left out.

Example
1. ((N1) LETTER (INP4 NCM.OBJ NIL NIL ((SING OBJ) (SING SUBJ 3PS})
state word hypo function s§ﬁte state
thesis } in syntactic festures -
({THING)) NIL) } synt. sem.
semantic case net net
features

(configuration for cbject with state in synt netw added on top)

2, (WRITES (INP2 VERB NIL {(Ww/1 FIN) ((PRESENT)) QUAL))
word t;yPQ function St?te state in synt. gual/mod/undet
esis in \ .
characteristic
synt. . sem. features

network
netw.

(configuration for adjunct)-

3. ((N5) GIRLS (INP5 NOM.OBJ NIL NIL ({(BY PREP DEF TWO PLURAL))

((PERSON)) NIL)
(BEAUTIFUL (INP4 ATT.ADJ NIL NIL NIL UNDET))
(TWO (INP3 NUM1 NIL NIT. NIL NIL))
(THE (INP2 DETERM NIL NIL NIL NIL }}) o

{configuration with three depending configurations})

For the following discussion we will use schematic representations

of configurations in the form of tree structures:

- 2.15, -

particles

Convention
If c =<§1, 8y a3, ey an+£> is a configuration with
A7 +-s 4 Bp.9 other configurations then we draw a tree:

3 Tt qn+2

We can now define the particles themselves:
Definition

A particle is a quadruple {al,a2,a3,ad)with

al the range {i.e. from where to where in the input sequence
the particle contailns words)
a2 LOCKED or NIL (keywords indicating whether the particle is
no longer or still subject to combination processes
a3 a state in a network or a set of states associated with
the word in the topconfiguration of a4

a4 a configuration.
Convention

As was mentioned already the range and the LOCKED/NIL

will normally be omitted in the discussion.

- 2.16, -

parsing predicates

2,1.2, The parsing predicates and their combination

Now comes the second step in the exposition: an investigation
of what sort of reasoning can be used to decide whether

two particles should merge or not. It is obvious that the
more precise this decision process, the more efficient the

parser.

It turns out that there are two main sorts of reasonirig about
the information in the particles, the first one is based on
linguistic knowledge about the systematic aspects of the
source language. The second one is concerned with the general

principles of parsing that seem tc govern the whole process.

Because there are many different knowledge sources available
to support linguistic reasoning about language, we decided
that the main prcblem, i.e. whether two particles should merge
or not, can best be split up in a number of subprocblems:
should the particles merge on the basis of knowledge source

x (say word order), should the particles merge on the basis

of knowledge source y (say concord), etc. Once this step

is8 taken one needs a formal model to combine the cutcomes of
the different consultations. We will therefore develop first
of all a formal medel for the combination of the results of
linguistic reasoning performed by means of the parsing predicates
which will be discussed in the following sections.

2.1.2.1. The combination of the parsing predicates’

As theoretical model for the interaction of the knowledge sources
we adopt a mcdel from autcmata theory that was never before
presented as a model for language parsing but rather as a model
for doing computational geometry or solving the problem of
perceiving objects and pictures ! We are thinking about
perceptrons (see Minsky and Papert,1969).

- 2.17. -

parsing predicates

(1) A set of predicates which are computable independent
of each other and which all deal with a particular aspect of
reality, and

(2) a decision function that brings the results of the various
predicates together and thus computes the value of the predicate
as a whole.

You may imagine a perceptron to be a sort of voting system where
each subpredicate is a voter. The decision function is then used
to compare the results of all voters and to make the final
decision. Formally, it is not excluded that the decision of ocne
voter is considered more important than that of another one,

we say that the first voter has more weight than the other.
Another aspect is the treshhold which is a way to incorporate

the idea that a minimum of voters must agree before the whole

decision becomes positive:

VOTER 1
VOTER 2

global

decision

RESULT

Minsky and Papert define perceptrons using the notion of a
treshhold and weight as follows:

- 2.18, -

parsing predicates

Definition

"Let © = NS T ¢'n be a family of predicates,.

We will say that ¢ is linear with respect to @ if there exists
a number] (the treshhold) and a set of numbers

a(plr °‘¢20 ----0‘(‘;)].l | {the weights}
such that

v(X) =1 iff oy, p1(X) + ... *oay $n(X) >/ 8 " (ibid,10)

(Notice that the code for true is 1 and false 0).

Definition

"A perceptron is a device capable of computing all predicates
which are linear in some given set P of partial predicates " (ibid,1l1)

Now we apply this concept to thé parsing process.

The main predicate for which we want a decision true or false

is this : Is it necessary to merge two particles 7

To decide on this we distinguish a number of subpredicates which
we will call the PARSING PREDICATES where each subpredicate
embodies a particular force. Take e.g. the predicate

which applies the syntactic features match rule. This predicate
checks then for a word in each particle whether there is

concord between the two. If so, the subpredicate is true,

else it is false. Similarly for all other phenomena.

It 1s important to note that each subpredicate is computed
independentﬂof the other ones.

We think that this perceptron conception of the parsing process
solves the following problems:

- 2.19. -

parsing predicates

(i} Each moment the system wants to merge two particles, all
available knowledge sources can be asked to vote for or against
the merging. In this way we can obtain a complete interaction
of all knowledge sources on the decision and this prevents
superfluous combination processes right from the start.

Also we can organize the application of all knowledge sources
in parallel, because each of them works independently of the
others. This is certainly a fascinating idea and obviously

leads to very powerful parsers.

(ii} The perceptron conception solves another great problem
on which parsers currently break down, namely the problem

of unreliability.

First of all there is unreliability of a knowledge source.

Take e.g. semantic features testing. It is well known that

any rigorous system set up tc cbtain consistency of semantic
feature processing will break down because one can élways
produce semantically anomalous sentences and still be understood.
The same holds for other linguistic phenomena. The sentence

"he speaks not good English is perfectly well understood,

as well as "he speak not good English" and (although matters
obviously become worse) "not speak he good English™. But on

the other hand there is a boundary of understandibility.

Consider "speak good he English not".

Second there is the unreliability ¢f the input. To say

that every sentence formulated in a certain language is
grammatically 100 % correct is quickly refuted by observation.

E.g. there are bound to be numercus mistakes in this text due

to the fact that its author is not a native speaker of the language
and therefore does not know the conventions as well 4s someone

who has been practising them all his life. Notice that the

language user is not only able to understand these imperfect
sentences, moreover he knows why this or that sentence is

imperfect.

These two factors can in our opinion cnly be coped with by

a perceptron conception for the interaction of the varicus
knowledge sources, where we can attach weight to each knowledge
source and where the treshhold should not necessarily be

equal to a 100 % satisfaction of all subpredicates. E,g. if

- 2,20. -

parsing predicates

all but the semantic features predicate yields true
, the decision function may decide that enough evidence

is there tc insist upon merging the two particles.

Notice that when we meet a linguistic fact that is
not consistent with the linguistic description in the
grammar we do not necessarily consider the grammar to be

falgified by the occurrence of this phenomenon !

Having discussed the combination of the parsing predicates,
we can now turn to a discussion of the parsing predicates
themselves. As already mentioned in the introduction to
this section there are two sorts of reasoning possible.
Consequently we organize two further subsections. One
about the systematics of the language and one for reasoning

about the process or results about the parsing process.

2.1.2.2. Parsing predicates based on systematics of the language

“The question whether two particles are allowed to merge
amounts to answering the question whether a certain word say
wl in configuration ¢l can act as the subordinate of another
word, say w2 in configuration ¢2. The environment ,i.e. Ehe
other items in the configuration, may be involwved in this
deciéion as we will see and also the positionrof each word
in its own configuration is not irrelevant. This will be
discussed in § 2.1;2.3; . Here we concentrate on the tﬁo
words themselves and their associated information. Conseqﬁently
the predicates will be formulated on the basis of two words.
We address the information seqguence of a word Wy as iwk and
the n-th item in it as in,wk'

The discussion here runs parallel with the discussion of the
grammatical rules, in particular there is a predicate for
each rule. To make the relation between the lingﬁistic rules
‘and the parsing predicates explicit, we place ‘a p-indicator
before each rule, e.g. if function-of-head is a ruie, then

p-function-of-head is the predicate derived from it.

- 2,21, -

“narsing predicates

(1) FUNCTION-OF-HEAD and TAKING-OBJECTS

Recall the structural property that given words wl

(in configuration cl) and w2 (in configuration c2), if 'wl

is supposed to have a particular grammaﬁical function £ as regaras
w2, w2 should have a particular possible function, indicated by

function-of-head ({f)

From this we extract the following predicate:
Definition

p-function-of-head : W x W = |TRUE, FALSE} is defined for

(Vw} Ii € F-adj VU F-functw) as fellows:
2,wl
TRUE if function-of-head (12,le = l2,w2
p—-function-of-head (wl,w2)=
L FALSE otherwise
[
" Rerall also that fdr_objects the information was stored
vice-versa by means c¢f the taking-objects rule telling whether
. a word takes objects or not. This leads to the next predicate:
Definition
p-taking-cbjects: W x W *{TRUE,FALSE} is defined for
(¥wl) (i2 € F-obiject } as follows
4
TRUE if taklng—objects(lzjwz)

= TRUE

p-taking-objects (wl,w2)=

FALSE otherwise

- 2.22. =

parsing predicates

(2) Word order

The second property is that two words should be in a relative
position as regards each other for a particular grammatical relation
to hold.

We use two linguistic rules for this purpose: position (if

the subordinate has the function adjunct or functionword) and
obiject-position (if the subordinate has the function object).

Consequently we will have two corresponding predicates. But

first we need an auxiliary predicate.

Definition

We say that a word w,; comes before another word Wj denoted

as wy < wj if in the input sequence we have
s L
Wi e Wi oaes WaoooWy n70and1\<1,<]\\.n

Definition

“Let p-position : Wx W = {TRUE,'FALSEB be defined for

(¥ wl) (i2 Wi € F-adjuncts U F-functw } as follows:
r
r TRUE if Eosition(i2 Wl) = hefore or undet
r

and wl < w2

p-position (wl,w2) =

L-FALSE otherwise

Definition

Let p-cbject-position : W x W = TRUE, TALSE be defined for
(¥ wl) (4,

wl F-object) as follows:

TRUE if Dbj@EEpOSlthD(llvw) = before or

Z

undet and wl < w2

p-object-position (wl,w2) .
' FALSE otherwise

- 2.23. -

parsing predicates

(3) Syntactic networks

Completion automata are used in the system to regulate in
a nontrivial way the mutual restrictions that occur when

different subordinates are related to the same head.

An important assumption behind the use of these networks
(when used in a left-going mode) is that the ranges of the
unit relevant for the transitions in a network are bordering
on each other and as soon as a unit is encountered that

does not fit, the network is assumed to enter a final state.
In this way we can discover the boundaries of word groups
and it must be noted that the method works excellent.

Another nice conseguence of the aésumption is that the state
in the network should not be incorporated in the information
seqﬁence of the topword of the combination but can be stored
externally in the particle itself and be declared irrelevant
as soon as the boundary of the network has been found.

This is the reason why we defined such a state as

being located outside a configuration.

The predicate relevant for syntactic networks is then defined

-as follows:

Definition : .

p-synt-network: W x W *{TRUE, FALSE) is defined

(¥ w2) {(syntactic-network (iz w2) is defined) as follows:
r

Let 5 = S1s sus 5y

particle of w2 , then

s be the set of states associated with the
TRUE if (5565) { T(lz’wl,s) # @)

p-synt-netw (wl,w2) =

FALSE otherwise

- 2.24., -

parsing predicates

The second aspect in relation to syntactic networks is that
a set of new states is associated with the particle. This
operation is however dealt with in the section where

we deal with the construction of new particles.

(4) Concord

The next predicate has to do with the syntactic feature
matches based on the feature complex calculus we intrdduced
in previocus chapter.

Definition

‘p-concord; W X W—*{TRUE, FALSEK is a function defined
(v wl) (wl €& F-object)

TRUE if either

(1) concord (iz,ﬁ1) = false
or
concord (12,wl)_= true and

p-concord (wl ,w2)=

syntactic-feature-complex of w2

matches with i5
,wl

FALSE otherwise
L .

(5) Send-through

The other aspect having to do with syntactic feature comnhlexes
is the phenomenon that certain features are 'send-through'

to the feature complex of the head. This is again a situation
where the information sequence is changed and this will

be discussed in the relevant subsection.

Now comes the second series of predicates related to case.

- 2.25. -

parsing predicates

{6) Semantic features for adjuncts

The next parsing prédicate investigates whether the head
of a4 function has the appropriate semantic features to fill
a slot in a frame of a subordinate.

For this purpose it is necessary (i)} to éompute the semantic
features that are to be satisfied by means of the viewpoint
of the adjunct, (ii) to compute the semantic features that
are associated to the slot filler (recall the additional
complexity due to the modifier/qualifier dinstinction) , (iii)
to see Whether both features match, in particular whether

the result of (ii) matches with the result of {(i). If

the result of the match yields true the predicate is true,
else false.

Definition

p-sem.feat-adju : W x W—> {TRUE, FALSE} is defined
(¥ wl) (wl € F-adjuncts) as follows:

Let(wl,wZ} €F, pl = predicate(wl), cl = viewpoint (wl} and
p2 = predicate (w2), ¢2 = viewpoint (w2) then
TRUE if
(1) either T has the modifier/undet characteristic
and match{valuerestriction(self,p2),
‘ valuerestriction(cl,pl)) = TRUE

p-sem.feat-adju (wl,w2) = | or

F has the modifier/undet characteristic
‘and match(valuerestriction(c2,p2),

valuerestriction(cl,pl)) = TRUE

FALSE otherwise

- 2.2¢6. _

ﬁaréiﬂg predicateé

'A.side—effectrof the p-sem. feat-adju predicafe is that

‘the domain of the semantic features complex of the

heéd involved is restricted to the set of subsets satisfving.
. the value restriction to be satisfied.

. | .
(7)' Semantic networks

Mext we have the predicate which consults the semantic networks:

on the basis of the syntactic features complex it is investigated
- whether there is a transition possible.

Definition

p-semn-netw T WX WH*{TRUE; FALSE} is defined -

(¥ wl) {wl € F-objects) as follows:

“Let § ={sl, e sn% be the set of states in the case networks
with the configuration of w2, then

TRUE if (Js 8) (X(i5-,w1's) =g}

p-sem-netw (wl,w2) =

FALSE otherwise

L

Notice the side-effects: we can compute c, because ¢ is associated
with a transition in the network, we have a new state in the
.case network and , because of the feature match, a subset of the
syntactic feature complex will be cut out of the domain.

This information will be of use in the construction of a new

particle.

- 2,27. -

parsing predicates

{8) Semantic feature test for objects.

The final predicate deals with the test whether the
semantic features cof an object are compatible with the

case it wants +to f£ill in a certain case frame.
Definition ,

p-sem. feat-obj: W x W > {TRUE, FALSE| is defined
(¥wl}) (wl € F-object) as follows:

Let (ﬁl,w2) € £, pl = predicate {wl) , cl = viewpoint {(wl),
p2‘= predicate (w2) , and c one of the cases of p2, then

TRUE if
match (valuerestriction(c,p2),
valuerestrictionicl,pl)) = true

p-sem.feat-obj (wl;wz) =

FALSE otherwise.
A side effect of this predicate is the restriction of the

semantic features complex of the object involved.

We have now presented predicates for all rules in the
modular grammar defined in previous .chapter. We now turn

to reasoning based on results of the process of parsing itself.

- 2.28. -

parsing predicates

2.1.2.3. Parsing predicates based on the process

In this subsection we present a number of forces which alsc
““help in the decision whether two particles merge but which
do not use linguistic information to formulate a decision
but rather informaﬁion accumulated during parsing time,
We feel that there are more facts to be discovered about
these knowledge sources . Nevertheless thé
general assumptions about the parsing process which determine
the sort of reasoning under discussion in this subsection already now
proved to have a very strong impact on the efficienéy of

the parser.

Let us present these assumptions in some detail.

(i) The linearity of langauge

The fact that the words of a language come after each

other is used by several parsing predicates (e.g. p-position).
It turns out that the linear structure of language sentences

can also be used to optimize the parsingprocess itself,

based on the following principle:’

Principle 1

A particle can only merge with another one if the range

of the first particle is bordering on the range of the second
particle. '

Example:

Given a sequence "wl w2 w3 w4 wS" then if there are e.g{

particles on w3 and w5 containing the structures

w3 w5
//// \\\\ ‘and
w2 wl wi
(particle 1) . : {particle 2)

- 2.29.-

. -‘parsing predicates

then we may consider the merging of these two which may lead
to

wb . w3

PN or
////%\\\ ’ wé//\\\\%l

w2 wl . \
wh

|

wi

But suppose we have particles on w2 and w3 with structures

w2 wr
wl and wi
(particle 1) {particle 2)

then we will not attempt to link the two according to

principle 1 because wd is in between the ranges.
To see the value of this principle consider "the good old boy™

which should result in a particle structure

boy
the good old

But suppose we do not accept the principle, then the structures

- boy . boy boy
the the good the old

would equally well be constructed as there is no linguistic

information preventing it.
(From a feormal language point of wview it is interesting to note

that the principle reflects the basically context-free character

of natural languagdes !)

- 2.30. -

parsing predicates

(2} The time dimension

Another consequenC%bf taking this time dimension seriously

is that if a particle will be attached to one of the sub-
configurations of another particle, what subconfiguration is
allowed depends strongly‘on the time moment this subconfiguration
was added to the particle. This is reflected in the following

principle:

-Principle 2

If the subconfiguration was added by a "forward merge", i.e.
suppose a_. and a; were to be merged, aj comes before a;, then

. 1
it is not allowed tc merge any hew particle a, on aj anymore.

(Readers who think we may come in trouble with this principle
should bear in mind that the parsing proceeds from left to right
“and.therefore‘all possible forward merging that could be done is
already done when the particle itself is subject to forward

merging)

To see the point of this principle consider the phrase
"he reads a nice book". Whatever comes after "book" or

"before "a", as soon as the structure

book

a nice is created,
it is pointless to look for further combinations with "a" or
"nice".
Notice that the principle does not hold for "backward merge".
This can easily be understood when considerihg the

ambigquous sentence "he saw the man in the park with a telescope".
(3) Power from structure

The final predicate to be discussed now has to do
with the interrelationships of the particles:

- 2.31. -

parsing predicates

Principle 3:

'fA particle with the same top as another particle but with
7;, Wmofe subconfigurations is more powerful than the other

::pafticle,

Te understand this hypothesis consider the following

“example: "The boys sing... During parsing a particle
will be made for "the boys", but the particle.for "boys" on
its own remains in the state space. Now we want to prevent
that two structures are built one for "boys sing..." and
,Qﬁgffor_fthe boys sing..." although both of them go on the

‘basis of linguistic information as such.

“Notice that the hypothesis reflects the principle of goal-directedness
which is found in most cognitive tasks: the structured objects
will leave a stronger impression on our perception systém than

not structured omnes.

Some care is needed in using the above principles. Apart from

the fact that certain constructions such as coordination

(which we have not yet considered) will not fall within the scope
of the principles it is possible that deviaticns occur just

‘as there are deviations from the linguistic predicates discussed

in previous section.

Some examples of deviations: Take the expression" the author"s
article"”. Is 'the' a determiner of 'author' or of 'article'.?
According to principle 3 'the' will be considered as a determiner
of 'author', and most people would agree on this. But some people
would argue that at least theoretically 'the' can be considered

as determiner of ‘'article'. Take as another example the expression
'a brighter colour than this one', where 'than' obviously

relates to "brighter' . But this is against principle 2 !

Wherging

2:1.3. The construction of new particles: the merging process

Suppose that the various parsing predicates have been
computed for two particles and that via the perceptron
combination the final result yields positive, how is

the construction of the new particle working then.

'Fiist of all we stress that this combination.process is

not fatal for the source particles, i.e. when a new particle
is made the source particles from which it is made remain in
the state space. Although the particle may be 'locked’

according to principle 3 discussed earlier.

The definition of the merging process proceeds in two steps.
First we define the merging of two configurations, only
then we turn to the merging of two particles.

The definition of the merging of two confiqurations itself
proceeds also in two steps. First we define the merging of
two simple configurations , the so called direct merge ,

then we define the merging of two more complex configurations.
Definition

We say that wo configurations a.,a directly merge

1773
1Ef
= >

a; = <""1,i' 82,17 F241,i" "0 7 Z24m, i m >0
and

25 =<"“1.j' y,47 841,47 0 7 f4n, 57 oz 0
then

— = ' 5

d-merge (aj,ai) <a1,i' @y 47 Bp41,41 ccvr Boym g aj >
How a, ; is computed from a, i will be discussed shortly.

r r

- 2.33, -

mergling

Definition

. ‘We say that two configurations aj,ai merge iff either

dAmerge(aj,ai) or aj merges with a2+p'i, 1 4 p (? m .

The resulting configuration ig denoted as merge (aj,ai) .

Example

Givg@ a. | aj

,l\\\\\\\ and /////// \\\\\

a2+¢,¢ __ a2+m-,i a2+1’j - -Ia2+n’j

then '

/////// I

%241, i .{/
a2+m,i_
2 € merde (aj.a;)
\ |
#241,3 "7 F24n,3

Now we can define the merging of two particles
Definition

Let pl

[l

(Py,1 7 Py,1 r P31 1Py 2”2 and

92 p r r) p be two par ti
tllen

= € merge (pz,pl) if

= + ’ ! . r b : nd ! f.inf
p3 <pl,l P1’2 p2'3! P3,3 P4’3> (orx 92’3 and p 3'3 cf.in ra)
and p4'3 € Inerge (94,2'94,1}'

merging

During the merging process the information in the information

sequences of the respective particles are changed.

There are first of all changes in the configuraticn of the
subordinate ahd second changes in the configuration of the

head of the grammatical relation.
(1) Subordinate

(a) If the subordinate is an object, then side effects of
1the case frame application are:

(i) That we know the case;

(11)That we know the subset of semantic features satis—
fylng the case slot;

'(iii) That we know the subset of syntactic features
satisfying the case slot.
So we change the three items in the information sequence of
the subordinate. _ '
(b) If the subordinate is an adjunct we only change the
qual/mod/undet characteristic. 4
{c) If the subordinate is a functionwerd no changes are

necessary.
(2} Head

(a) If the head is an object,then

(i) The-state . 0f the function may have to be changed
due to a transition in the networks,

(ii} Similarly the state in the case network may have to
be changed on the basis of objects evoking transitions in
the networks. ' ' :

(1ii) The subordinate may have restricted the syntactic
feature complex in the syntactic feature match: '

{iv) The subordinate may have restricted the semantic
feature complex via the semantic features match to consult
the case frames of the adjunct. '

{b) If the head is not an object, then

(i) The state of the function may have to be changed due
to .a transition in a syntactlc network,

(ii) the state in the case network may have to be changed
if affected by the income of cbjects.

- 2. 35. -

‘tﬁeﬁpgrticle top structure we moreover change the
‘CRED/NIL indicator if necessary according to principle 3
.7;fahé7the state in the syntactic network for the leftgoing
.“ﬁ transitions. Principle 2 is realized by hanging the
.indicator NIL after the information sequence of the

subordinate as a sort of end marker.

We leave a formal definition of these changes to the reader.

When a merging has taken place, the newly formed particle
is investigated further to see if other combinations are
possible,

To explain how this is going we present now the general

control structure of the parser.

A ncte on the control structure

To regulate the whole process we use the concept of a tasklist
and a function picking out each time the task on top of the

tasklist until no tasks are left. The execution of a task

may cause the creation of new tasks on the tasklist.

Schematically:

tasklist

task

executio

When an inputpulse comes in all particles created by this

pulse are put on the tasklist. For each particle on the

tasklist we try to merge with each particle associated with

the word just before the range of the particle. If a merge

‘takes place, we put the newly made particle with extended range
Iagain on the tasklist. If no merging can take place ﬁo action

is undertaken. If the tasklist is empty we consume the next input
inpuﬁword. If there are no inputwords. left we compute the
structures contained in the final particles associated with the
~last word of the input.

- 2.36. -

example

2.1.4, An example

The best way to see how a parsing process as depicted

in this chapter is actually going is to consider in full
detail an example, For this purpose we take one single
sentence "time flies like an arrow" and although we know very
well that one normally understands this sentence c¢nly as
meaning "time passes by quickly" (basically because the
sentence has a proverb status) we will for the szke of example
assume that all possible readings should come ocut of the
parser. These readings are by the way all produced by anycne
if you explicitly ask for them.Much more examples will be

given in next chapter when we discuss our experimental results.
Here are the readings:

reading (1) (the normal one) Time passes by quickly.
"Time"is an object of "flies" which is itself a predicate.

"like an arrow" is an adverbial adjunct of "flies™.

reading (2) There is a particular sort of insects, called
time flies and they have the shape of an arrow.’
Here "time" is an adjunct of "flies", "flies" an object and

"like an arrow" an adjunct of "flies".

reading (3) There is a particular sort of insects, called time
fl'ies and they love arrows.
"Time"and "flies" are as in reading (2), "like" is now the

‘predicate and "arrow™ fills a slot in the case frame of "like",

reading (4) Measure the time of a particular sort of flies, namely
those which are like an arrow.
"Time"™ is now an imperative wverb, "flies" object and "like

an arrow" adjunct of "flies" as in reading (2)

reading{(5) Measure the time of a particular sort of flies and
do this "like and arrow".
"Time" is again imperative and "flies" cbject, "like an

arrow" is now an adverbial adjunct of "time".

 _ example

.”Béfére we can discuss the parsing process we need a

small grammar which contains all the information that will
. be necessary for the parsing process. Let us discuss this

'“ugrammar first. Tt is an example grammar , that means that

in later experiments we do not necessgarily use the same

grammar.
..(1} The grammar

-1,1. Type object
':(i)_Funbtion nom,obj (nominal object)
type : ohject
‘taking-objects: true
Ji~¢bject-position: after

“‘éxample: 'flies' as in 'to capture the flies'

"{ii) function: nom.att.adj (nominal attributive adjunct)

;”being adjuncts formed of objects which consist of a relationword

'ff(fﬁét.qets the function nom.att.adj) and an object. We will

" use. the phenomenon of syntactic networks to make the object
-obligatory.
type: objective adjunct

'position: after

’f function—of—head: nom. obj

‘Q/M characteristic: qual
example: 'like" as in "there are time flieg like an arrow"

“(iii).function: nom.adv,adj (nominal adverbial adjunct)
.being adjuncts of other adjuncts which consistiiof a relation
.word {(that gets the function nom.adv.adjunct) and an object.
We use again the syntactic networks.

type: objective adjunct

position: after

function-of-head: verb (at least)

Q/M characteristic: mod

example: "like" in the proverb "time flies like an arrow"
(Notice that it is possible to consider only one function

for nom.att.adj and nom.adv.adj but we split them up for the

sake of the example.)

- 2.38. -

example

1.2. Type: adjunct

(i) function: verb

being the main verk of the sentence
typé: adjunct

function=-of-head: nom.obj

position: after

taking-objects: true
object-position: after

concord: true

Q/M characteristic: undet

example: "flies" in the proverb"time flies like an arrow".
1.3. Type: functionword

(i) function determiner (det)

type: functionword

function—-of-head and position are specified via the syntactic
networks associdted with nom.obj

concord: true

send-through: true
example: "an" in "an arrow".

(11) function: casesign {(casesi)

type: functionword

function-cf-head and position are specified via the syntactic
networks associated with nom.obj.

send-through: true.

(this function is only added to make the example moreﬁnteresting}
2 . The syntactic networks

There is one left-going network and one right-going network ::

casesi @

for nom.ob]

FIN is the final state.

example

(3) The case frames

The surface case frames are only given if necessary.

-i- MEASURE

abstract case frame:

ACT

surface case frame for function adjunct and viewpoint agent

ANIMATE

-ii- ENJOY

abstract case frame:

surface case frame:

(OR THING
ANIMATE

for function adjunct and viewpoint agent:

-iii- INSECT

abstract case

cbjective

@haﬁx

frame:

ANTIMATE

~—Self

surface cage frame:

objective
kind

— Kind —~{PROPERTY

=)

2.40,

example

-iv- INSTRUMENT

abstract case frame:

-v- MOVE

abstract case frame

(XOR ANIMATE
ACT self MOVE agent THING)

-vi- SIMILAR

abstract case frame

PROPERTY self SIMILA to (XOR ANIMATE
(XOR THING ACT)}

what

XOR ANTMATE
{(XOR THING)

surface case frame

for function adjunct and viewpoint what=

-vii- TIMELINE

abstract case frame:

(XOR THING PROPERTY)) self

4., The lexicon
(i) AN function: det

syntactic features: SING
send-through feature: UNDEF

- 2.41. -

example

{ii) ARROW function: nom.obj
predicate: STICK
viewpoint: self
syntactic feature complex:

. //XOR \
AND SING

OBJECTIVE SING

(iii) PLIES
;a- function: nom.obj
predicate: insect
subpredicatei flying
viewpoint:self
synt.feat.complex
" XOR
N
AND ‘ AND .
AYVIRN

PLURAL 3PS OBJECTIVE AND

/N

PLURAL 3PS
-b- function: verb
predicate: move
éubpredicate: through-air
viewpoint: agent
synt.feat.complex
'//ﬁND
\\\\\\
NOT AND

\

CBJECTIVE SING 3PS
internal feature complex: PRESENT

- 2.42. -

examples

{iv) LIKE
-a- . funection:nom.att.adj or nom.adv.adj
predicate: similar
viewpoint: what
-b- . function: verb
predicate: enjoy
viewpoint: agent
external feature complex
| /ND\
NTT : XOE\\\\
OBJECTIVE PLURAL AND
SING NOT
3PS
internal feature complex: PRESENT
(v) TIME .
-a- : function: nom.obj
predic:timeline
viewpoint: self
synt.feat.complex
' XOR
AND AND
OBJECTIVE AND SING aPs
SING 3PS
=b-) function: verb

‘prédic: measure
viewpoint: agent
ext:.feat.complex- {AND SING 2PS5}

int. feature complex: imperative

We now start a discussion of the parsingprocess. We try
to keep the presentation as understandable as possible and

avoid formal representations.

T.2.43. -

example

Before the first word is consumed the state space should be
considered completely empty. Each time a word comes in

particles are created and confronted with already existing

ones. For ease of reference we number particles according to their
-moment of creation. For each particle the configuration contained
in it will be give explicitly.

INPUTPULSE NR. 1 : TIME

I. Initial particles

The first particles are created for each possible function
of TIME according to the lexicon:

(i) Particle 1 {(for function nom.obj) has configuration

(TIME
(INP1 = hypothesis number
NOM. OBJ = function
NIL = state in right-going synt.net
NIL = state in sem. netw
({SING 3PS) (OBJECTIVE SING 3PS)) = synt.feature complex
{ (THING) {(PROPERTY})
NiL))

Notice that all informaticn to construct this configuration

comes from the linguistic description .system. E.g. the semantic
features are computed by taking the extension of the features
associated with the case frame of TIMELINE (the predicate of time)
with the self-case (the viewpoint of time).

.(ii) Particle 2 (for function: verb) has configuration:
(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET))

II. Merging

As no other particles are in the state space, nothing more
happens and we get as first result:

O1
state space

O:

-'2.44, -

exémple

INPUTPULSE NR. 2. FLIES

I. Initial particles

Again we make a new particle for each function:

(1) particle 3 (for flies as nom.obj) has configuration

. (FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS}))
((ANIMATE}) NIL))

(ii)particle 4 (for flies as predicate) has configuration

(FLIES (INP4 VERB NIL NIL {{PRESENT)) UNDET))

II. Merging of the particles

For each particle of inputpulse 1 and for each particle due to
inpﬁtpulse 2 it is investigated whether they can merge either
from right to left or from left to right. The last

one created is always the first one to be investigated further,

s0 we start with investigating particle 4.
Investigate particle 4 {(with flies as verb).

1. Let us try to merge this particle with particle 1 embodying

INPI.(time as nom.obj)

In other words we investigate whether a nom.obj and a verb
may form a link.

From left to right will not do. Although a verb takes objects
they coﬁe.after it, so "time" is in a wrong position £o be

an object of flies.

From right to left however is a good combination:because

- function-of-head {verb) = nom;obj and time has the function
‘hbm.obj. So the function-of-head test is successful.

- position(verb) = after and flies comes after time, hence
there i5 a successful order test.

~ The syntactic features match is necessary (a verb agrees
with its subject) and it yields true because the features of
"flies" are (AND (NOT OBJECTIVE) (AND SING 3PS5)) and those
0f time are ((SING 3PS} (OBJECTIVE SING 3PS)). Notice that the
possibility of time having the case signal objective is.ruled

out.

= 2.45. -

gxample

- The semantic features match yields also true because
the viewpoint of flies is agenf, the predicate is MOVE and
the feature associated is the abstract case frame of MOVE
with agent is (XOR ANIMATE THING). Recall that the sema .ic
features of time in particle 1 are {({PROPERTY) (THING))

So there is a feature match for the subset ((THING)}
as well for modifying as for qualifying.

On the basis of these results it is decided that the particles

should merge to form a new one:
particle 5 with the following configuration

(FLIES HINP4 VERB NIL NIL ({PRESENT)) UNDET)
(TIME {(INP1 NOM.OBJ NIL NIL ({(SING 3P8)) ((THING)) NIL)))

Notice that the semantic feature complex of 'time' has

been restricted to time as a thing. .
Notice also that the predicate forms the top of the structure.
This in contrast with the normal procedure of merging

particles.

3. We try to merge particle 4 with particle 2 containing INP2

(time as wverb).

From left to right will not do with the verb flies because a
verb has no head and certainly not a predicate.
From right to left is for the same reason not a good combination.

Function-of-head(verb) is nom.obj and nom.adj is not a nom.cbj.
As we now confronted all particles of inputpulse 1 with the
particle 4 of inputpulse 2 we can'turn to the next particle of
inputpulse 2:

.(b)'Investigate particle 3 (with flies as nom.objj

(1) We try to merge with particle 1 (time as nom.obj}

example

From left to right fhe order test is successiul because
we specified in the grammar that objects may come as
well before as after a nom.obj {(not necessarily a good
assumption in general). Now we investigate the networks.
As initial state with flies we have INS/1 . The network

1tself. aé//’/fgg;ectiv'
NS/

Giind}

-~

S0 we go from the initial state INS/1 to the state FIN.
The associated case is KIND.

The next step is the matching of the semantic features.
This ylelds also true, because with the KIND-case in
INSECT, we have the feature 'property', and property is
in the feature complex of time.

We conclude that time is a nom.cbj ef flies. Notice that
this could only be concluded after considering time as
some kind of property.

A new particle {(particle 6) can now be created:

(FLIES (INP3 NOM.OBJ NIL FIN ({OBJECTIVE PLURAL 3PS})
(PLURAL 3PS)) {(ANIMATE)) NIL)
(TIME (INP1 NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS))
((PROPERTY)) KIND))

Notice how the features of the subordinate are restricted.
and how the casé 'kind' has been added, the case state of flies
is now FIN.

From right to left a merging is possible according to the
position and taking objects tests, however there is no
prefix state in the case network of TIMELINE, sc we abandon
the idea of merging in this direction.

(2) For particle 2 with INP3 (time as verh)

From left to right no merging will take place due to wrong
positions. '

From right to left we have more success. & verb takes objects

and they come after the word, so we proceed with the investigation
of what case is fiiled by 'flies'.

- 2.47.-

example

For this purpose we call the semantic network of MEASURE

which 1s the predicate of time, and try to make a transition
from the initial state MEAS/1 on the basis of the syntactic
feature complex ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)).

The transitlon is successful and we come in the final state

FIN with associated case 'WHAT'. The syntactic features are

now restricted to ((OBJECTIVE PLURAL 3PS)). Next we investigate
the semantic features. The what case requires {(OR THING ANIMATE)
and this matches with the feature complex of flies. Hence we
may merge the two particles which yields:

particle 7
(TIME (INP2 VERB NIL ((PRESENT)) UNDET })
(FLIES {INP3 NOM.OBJ NIL NIL

((OBJECTIVE PLURAL 3PS}) ({ANIMATE)) WHAT))

We have now checked all particles of inputpulse 1 against

those of inputpulse 2 and obtained some new particles.

Summayry of actions in the state space:

from 1 3
© o
C)z Cf

to

- 2.48. -

example

Although particle 1,2,3,4 remain in the state space 5,6,7
will be the stronger ones. '

So a better representation ¢f the state space at the
moment would be:

5O <
O,

INPUTPULSE 3 LIKE

I. Creation of new particles

First four initlal particles are created for each function
assigned to 'like’ by the lexicon.

particle 8 with configuration:

(LIKE (INP5 CASESI NIL NIL NIL))

particle 9 with confiquration:
(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET))

particle 10 with configuration:
({LTKE (INP7 NOM.ADV.ADJ A/l NIL {{PRESENT)} UNDET))

particle 11 with configuration
(LIKE {INP8 PREDIC NIL NIL ((PRESENT)) UNDET)})

(Notice that in particle 9 and 10 like does not have a . final state)

- 2.49. -

example

IT. Merging

Again we start with the latest made particle to see whether

combinations are possible with previcusly made particles.
(A) Particle 11 with INPB (like as verb)
1. Let us confront this particle with particle 7 (time as verb)

Neither from left to right nor from right to left is linking

possible. A verb does not relate to a verb and vice-versa.

2. Let us confront particle 11 with particle 6 (with flies as
nom.cb] and time as nom.cbj depending from it)

From left to right no merging will take place because the objects
of a verb come after their head and not before it. From right £o
left a merging 1is indeed possible on the following grounds:

- the head of a verb, i.e. its subject,comes before it, this
is the case, hence the test on order is true,

- a verb agrees with its subject, s0 we have to perform a
syntactic features match between (AND (NOT OBJECTIVE) (XOR PLURAL
(AND SING {(NOT 3P8)) } being the features of the verb and
{ {OBJECTIVE PLURAL 3PS) (PLURAL 3PS)) which is the extension of
the features of flies. The match process returns true for fhe
domain ((PLURAL 3FS)). Next we investigate the semantic features
via the viewpoint of like (agent) we find that the features of the
slot should be ANIMATE; because flies has {(ANIMATE)) this test
is again successful and we decide to merge both particles yielding:

particle 12 with configuration:

(LIKE (INP8 VERB NIL NIL : ((PRESENT)}) UNDET)
(FLIES (INP3 NOM.OBJ FIN NIL ((PLURAL 3PS)) ((ANIMATE)) NIL)

(TIME (INP1 NOM.OBJ NIL NIL. ((OBJECTIVE SING}) ((PROPERTY)) KIND)))

- 2.50.-

example

3. Let us finally confront particle 11 with particle 5
(INP3 flies as verb on top)

Both from left to fight and from right to left no success

is obtained because a verb does not link with ancther one.
Notice that if the verb would have been placed structurally
under its head, the merging would in principle be considered
but the syntactic feature matches would have resulted in false.

(B) Particle 10 with like as nom,adv.adj

1. Pérticle 10 in relation to particle 7 (with time as verb

on top)

From left to right no merging takes place because the position
tests are unsuccessful.
From right to left for the word TIME we have more success.

- The head of a nom.adv.adj is a verb and because flies
acts here as a verb, this test is successful.

- Morecver the position of a nom.adv.adj is after its head
and this is so.

— There is no synt.features match but there is a sem.feat
test. The features associated with the viewpoint of like
(which is BETWEEN) are (XOR ANIMATE (XOR THING ACT)). In the
frame of MOVE the feature act is asscciated with the SELF-case

(nom.adv.,adj is a modifier). Hence there is a match.
The new particle (particle 13) has configuration:
(TIME (INP2 VERB NIL NIL ((PRESENT)} UNDET)
({FLIES (INP3 NOM.OBJ FIN NIL ((OBJECTIVE PLURAL 3PS))
{ (ANIMATE)) WHAT)

(LIKE (INP7 NOM.ADV.ADJ A/l NIL MOD} })

(Notice that like is not in a final state yet}

- 2.51. ~

example

(2) Let us confront particle 10 with particle 6

From left to right no test is successful , the objects
of a nom.adv.adj come after it and not before.
From right to left is not possible because the head of a

nom.adv.adj is another adjunct and not an object.

(3) Finally we confront particle 10 with particle 5
(flies as verb on top)

From left to right no success is obtained. The head of

flies is an object and not an adjunct. From right to left

we are successful:
— The head of a nom.adv.adj is a verb and because flies
is a verb, this test 1s successful;
- Moreover the position of 2 nom.adv.adj is after its head
and this is s0;
- There ig no syntactic features match, but there is a
semantic features test: The features associated with the
viewpoint of LIKE {(which is WHAT) are (XOR ANIMATE (XOR THING
ACT }) . In the featuresof MOVE we have with the SELF-case
(note that nom.adv.adj is a modifier) the feature ACT.

S0 this test is true.

To conclude, we construct the new particle , particle 14, with

configuration:
, (FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET)
(TIME (INP1 NOM.OBJ NIL NIIL ({STING 3PS)) ((THING)) NIL})
(LIXE (INP7 NOM.ADV.ADJ A/1 NIL MOD)))

{C) We try to expand particle ¢ (with like as nom.att.adj)

Again we confront this particle with all particles active
before the inputpulse of like came in.

(1) Confrontation with particle 7.
'From left to right will not do. The objects of a nom.att.adj
come after their head. Now from left to right.

We start by investigating the word flies. Here we are

"successful:

- 2,52, =

example

- The head of a nom.att.adj is a nom.obj and this

is the case;

- The position is as expected;

- There is no syntactic features test, but there is a semantic
features test. We have to see whether 'flies' fills

a slot in the frame of like, namely the viewpoint of like which
is what. To do so the features (XOR ANIMATE {XOR THING ACT))
‘must be satisfied. This is the case and we get a new pafticle:

particle 15
particle 15 with configuration:

(TIME (INP2 vERB NIL NIL ((PRESENT)} UNDET) _
(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))
((ANIMATE)) WHAT)
(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET }}})

or the word time in particle 7 there is no successful

function-of-head test.
(2) Confrontation with particle 6

From left to right no merging will take place because the
cbject of a nom.att.adj should come after 'like';from
right to left we are successful because:

- The head of a nom.att.adjunct is a nom.obj and flies is
a nom.cbhj.

- Moreover the nom.att.adjunct comes after its head and
this requirement is fulfilled .

- No syntactic features match is necessary here, but we
have a semantic feature match with flies which has the feature
((ANIMATE)). Because the viewpoint of 1ike is between,
the features to be satisfied are (XOR ANIMATE (XOR THING ACT))

S50 the test is successful.
We make a new particle:
particle 16 with configuration:
{(FLIES (INP3 NOM,OBJ FiN NIL ({OBJECTIVE PLURAL 3PS) {PLURAL 3PS))
((ANIMATE)) NIL)

(TIME (INP1 NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS}) ({(PROPERTY)) KIND)
(LIKE {(INP6 NOM.ATT.ADJ A/1 NIL UNDET})))

example

(33 Confrontation with particle 5 {flies as verb on top)

From left to right and from right to left no success is
obtained due to the function-of-head tests. A nom.att.adj
has as head a nom,obj and not a predicate whereas the head

of a predicate is a nom.obj and not a nom.att.adj.
(D) Particle ¢ {(with INP5, like as case sign)
All confrontations with previous particles yield false

as the reader can find out for himself. The cause is

always the function-of-head test.

The particles resulting from the third input pulse 'like'

have caused a strohg activity in the state space.

In particular we went from: SCD GC)

to

We will carry on with the most powerful particles in the
state space.

example

INPUTPULSE 4 AN

I. New particles
There is only one: partilce 17 with configuration
(AN (INP9 DET FIN))
II. Merging
For all particles the tests will be unsuccessful. On the

basis of the function-of-head tests and/or order tests,
so we are left with the following state space:

15

INPUTPULSE 5 : ARROW ’

I. New particles
There is again only one particle: particle 18.

(ARROW (INP10 NOM.OBJ NIL NIL
{ (OBJECTIVE SING 3PS) (SING 3PS)) ((THING)) NIL))

- 2.55. =

example

II. Merging

{A) We try to merge particle 18

(1) With particle 17

Due to one of our principles that you cannot 'hop' over
a word, the first job is to merge with particle 17. This is
possible from left to right because:

- A determiner makes a transition from the initial state
(OBJ /1) associated with the nom.obj Tarrow' which brings
us in the network in the state OBJ/2 ;

- moreover the syntactic features match is successful,
TAN' has 'SING' and arrow has ((OBJECTIVE SIKG)) So there is
a match. Also we have to send-through the feature 'UNDEF’
which brings us to the new feature complex {(OBJECTIVE SING
UNDEF)) . No more tests are necessary which brings us to the

new particle:
particle 19 with configuration

(ARROW (INP1O NOM.OBJ NIL NIL ((OBJECTIVE SING UNDEF) {
SING UNDEF)} ((THING)) NIL)
(AN (INP9 DET NIL)) }

We now have the opportunity to show what happens if a particle
is made and it dcoes not cover the whole input sentence

yet. In such a situation a chain reaction can be said to take
place: We try to merge with other particles floating aroung on
the border of the range of this particle. The whole process

is set in motion again by placing particle 19 on the takslist
which is a pushdownstore; this implies that it is the first

particle again considered for further combination.
(B} We try to expand particle 19
(1) Let us confront it with particle 8 (like as casesign)

Recall that the latest state associated with nom.cb] was

OBJ/2 .50 we try to make a transition in the network which

brings us to the new state 0BJ/3. Although there is no syntactic
feature match, we have to pass features to the feature complex of
the head. ‘

- 2.56. -

example

This yields particle 20 with configuration

(ARROW (INP10O NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF LIKE))
((THING)) NIL)
(AN (INP9 DET NIL)) (LIKE (INP5 CASESI NIL)})

Notice how the case sign is now in the feature complex of
the nom.ob] and ready to become active in surface case
signal tests. To show this was the reason to incorporate
'like' in this function. No further results with this particle
will be obtained.

Prom right to left there is nc merging possible because

like' (as casesign}) takes mno obijects.

(2) Let us confront particle 19 with particle 16 ('flies' as
nom.obj on top)

From left to right the order test and the taking-objects
test is true. But we did not include a semantic network for

'flies' and therefore do not investigate the possibility any further.

From right to left we are successful for the word like . Like
is a nom.att.adj it takes objects and they come after it.

The transition in the sem.netw is also successful. We go from
the state SIMIL/1l to the new state PTM with

associated case TO for the syntactic feature complex

((3PS OBJECTIVE SING UNDEF)). The sem.features test yields

also true and we get a new particle:
particle 21 with configuration:

(FLIES (INP3 NOM.OBJ NIL NIL {{OBJECTIVE PLURAL 3PS))
((THING)) NIL)
(TIME (INP1 NOM,OBJ NIL NIL ((OBJECTIVE SIN§3ﬁS)) { (PROPERTY)) KIND)
(LIKE (INP% NOM.ATT.ADJ FIN NIL UNDET)
(ARROW' {INP1O NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF))
((THING)) TO) (AN (INPY DET NIL)))})

- 2.57. -

example

Notice how 'like' has entered a final state and how the
case has been added.

particle 21 is the first particle which is final in the sense

that it covers thée whole input sentence ..

From right to left no further combinaticns are possible

for the word flies (no transition in sem.netw).

(2 .2) For particle 15

From left to right will not do because a verb comes after
-the object which is its subject. From right to left
there is greater success. Take the word like (function
nom, att,adj) It is cbvious that on the same basis as for
the creation of particle 21 we will be able to link the
object to like. Hence we det a new particle:

particle 22 which is again final:

{(TIME (INP2 VERB NIL NIL {(PRESENT)) UNDET)
(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))
{ (ANIMATE)) WHAT)
(LIKE (INP6 NOM.ATT.ADJ NTL NII. UNDET)
{ARROW (INP10O NOM.OBJ NIL NIL {{3PS OBJECTIVE SING UNDEF))}
{ (THING)) TQ) .
(AN (INP9 DET FIN)))}))

Still from right to left for the word flies, no linking
takes place because there is no transition possible. For

the same reason we cannot merge for the word time.

(3) For particle 13.

From left to right no merging takes place because a verb
{which is on top of 13) stands after its subject. However
from right to left we are again successful. This time for the
word 'like'. Again_on the same basis as for the two previous

particles.

- 2.58. -

example

The new particle (particle 23) has configuration

(FLIES (INP4 VERB NIL NIL {(PRESENT)) UNDET)
(TIME (INP1 NOM.OBJ NIL NIL ((SING 3PS)) ((THING)))
(LIKE (INP7 NOM.ADV.ADJ FIN NIL MOD)
(ARROW {INP10 NOM.OBJ W1IL NIL ({3P5 OBJECTIVE SING UNDEF))
((THING }) TO)
(AND (INP9 DET NIL)))))

Still from right to left we try to merge for the word
'flies'. This does not work because no transition is possible

in the semantic network.
(3.2.) Particle 14.

From left to right will not do beéause a verb comes after

its subject. '

From right to left is more successful. Not for_thé word flies
because no transition is possible in the sem. network

But for the word like, the order test is successful and there
is a transition from SIMIL/l to the new state FIN. The '
sem.feat test is also successful which leads to a new

particle: particle 24 with configuration:

(TIME (INP2 VERB NIEL NIL ((PRESENT)) UNDET)
(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))
((ANIMATE)) WHAT))
(LIKE (INP7 NOM.ADV.ADJ NIL NIL MOD)
(ARROW (INP10 NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))
({THING))} TO) (AN (INPY DET FIN)))))

For the word time there is no transition in the semantic

network although the ordertest was successful.

= 2.59., -

example

(4) For particle 12

Here we are successful from right to left {(from left to right
is not investigated because the top is a verb) . First of

all the order test and taking objects test are successful

for like, also we can perform a transition in the .case

frame of ENJOY and the semantic features test is successful,

This leads to the following new particle: particle 25:
with configuration

(LIKE (INP8 VERB NIL NIL ({(PRESENT)} UNDET)
(FLIES (INP3 NOM.OBJ NIL NIL ((PLURAL 3PS)) ((ANIMATE)) NIL)
(TIME (INP1 NOM.OBJ NIL NIL ((OBJECTIVE SING 3PS))
((PROPERTY}) XKIND)))
(ARROW (INP10O NOM.OBJ FIN NIL ((3PS OBRJECTIVE SING UNDEF))
((THING)) WHAT) (AN (INP9 DET FIN))))

(c) It'remains to be investigated how particle 12 can be
further expanded.

.The investligation of this is left to the reader. There will be

no successful mergings.
As a summary of actions due to this inputpulse we get:

from

13 ~12
OOO

- 2.60. -

example

to

Here is a summary of all actions on particles that occurred

during the analysis of the sentence:

(Final particles have double rings)

- 2.61. *

structuring

2.1.6. The computation of the resulting structures

We now discuss how it 15 possible to extract from a particle the
structures defined earlier. These structures {even the semantic
ones) are all auxiliary constructs mainly used for didactic
purposes. In principle semantic interpretation can take

place immediately on the basis of the information contained

in a particle. {Notice how the distinction deep/surface

structure disappears).
{i) The functicnal structure

It is possible to extract a functionmal structure (as defined
earlier) from the configuration in a particle by means of

the function F-struct:
Pefinition

Let ak =<a1,k r az'k, 13-2_'_1’](: LI a2+j,k> . j)/ o

be a configuration with
a2’k= <ll,k ’ 12,k' cee P an information sequence
then

(i a

2,k l,k)

F—struct(ak)=

(i (al,k F-struct (32+l,k) ... F=struct(a k)

for § > 0

2,k 2457

Ndfice that this yields a list structure which is cowernted into

a tree by the standard conventions.

- 2.62, -

structuring

{ii) The case structure

It is possible to extract case structures from a particle

by means of the following method:

Definition
Let 3, = <al,k' Ay % ¢ BF2s1,k’ ccr o F245,k0 j J o
be a configuration
with ‘
a2,k = <il,k’ 12,k y e D an information
segquence
then
(1) a , a € case structure
< 1,a2+i’k 1,k>
with
label ((Ja , a >) i
Trdgys,x 10K Tr8545 k
iff
iy a € F-obj for 1 {i £ 3
2+i,k
and
(i1) Za Y > € case structure
1.k Lrayis x
with
label (<a , a) =i .
1,k 1'a2+i,k 6.,k
iff i, , & P-adiu 1 € i K
r

- 2.63, -

structuring

Some examples
We give some particles of the earlier discussed example of
the parsing process and present each time the functional

and case structure.

For particle 21 with configuration:

(FLIES (INP3 NOM.OBJ NIL NIIL {(OBJECTIVE PLURAL3PS)) ((THING)))
(I'IME {(INP1 NOM.OBJF NIL NIL ({(OBJECTIVE SING 3PS)) ((PROPERTY))
KIND)

(LIKE (INP6 NOM.ATT.ADJ FIN NIL UNDET) _
(ARROW (INP10 NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))
((THING)) TO)
(AN (INP? DET NIL)))))

functioml structure

NOM. OBJ
FLIES
NOM. OBJ NOM.ATT.ADJ
TIME LIKE
NOM.OBJ
. ARROW
DET

AN

- 2.64,~

structuring

case structure:

casestructure
FLIES ‘ LIKE
™~
.
KIND WHAT TO
TIME FLIES ARROW

For particle 22 with configuration:

(TIME (INP2 VERB NI NIL UNDET ((PRESENT)) UNDET)
(FLIES (INP3 WOM.OBJ NIL NIL ((oBJECTIVE PLURAL 3PS))
{ (ANIMATE)) WHAT)
(LIKE (INP6 NOM.ATT.ADJ NIL NIL UNDET))
(ARROW (INP1O NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))
((THING}) TO)
(AN {(INP9 DET NIL)))))})

functional structure:
VERB
N
TIME
NOM. OBJ
FLIES
NOM,.ATT.ADJ
LIKE
NOM,OBJ
ARROW

DET

AN
- 2.865, -

structdring

case structure:

CASESTRUCTURE
,/’//// f\\\\\\
TIME , LIKE -
/\
WJAT WHAT TO
FLIES FLIES - ARROW

(iii) Semantic structures

The extraction of the semantic structures in the format of
the SRL language is a straighforward process. It works on
the basis of a task oriented control structure just as the
parser itself.

A task here contains two things (i} a pointer in the structure

of the particles, (ii) an attachment point, i.e. a point where

the structure resulting from executing the task should be attached
in the already obfained'semantic structure. This attachment

point is in fact a set: a point for if the function of the word
in the configuration addressed to by the peinter is cf type
object, then the attachment point. is the list of cases in the

head of the object, a point for if the function is of type
qualifying adjunct, then the attachment point is the variable

node of its head and - a point for if the function is of type
modifying adjunct, then the point is the predicate structure of its head.

The initial task contains a pointer to the top of -the structure;
the attachment points are NIL.

The system takes each time the algorithm on top of the tasklist.
Then the task is executed according to the following specifications:

- 266. =

structuring

If the word on top of the confiquration pointed at in the
task is of type object

(i) create a new object node

(ii) hang the viewpoint, predicate and subpredicate as
specified in the lexicon under the predicate necde

(1ii) add features if any

(iv) construct a new task for all depending nocdes

(v) if the object fills a slot in a case frame, attach
the case label and the pointer to the cbject node in the
semantic structure under the node defined in the attachment

point.

If the word on top of the configuration pointed at in the
task is of type adjunct
(1) make a viewpoint/predicate/subpredicate frame and
hang it under the attachment point indicated in the task
(1i} add features if any

(iii) construct new tasks for all depending nodes.

If the word on top of the configuration pointed at in
the task iz of type functionword
(i) construct new tasks for all depending nodes.

Extensive examples and detailed descripticns of several
semantic structuring processes will be given in the chapter

on examples and experimental results.

Notice how the distinction between abjects/adjuncts/functionwords
which proved to be basic for the formulation of the grammar
rules is also fundamental to the semantic styucturing process

as we have predicted.

- 2.67. -

productian

2.2. The PRODUCTION PROCESS

In this section we present a short outline of the productiOHI
process based on the modular grammar thecry. We will.not
present a very detailed model for two reasons (i) the size

of the present work would grow dut of the envisaged proportions,
{ii} the deadline forced us to remain in the presentation

here on a rather intuitive level. This does not mean

howewver that the investigation on the production process

was not carried out within our general methodological framework
(i.e. that computer programs should be constructed to prove
the.operationalcxpacitiES of the approach). In fact we worked
extensively on a system for producing natural language even
before starting out for the parsing problem {results

are reported in Steels, 1976): and many impecrtant discoveries
were made during the investigation of language production

rather than recognition.

In particular the idea that grammatical function is one of

the basic factors in language functioning {(more basic¢ than
grammatical cateogry) and the idea of 'viewpoint' as a way

te compute éurface case frames from abstract case frames and
thus to provide an alternative for transformational grammars
on this point were both discovered during studies in language

production.

By the production of natural language, we do not mean the
generation of a sentence from an initial symbol by successively
applying the derivation relation on the basis of scme generative
grammar, but rather the realization of a mapping from information

contained in a store into sentences of scme natural language.

Although recent work in transformational grammar is more and more
approaching the same subject matter, it must be noted that
there is a fundamental distinction between generating and

preducing.

- 2.68. -

production

Generation is a process precisely defined in the theory

of formal grammars as an operation over strings (called a
derivation) which when applied in sSequence as controlled

by the rules of the grammar results in one sentence of the
language that is to be defined. One of the main features of
this concept of generating is that it is uncontrolled,

that means if somewhere in the grammar two paths are possible
there is no mechanism that tells what path should be
followed.

Production is a transduction process and it is assumed
that every action that is undertaken finds its final
motivation in the intenstion of the system. In other words
a producing system is a ¢goal-directed system, it wants

to convey information and uses certain means for that.

It follows that to construct a successful producing system
we must represent in the grammar the relation between a
certain intension and how this intension is made clear

to the reader/listener according to conventiong agreed upon.

We claim that the modular grammar that was introduced previously
contains just the kind of knowledge we will need in order to
produce natural langwage. Even more, while we needed for the
parsing process special predicates (the parsing predicates)

it turns out that we now can consult the knowledge directly.

Soc, if a mbdular grammar 1s biased, it would be as regards
production {(and not as regards analysis as probably all readers
have beern thinking).

Intuitive explanations of the model.

Let us again start from the 'particle concept' as used to
explic ate the parsing process., Now the particles will be
called tasks because that seems an easier way to capture the
ideas we have in mind. There are two sorts cof tasks, the first
type contains the basic impulse to create language code

for a certain piece of semantic information (we call this

a taskbullder task). This task then enters the language
production space and is expanded to a sequence of other tasks.

The new tasks are of two sorts, either from the first type agin,

- 2.69. -

production

i.e. a reguest for new impulses from the semantic processes,
. from a second type, the so called lexicalisation

tasks. A lexicalisation task contains every information

that is necessary to.produée one single word. It is handed

over to the dictionary routines which produce then

the word itself

The crucial point in the system is of course the moment

of taskbuilding. This inveolves two aspects (i) the

scheduling of the tasks and (ii) the determination of what
information should be put in a newly formed task. It is performed
on the basis of the varicus knowledge sources already discussed.
Each module (or in other words each specialist for a particular
part of the language) is asked to contribute in crder to

accomplish the complex job.

From the explanations it follows that the following points
need to be clarified (i) the exact definition of the contents
of the tasks, {ii) the control structure for the execution

of the tasks and (iii) the process of executing a task.

2.2.1. The tasks

There are two sorts of tasks:

(i) Taskbuilder tasks which contain a pointer to a node
in the semantic structure that is to be recoded in a
natural language. These tasks consitute the 'stimuli' for

the production system to become active.

- 2,70.-

production
Definition

A taskbuilder task is a 4-tuple (al,az,a3,a47
with
al = the keyword TKB (taskbuilding)
a2 = a pointer to the task which was the immmediate source

for this task
a3 = a pointer to a node in the semantic structure
ad = a feature complex which is already due to earlier

processing.

(ii) Lexicalisation tasks which contain all necessary
information for the dictionary lookup process to do its
job. '

Definition

A lexicalisation task is a 6-tuple (al,a2,a3d,a4,ab,a6;
with

al = the keyword LEX

az = the function of the word

a3 = the predicate
a4 = the subpredicate
a5 = the viewpoint

at = the feature complex(es)

No other sorts of intermediate representation constructs
will be used. In other words everything else is in the

process defined upon the tasks.

2.2.2. The process

Ideally a producing system should be able to reason about

language in a similar fashion as the parsing system

discussed in previous section did. Such a reasoning process

could again be organized in a nondeterministic process by organizing
particles which cover a whole sentence. (Cf. hints in this
direction when discussingthe transduction relaticn for completion

networks) .

- 2.71. -

production

In the simpler account given here we assume that the process
of language production is straight forward and probably the
more we learn about language the more it will turn out to
be very strongly determined how a sentence should be

produced in view of certain meaning, context, situation,etc.

As regards the control structure of the system we need the
following: .

(1} a store on which tasks are placed in a last in first
out manner

(ii1) a function which takes one task and sends it
either tc the taskbuilder (if it is a taskbuilder task) or
the dictionary specialist (if it is a 1lexicalization task).

If there are no tasks left the sentence is complete.

Let us now provide some more detail on the taskbuilder and

the dictionary specialist.
(a) The taskbuilder
-i- The computation of the factors

The first assumptiocn underlying the operation of the system

is that one can compute on the basis of the semantic
structures what the grammatical function of a predicate in the
structure will be. This is the exact reverse of the semantic
structuring process discussed before. There we saw that a
particular grammatical function implies a particular sort of
semantic structure. Now we reverse this relaticn: a particular

semantic structure implies a particular grammatical function,

Cbvicusly this relation (and its reverse) are strongly depending
on the type of grammatical functions that the linguist
designing an empirical interpretation for a particular natural

language wants to use.

- 2.72. -

production

A second assumption is that it is possible to compute the
viewpoint. When a TKB-task is resulting from a previous
TKB-task this viewpoint is the gemantic relation holding
between the two nodes in the respective TKBE tasks. When the
TKB task contains an object (as happens most of the time for
the first task) the viewpoint is the relation between the
predicate used to introduce the object and the entity

node itself.

If there are some more factors introduced in the grammar

later on, they gpuld also be computable on before hand.
-ii - The scheduling of the other tasks

Once it is known what the functicn of the predicate pointed

at in the task is, we have acces to the grammar {(i.e. to

all rules with factor function/case, to the synt. networks,

to the case networks , etc;)

The first question the system now asks is what other information
in relation to the predicate in the current TKB-task should

be communicated.

A list is made of these information tuples and then the list

is split in two parts. One containing tasks to be scheduled
before the present task and other tasks to be scheduled after
it, and each sublist is internally ordered. This scheduling
process is performed on the basis of the networks (racall here
the transduction relation defined in relation to the completion
networks) and the rules ¢n order. Because the respective
tasklists (before/after) are used asg pushdownstores, we obtain
the right paths in the networks.

-iii- sending through information

Although the newly made tasks may be other TKB tasks,normally
information is sent through to the new task s in the form

of features . (For TKB-tasks in the fourth position). E.g.
when going through a case network specification (AND BY
OBJECTIVE) may be obtalned as side effect of a transition in
the network for a particular case (cf.government rules}. This

feature is sent to the new task introducing that object.

production

When performing the taskbuilder actions for the task
of the object, we will introduce a functionword ‘casesign'
for the by feature, etc;.

-iv- Lexicalization tasks

When every job has been performed in relation to the

TEB task under investigation by the taskbuilder, this task
is turned into a lexicalisation task itself, i.e. all
relevant information is dgrouped according to the format
specified. Then all tasks made are.placed on the main
tasklist and the system starts investigating the first
task on top of this list.

(b} The dictionary specialist.

The dicticnary specialist scans the dictiénary in reverse

mode. Earlier we had a word and from this we searched

for the information tuples related to this word. Now we go

the reverse way. To optimize the process, we have pointers

from each (concrete) predicate to all relevant words and further
to all subsets of a given function. The rest of the search

is performed by the match processes of the feature calculus

- which work in both directions anyway.

- 2.74. -

producticn

2.2.3. Example

Let us now give a short example of a production process
for the example phrase "A very urgent letter" , in other

words we realize one piece of the semantic structure in

particular:
01
. |
I I - 1
PRED FEATRS QUAL
| |
1 r——L“Q |
RESULT WRITE UNDEF SING PRED ARGS
OF%WHAT PROP URGENT of¥what
MOD 01
i I
OF*WHAT PROP VERY
STEP 1

First we make the initialization task pointing to the
01 node itself:
1. <TKB , @, 01, NTL >

STEP 2

The first jobk in the execution of this task consists in
computing theé function , the predicate and the viewpoint.
The answers are straightforward : function: nom.chj (because
we have an entity introduced by a predicate), predi write,

viewpoint: result.

Next we make a list of depending information items: features
and qualifiers. For each of these itmes we investigate possible
functions, yvielding determiner for feature undef and
att.adjunct for qualifier with predicate PROP (because it is

in adjunct of a nom.obj).

- 2,75, -

production

Investigating the networks and the order rules in the
grammar we find that a tasklist of items 'before' contains

the determiner and the gualifier with predicate urgent.

The next step is to congtruct a lexicalizatieon task for the
nom.obj its f. All these tasks are then put on the tasklist
and we get: ' '

3 . {LEX, DETERM, NIL, NIL , NIL , ((UNDEF)}%
2. {TKB, 2, QUAL, NIL)
1. (LEX,NOM.OBJ , WRIT, NIL 6 RESULT, ({SING)))

{(Notice that for functionwords the lexicalisation task

could be made immediately)
STEP 3

Now we proceed by investigating the first task on the
tasklist. This task is a lexicalisation task. So we go into
the dictionary and we find there the word 'a'. The

remaining tasklist now looks as follows:

2. (TKB , 2, QUAL, NIL
1. (LEX, NOM.OBJ, WRIT, NIL, RESULT,((SING))

STEP 4

The next task is again a taskbuiiding task. We make a list

of depending terms. This contains one modifier, for predicate PROP,
The function of this modifier is adv.adj (modifier of an att.adj).
We know from the grammar that an adv.adj comes before its att.adj
Hence we put the task to realize the modifier node on the 'before!
list. As there are no other items, we construct a lexicalisation
task for the predicate in this task. As final result we

get:

- 2.76.. -

production

3. {TKB, 4, MOD, NIL)
2. {LEX , ATT.ADJ, PROP, URGENT, OF%WHAT , NIL 7
1.(LEX, NOM.OBJ , WRIT, NIL, RESULT, ((SING)))

STEP 5

The task on top is a taskbuilder task. We look into
the structure but we den't see any depending nodes.
Therefore the only thing necessary is to construct a
lexicalisation task for the modifier. The function is

adv.adj; the predicate PROP and the viewpoint OFXWHAT
Resulting tasklist:

3. {LEX, ADV.ADJ , PROP, VERY, OFXWHAT >

2. (LEX, ATT.ADJ , PROP, URGENT, OFXWHAT >

1. {LEX, NOM.OBJ , WRIT, NIL, RESULT ((SING))?7

STEP 6

We execute the remailning lexicalisation task which
yields as output'A VERY URGENT LETTER'.

- 2.77. -

§ 3. THE IMPLEMENTATION

In this chapten we present the detalls of the computer implementation
we. have constructed fon the parsen discussed in the previous chapter,
In a §irst section we fntroduce a number of auxi{liary roufines

which togethen constifute a Librany fon List processing in FORTRAN IV.
In a second section we come fo the implementation of the parsen
Adself. '

In a §inal section we give the houtines which compute the

functional, case and semantic sthucture cut of final panticles

as computed by the parser,

§ 3. THE IMPLEMENTATION

3.1. Introduction to the implementation

3.2. The implementaticon of the parser

3.2.1. Auxiliary routines

3.2.2. The parser

3.3. The computation of the structures

3.1.INTRODUCTION TO THE IMPLEMENTATION

The programming language FORTRAN IV will be used here as the formal
language for the reprasentation of the algorithms. To computational
linguists this may come as a surprise , It is well known that
FORTRAN IV is a very 'tough' language for linguistic applications:
no list processing, no easy symbol manipulation, no recursive
programming. The reascn Ffor taking FORTRAN was Simply that at

‘the time the investigations started, no other 1ahguage was
available on the PDP 11/45 we are uéing in our laboratory. Although
we later on managed to implement a LISP interpreter system,

the working space of this interpreter soon proved to small for

the kind of programs we will be discussing.

This restrictedness of memory (32 K)was a second major decision
factor in favour of FORTRAN. It is necessary to write
highly efficient programs , especially as regards memory

requirements, on such a small machine as a PDP 11/45.

The choiee {or rather necessity) for using FORTRAN has the

advantage that the programs will be understandable by a large

group because FORTRAN IV is the mest widespread programming language.
Also, the programs can be implemented all over the world because
FORTRAN is available in practically every computer centre.

The first thing necessary however to be able to use FORTRAN
successfully for linguistic applications is the implementation

of a number of functions and subroutines which complement FORTRAN
with list processing capacity. The discussion of these functions
and subroutines is the purpose of this introduction

(1) List processing in FORTRAN IV.

List processing involves a way of representing internally

in the machine all the information about lists and about the
atoms contained in them. Also we need ways to input and output
lists and atoms and to perform operations on lists. The first

question we deal with is the representation problem.

- 3.1. -

list representation

Representation

A list is a number of c¢ells linked on each other by means of
pointers. It follows that we need a way to represent the
cells ‘and to represent the pointers., A cell contains three
parts the atomflag (AF),a place to store the car of the cell
{CAR), and a place for the cdr of a cell (CDR).

If we now organize three vectors, respectively called AF, CAR, CDR
and let the parameters of the vectors be the address of the cell
then we have . not only a way to represent a cell I (by a

triple AF(I), CAR(I), and CDR(I)) but also a way to point at
cells, namely by the parameter: I. In addition we can address

each part of the cell seperately.

Example:

The list (A B (C)) is graphically:

o c) ®

L =

then the FORTRAN representation will be

AF CAR CDR
1. 4] A 2
2. @ B 3
3. 2 4 @
q.) C @

Note that the representation of NIL (the null list) is f@.

list representation

Now for atoms we need (i) a dictionary in which the atoms are
stored, (ii) a base register, i.e. a unique cell that will be
used as unique address of the atom and (iii) a property list
ch which at least the printname is stored.

For the dictionary we will also use a'list'structure, based
on the principle tﬁat equal front parts are stored only once.
E.g. the atoms AA, ABA, ABAS, ABAD are stored in a structure
with in the cars single charactérs:

= base register
——
of AA

B —— A —-—L——p _ = base

register of ABA

[1]

= base register

- 1
—t——
. r——— of ABAS

= base register of ABAD

Y

Notice that on each end of a2 path there hangs the base register
of the atom made up by the characters of that path. 'The calls

in the dictionary structure and all base registers have 1 in the
atomflag (AF) of the cell. All the others have @#. This is

needed to keep both types strictly apart.

The property list is a special list of pairs (property, value)

which is stored in a condensed form, The property list hangs on

the CDR of the base register of the atom. The first item is always

‘a pointer to the printname of the atom. After that comes a special list
of cells where the CAR contains the property and the CDR the value.

list repressntation

S50 a complete FORTRAN representation (except for the
dictionary) for the list (A B (C) } would be

AF CAR CDR
1. @ 5 2
2. @ 6 3
3. o) 4 g
4. @ 7 @
5. 1 & 8 = base register of A
6. 1 @ i@ = base register of B
7. 1 @ 12 = base register of C
8. @ 9 @ property list of A
9. A @ @ printname of A
10. & 11 @ property list of B
11. B il % printname of B
12. a 13 @ property list of C
13. C @ @ printname of C

In the current implementation we have 3000 cells available. The
AF is declared LOGICAL%1 data type and the CAR and CDR as
INTEGER#%2 ., All three vectors are placed in a8 commonzone.

Note that as a consequence of these options all pointers either
to lists or t¢o atoms are of INTEGER%2 datz type !

With this representation in mind, we can now turn to the routines

which perform the input/output and processing.

Processing

In a list processing system there ig normally a so called freelist
created at the start. When in need cf a piece of list structured
memory, one takes 'cells' from this freelist and when these cells are
no longer needed, they are returned to the freelist. The creation of
this freelist is the task of a special subroutine INIT. After this

subroutine is called, the system is ready to start.

list processing

The pointer to the freelist is called IFREE and available in
a commonzone called /IFREE/.

Next we need a routine for imput (RLIST) and one for ocutput
(PRLIST). In addition we have a program to plot automatically
tree structures on the plotter. PLOTLI is the preparation of
this program,

For doing list processing, we have a routine for taking cells
from the freelist (NEW) and cne for returning them ({BACK).

Lists are copied by COPY and erased by ERASE,

A pushdownstore can be gsimulated by using the routines PUSH
and POPUP, ;

Work on the property list is performed by PROP and GET.

Routines which hang new list structufes on already existing ones
are ADD, APPEND, and ATTACH.

To check whether we are dealing with a list or an atom, we use
the predicate ATOM and LIST.

All routines are grouped together in & library called the
FORLI.OLB library. '

Before we start a discussion of the routines in detail, we give
a detailed example .of the operation of one single subroutine.
This may help the reader in reading and understanding the other
ones. Let us consider the subroutine APPEND (see firset its
definition on one of the following pages). We consider APPEND

in connection with the following main program:

1. IMPLICIT INTEGER (A-W)
2. LOGICAL%1 AF
3. COMMON CAR({3g0@) ,CDR(39@@) ,AF (328@)

list processing

. I1 = RLIST {(1,I,1)

. I2 = RLIST (1,1I,1)

CALL APPEND (Il,I2,J)

CALL APPEND (J,I2,J)

. CALL PRLIST(I1,1,6)
END '

WO 0 =1 U s
»

“What happens 1ln this little program is this. First we

read a list from a device with logical unit number 1 {e.qg.

the card reader) starting with the first charactér on the card.
The list is pointed at by It. . _

Then the system reads another list (or an atom) on ﬁhe same line
and sets a poirer I2 to it. By calling two times APPEND we
then'add the second one two times to the first one.

E.g. if we read Tl = (A) and I2 = B then after the first

APPEND we get (A B) and after the second (A B B }. The result‘is
printed by PRLIST on a device with logical unit number 6 and
from the first item on the next output line.

Now let us trace exactly what happens in APPEND. Given
(hypothetically) the following (simplified) FORTRAN representation
after RLIST {in line 3) of main program) :

CAR CDR
1. A o} = Il
2. @ 3 = beginning of freelist
3. 2

Notice that we leave out AF indicators for simplicity.
Now we enter APPEND with Il = 1, I2 = B and I3 undefined. IFREE = 2,

First we take a new cell from the freelist. CDR(1l) becomes 2 (line 6)
put I2 in its car: CAR(2) becomes B {(line 7}, note the prevision

for exhausting the memory in line 8, I3 = 2 (line 9), IFREE

{equal to 2) is advanced to CDR(2) = 3 in line 10 and finally

CDR{2) = . This yields:

- 3.6. -

list processing

CAR CDR
1. A 2 = TI1
2. B 0 = J,I13
3. 0 4 freelist
q. (o} 5

Then we enter APPEND again with Il = 2, I2 = B, I3 yet

irrelevant and IFREE {(in the commonzone) is 3.

First we take a new cell from the freelist CDR({2) = 3 (line 6},
put I2 in the CAR(3) = B (line 7), set I3 equal to the new
cell I3 = 3 and advance IFREE = CDR(3) = 4.

Finally CDR(3) = O.
This yields:

CAR CDR
A 2 I1
- B 3
B @
. o] 5 = freelist
-) 6

From this example it should be cbvious what complicated list
processing activities are going on in the computer when we

come to serious programs such as a parsing system for example.

To trace the analysis of one sentence in the detail just provided

is an almost impossible thing to do.

Now we discuss the routines that make up the library and thus
form the groundwork for the further implementations. The routines
are appearing in alphabetic order.

list processing

ADD

parameters: I2, Il.

Il is a list and I2 is an atom or a linear list
of atoms.

operation: After execution of ADD, each atom of I2 is added to
Il if and only if it is not present yet.

example: Let I2 = {(C B A) and Il be (A B C) then after CALL ADD({I2,Il}
Il will be (A B C).

Let I1 = { ABC) and IZ2 = (D E F) then after
CALL ADD (I2, I1) Il will be (A BCDETF)

code:

2091 SUBRDUTINE ADD (I2,11)
eQ02 ITMPLICTT INTEGER (A=W}
eae3 LOGICAL&] AF

pegd LoMMoN CAR(30802),CDR(3022),4F (3000)
eeas NIL & @

pens !FEIE,EG,QJ RETURN
aea7 FLAG = ¢

o8 IFCAF (12) ,NE, 1) GOTO 1
gee9 L s l2

1@ 5 J s Iy

ee1l e IF(CAR(J) EQ.L) GOTD 4
an1e2 IFICORCJY EG,.E) GOTOD 3
2013 J = CORCJ)

2014 6070 2

219 3 CaLL NEWCI)

paLe COR{J) » I

eaL7 CARCI) = L

po18 GOTO 4

2019 1 FLAG = 1

P220 K = 12

a2t L » CAR(X)

gaz2 GOTO 5

pe23 4 IF(FLAG EG.?) RETURN
eg24 LF (COR(K) ,EQ.@) RETURN
aa2% K = CDR({K)

ee26 L = CaR(K)

ea27 01O S

LI EL] END

list'prucessihg

ATOM

parameters: Il an atom or a list

operation: ATOM checks whether T1 is a list or an atom and
returns a truthvalue indicating that.

ATOM should be declared LOGICAL in the program calling it.
NIL is considered to be a list. :

code:
opey ' LNrical FusciTow atom {11]
a2 T"'PLTC'T 10 TEFRER [A=W)
ane 3 LAGLC2L =l AF 3 y
ﬂému Fopnay Far(aee), UNE (3P0, AF {3000)
enns ATON = Fal BF .
e TFarliy, .10 ATOY =, THUE,

PATE E il

list processing

APPEND

parameters: 1Il, I2, I3 with Il a pointer to & cell in a list
I2 an atom or a list; I3 a pointer to another cell
in a list.

opefation: APPEND creates a new cell pointed at by I3, hangs it
on the CDR of Il and puts I2 in the CAR of the new

cell,

example: Given

@
A /// I2 = B and I1 = 1

then after APPEND (I1, 12, I3)

Q@ =
A B yd with I3 = 2
code:
anel SURRAUTTHE ARPEND{LI1, [P, 13)
apER THPLICTT INTFRER (dmuw).
Ayl LRGRTCAL#1 AF
gaad coammay CAD{3RFR) N (XMan) , AF (30
ARMG rnMMOu, 2IERERS TFREF
aane ErRITLY & 1FPFE
2207 S CaP(TFREEy 5 12
“RP8 TE. (TFHER LR/ 3271 6NTND 1
gty T3 z JFFEE
A0 IFREE =2 [N 1FRER)
AR e cur{13)y = =
?a13 DE TRy
ARL W 1 wETTE (&, 2}
a1y 2 Frivw 14T (1%, “STORSGE EXRAUSTE(D Ik arPENDT)
A6 ralLL BEx)T
fpL7 B

- 3.10.5

list processing

ATTACH

parameters: I2, I1 with I2Z a list and Il a list
operation: After the execution of ATTACH, a copy of all elements
of I2 is added to Il. I2 remains available for further

processing afterwards,

code:

anal SURROAUTINE aTTACH ([2,11)
nam2 THMRLICTET anFPP {Amu)]
Bre3 Lokydils, i
A00N4 COMMON CARCARRR),CNK (278, AF (Fupe)
] T o
gg%g IE%I? Ef,™) RETLRN
moos J = I3
C Bore End OF LTST
a9 2 JECCORCY) EC,.NILY BNTO 1
@Yy J s CPR DY
ag1e GATH 2
a1 ¥ = Jp
am1d TF¢aF (Ip) El,1} &NTNH S
C ATTALH | TST
16 3 IR (ke iy) =010 4
nA1L8 TFeCaR (K FRLNTLY G5TD &
2n2n CALL MES fLJ
a2l rnRtJ) = 4
hppe Y=L
PR3 CaRIY = Car(Fr)
ag24 e K = LD¥¢%)
ap2s GHTU 3
Hare 4 DREJY = NMTL
Q2T RETunw
C ATTACH ATON
FARE 3 call MEW (ks
ape9 rnE¢l) =
Qa3p CaR{x) = 12
@351 HETIIRH
223p Fap

- 3.11. -

list processing

" BACK

‘parameters: I, a list

operation: BACK returns one cell pointed at by I to the

code:

neet
ARRe
ELE
Bana
apes

rank
pAEe
A2A9
agyn
nayd
gt e
an1 s
2314
0ners
Arie

freelist, It is not allowed to use NIL as a parameter
of BACK (this is usually the sign of a severe error
in list processing}. If so, the error message

"NIL IN BACK" is issued and processing continues.

RUARNLUTTANF #AGK (1)
TMPLICTT INTFGER [Amw)
LARTICA «1 2F
roan C“H[ﬁwimJ;CUFfFWHEJ.AF(BHWH]
cam=i~ JIEwER/ TFREE
P OTHE SUSKOLTIME RACK RETURNS ANE CpLL TO THE FREELIST
COTF(1LEQ,#Y 50TA 1P
coR(ly) = TFREFE
CaRCT) = 4
AF{IY = #
IFEFE = 1
‘= - 33
RETU-H
1w ARTTE (%, 1) '
1 FORART {1y, "NMIL TN Rafk?)
FH

- 3.12, -

list processing

COoPY

parameters: I,a list

operation: COPY creates a new list structure equivalent to T
and returns it as a value of COPY.

code:
ARGy TNTERER FuneTIO0NM COPY{IY
acme TMPLICTY (NTEGER (A=)
Ppe3 LOFICAL et &F
pewd Copupy CARe3nnn) ,C0R3PCRY, 8F (3R
2erS ropyY =
gzné 1F T EQ u) RETURN
BRoB TFraF (1), Fp,11 RETURN
eesn Jos
ng1l HER(PRS)
anye E:kt N,FEPBF1
ae13 CALL NEK(UORY)
pR14 Itn = Coey
oe1S TECAF(TER(JIY.EL,LY GOTD 2
Pe17 TEOCaF () LEna®Y GITO 2
puy19 tall MEw(K)
npea CAR(TICDY = K
Reel celL PURKCTCO,PD2)
ange CslL PUSH(T,PDS)
AAe3 1€n = CARLTLD)
apRe . J s AR
epes GOTN 1
ap2w 2 Cak(1C0Y = CARC(J]
Qo227 oz R
PneE TF(J,EE, P BOeTO 3
Ar i CaLl APREND [ICG, R, ICMD
au3i coTo 1
etz 3 CALL PORLURPCICN, PRI
) CALL PORPUE(],P0H)
re3a TEOI,ER,) FFTLRN
[T Jos rgkedy
anEy TE(JLER,®Y /010 2
o839 CaLL APPENP {ICD, %, YCO)
BEan GATH
Anay EtD

- 3.13. -

list processing

ELEM

parameters:' I1, I2 - an atom and a list respectively

operation:
ELEM checks whether the atom addressed by Il is in the
list addressed by I2, if so the result is set to 1, else to O.

mopi : THTERER FUNPTION ELEM(IL,IP)

rAWE [HPLICTT THTEGER (&=

naR3 LnGICaL «1 AF

#“nad Crment CARE32ne) , LRR{IATA), AF (3600)

LAnS ELFM 2 @

nane 15 = 72

aanT tFLaptT 1Y praalY GOTO

, WEITE (m, 2] o :
23?3 ? ;ngmn%bif,, CFIRST aWnUMENT NF ELEM SHOULU HE ATOM®)
Wiatl BETURN _

ap1e 1 TF (AF (13) ,EQ.1) 6OTO 4

“pla 5 TFIT_S.EQ.E"J RETURM .

“n1h TRICARCTY) pB.T1Y) BOTH 3

pE1e Ty = Cii(la)

PR19 nOT0 9 _

daza 4 TFe¢13 . HE,T1) FETHEN

Pdage FLEM = |

wp23 2 TN

Bazd FHI

- 3.14. -

list procaessing

"ERASE

parameters:

operation:

code:

arny
pepe
a0
2unay
PEES
veRg

£ nvat

pare?
Are 9
er1l
ér1e 3
R4
G-
rat?
Arga
19 2
eppn
pazy
AG22
gl
aaAY
Bbags
s LN |
AnaAal
Aneg
RAY

Il a list

ERASE removes all cells used to represent a list

structure and returns them to the freelist;

atoms appearing in the list structure are not removed.

SURRODTTINE FRASE (11)
IMPLICIT INTFGEE (A=)

LOGICAL 1 aF

CoMMON CAP(S@HFJ;C”RQBH?MJ,ﬁF(3WHQ)

caMsoN /TEReE/ IFREE
MIL a @

?EHQVEH

(AF (11 50,1 BETURM

1Fr1y, B,y RETURR
CALL NEWEpDS)
TF(T],ER, p) ROTEH

¢ "ERASE" Removes all CPELL3 USED Th KRPRESENT A T87 STFURTURE AND KETUFNS
C THEM TO THg FREpLLIST | MOREDVER AT(MS ARPPEARTNG In

THE L1587 STRUCTURE AWE

TE ((A¥F{CapfI1IY FL. 1) OR, IMARCILY EQ.2)) GOTO B

caLl PUSH{T1,F0S)
T1 & Car(11)

ai¥n ¥

T = I

T1 = COEAOTLY
COR(I) = 1FHEF
CARCI) = @

AFCIY =

TEHEE = |

ROTE 3

CalLlL POPLP(TIN,PD18)
TFOI FGLHYLY RETLRY
rOTO 2

Il

- 3.15.

list processing

GET

parameters: Il, I2, I3, with Il an atom, I2 an atom, I3 .an-atom of

a list.

operation: GET retdins the value I3 of the property I2 on the
property list‘of the atom I1.

If I1 is not an atom, an error message is produced:

"FIRST ARGUMENT OF GET SHOULD BE ATOM". If the

property I2 is noﬁ on the propertylist“of_13, I3 is

set to NWIL.

code:
Admy SUARDUTTIRE RET {11,12,14)
BT THRLGCIT TRNTEOF~ (A=)
tpey CLNGICHLE) AF : _
Aped CaMMNy URR (F29A), CPe0RARH) , AF (R32@d)
. 'C OCHERY wWHETHEK TiHE PRDPERTY 15 ALRFADY THERE
- AaMmY MTL = &2 ! -
A6 TEFCARFTEY en,1Y wiT 52
2B ARTTE tS,28) .
AdAy 25 Fodmal (lx, TFTPST AREUMENT OF GET SHOULR 39F aTUH")
PRI ragt, Fxial
A1 I BT Ji = 1 '
2312 Tt o= TR (1)
AATE LA IF(LGRIINY ENHMIL)Y nnTn 4
"E1S Jv o=z ey ' :
N6 TF(OA (D anp 1) Mt , T2 GATH 126

: C 1T T3 Turag
AA1TB AR TR oz UOR{CATE]Y])

ANty QFE TS e
CIT 15 st tapog
Y- 1Y B Ty = 07 -
Ay LA EVIERN
Aapp F

- 3.16. -

list processing

INIT

parameters: none

operation: INIT is called at the start of.any program using
the FORLI library. It creates the freelist by linking
the CDR cells to the next cell.

code:
nam %uﬁwnJTTvF INT
' € THE SUSRAUTINE (NLT CREATES TRE FREELIST
apn? TMPLICIT TNTEGER (Awh)
i AF -
g;gz EEM:h&!Lf‘“AQ(E’HU‘M] Cl“ﬁ‘('ﬂﬂr*m] AF [3oam)
pEes poMMOr s IFREF/ IFRER
. C fpFarE FoRE Ts7
aA@ane O S R 1
pOAM7T AFCIY =z
aamne CAR(IY = & .
age9 rtnrR{TY =2 T+
- 2ma J e I +15p0
g1y AF(.JYy ao
TAa s N
015 1 L e
‘apLd nﬁ z l=q,n
- ems 2 CHR(IY = @
Q16 TFeFE = 9
r@eL? RETUR:
2018 EMP

- 3.17, - | .

list processing

INPUT

parameters: IBUF, JZi, DEV

operation: INPUT is an auxiliary subkroutine for the read-rautines.

code:

ppm

ngte
anmy

agpd

REHS
de ol
pany

Apn s
agno

peiR

2pti

12
nAY 4
L RN
Ry 8
2219
apel
naz2e
nE24
Aer%
ndlated -

It consumes cne plece of input for the inputdevice (DEV)
starting from the IBUF-th character on the input line.
A new inputline is read when necessary. INPUT returns
in JZ a s@ecial code if the piece of input 'is a
punctuation mark, else JZ is the base register of an
'atom; INPUT constructs the necessary bcokkéeping cells
for atoms if the atom is a new one. INPUT calls SCAN
to decode the characters and LOOKUP. to consult the atom
dictionary.

SURRANTINF TRRUT(IRUF, lz DEV)
TMPLICTT TMYEGER (a=#)

LOGTCAL ot AF

INTEGER Tt {30}, SCAN

LOGICAL# L STHIM

LOGICAL &t aLF(5R)

cOMMON Ak {3OEED, cmn(xmﬂm) SF (2@
coMmny /ﬁRTl/TPPIN BLANK ,FIRST
CuMenn /5TRTE/ STRINEBD)

CHATA JLEN/ZBE/.

MIL = ot

C
S 1) CanNTRMY

L REan ME¥ RUFFER IF DL DNE I8 EXHAUSTED

?B

-3

TF(TﬁuF Ly, ILEM) HGTD 2

TEIDEY, mF 7) RFADINEY,X,FHG=PRY (STRIN(ID,T= L.ILFNJ
IF({BFv Fr,7) CalLl 1M

ErRMAT (Hﬁnll, :
TFEIPFIN LER.LY WRITECR,R) [STRIN(IY Ta], ILEN)
FURMAT Vi, FR3AL)

TF(STRINGYY Fii, ALF (42)) nOTH 29

16UF = ¢ _
TRUF = JRIF #*1 ' “ ’
IF(STRIN[IRIFY BN, 8LFE1Y) GOTE

- 3,18, -

1iatfgrnceséing‘

_ © 0 DECODE CHARALTER
fp2e] ot SCAN(TAUF)

: C SEND TO VaPIOUS SUBPARTS
1YL TIF (1, GT,5) anfo 4
' ¢ PUNCTUAT [ON
Al B ¥ I
apze - RETHRY
e
C 2} ATNM5
B € (4) CRECK FOKE NIL
933y 4 TF L), NE, 19y ENTH (2

apRS TRESTRIM(IRUF 411 NE ALF(&))GDTU 13

g3y TF(STRINCIBUF+2) NEALFL17IIGETD 42

203y TJ = SCAMCIEUF+3)

pp4ag TFIT1,GE.41 KLTQ 17

apLe - Jz 5 ™ o

Qpe3 TRUF = TBQF +57

PQd4 RET Ul ‘ :
. (B) ATOMS ghn RUMRERSD S :
C PREPARE FOR Sl‘n»Tff T"”:‘ CRoFER ATOb SNG CREATE & NEW CELL (LN Frf".C\-J'F‘\'Z"‘lJLT]NE
C THE RICTIOMARY aluﬁ CUMPLTE THE HPbIMPDINT OF THF NICTINMNARY

RR4S 12 KT 1 .

ARAL ISTREK) = 1)

- @Raz CALL NEW(12) : ' S

ApuLE Th =2 CJ/1aYet | o . :
T LDOKUP BY STCRING THE CONE Ta 17 A CALLIMG THE LNOKUP SUAROLTINE
ange tHRETZY = ¢ T . : . o

aesn 8 CAR(IZY =0
ARSY aF(17) = 1
nase CALL LOOKUPETR,17,02)
eeR3y TFtd7,En,™ RGTD 1R : -
D L TF MECESSARY WEAD NEW RUFFER FOR AEXT CHARACTER
QRES TR CIBUF LT TLER) GNTD 2 ' ' _
BOSY ' TFEREV ME (BY SEAD (DEV, 3, FrD=2¢) (STRTRL(T) 1=, TLENY
n@EY . TFINEV,FR »% CALL TH
2961 TF(IrrIt JFu,1Y WRITECHE:A) (SIRIN(I),1=1,]LEN)
APeY TRESTRINOLY JEW ALK (4RYY GDRTO 2
ARFRS) 1RUF 3 @ :
APee 9 1BF = IRpF,; *1] :
C IF FLEMENT I THPLT TH ATHM ntLIM1TFR GOTO ENMD DF ATOM ELSE GO OM WITH (01N
O SULTATION OF The DICTIONARY . B :
S 17k J o2 mCAN{TIRF) -
L BPeE IF(J.uT,4) DTN 1@
BETY K & # % :
ArT TR ,ET, 30y GOTH 214
erTI 18TR (k) =
PRy GgOTO 2 :
. t ENh DOF ATNM .
aaTE 1R TBLE & 1RUF =i
arTe o cablb Back({iz)
hE77 TF(CNR(JZ),ENMILY BOTN 120

C CHECYK wHETHER FASF CELL. OF ATNM WAS ALRPAPY Ik DIFTInhnRY EITPE&

C IMMERTATELY &% CDR OF LASY CELL OR AS EMREUDFDR RASF CELL

COTF NAT Makf wew CFLL PRE EMREDNDINE FOR RaSt UELL AND FOR PHINTNAME
SeeTH 1Rt Iy o= 07 ‘ : ‘ :

AR/ J2 = CORETZY

age] TEICAR(ITY, F%.“1L7 RETURN

ARE3 IFAhF 2y, mb_-Ti) GnTn P&

nRES 1F(FAk[£AP([?!J.NE.fTL! GOTO 127
B@RT . : 37 = cA=(].1

BLAE N RETHRY .

QeRY 127 TF(BF (CH%iz1) . ER.@) 507N gey
2291 TFICARITLR(IZ1) MR w1LY GOTO 124
aas3 JT = ki 2) o

AR a- . RETLRN

- 3.19.-

ligt processing .

2a95

2Qae
ea9y
npos
B0agy
nipa

a1py

asne
ayn3
214

12@

13

aLns -

2i2e
a1or
" Blee

p{ng
a1

2111

RIXE

e

2114
@115

@116
8117

@118

- Bidd

aiz22
p123
L4

2125

. 7€

18

Capy NEw(1)

"JE EORIIN
cpR{ILY = 7

ChRETY 2

raLL Ned(I) -

CARCIY =
GOTY 13
CaLL wEW(

€ ELSF MAKE MEW CELLS
Tan o

enR(JZY £ 3

AF{JY =

CARCYY a
Jz. = 1

CALL NERIU)
CRARCI] = L

CALL NEW(J)Y -

CARILY =

L=

J
CORTING FOR PRINTMAME

SFLJY) = ISTRCL)

L= L+t

TF(KeL) 80,%1,32

RETUND

CARCJY = T3TRCI)

RETURN

CARCYY = (I5TRILINIPR) '+ I8TRIL+1)

Ye?(k2fery ks, 00 sETURN

CALL NFwiC)
Cnrty) & ¢

caLl ExiT
Enn

J 2 C
: FOTD 14
.E(S} P=ATOMS
T (4). ERRORSE anp FMN OF FILES
CaLL RaCkyeIZY S
- RETURM
20 J2 = =1
RETLRN .
21 ARTTE (6, 25) . : : o
25 FORMAT (1%, TATNMLFNGLTH FECEEDNS ¥ CMARACTEHS‘"]-

- 3.20. -

list processing

LIST

parameters:

operation:

code:

anmni
B2
AEm3
ro@d
RS
apmyY

I a list or an atom.

LIST checks whether I is a list or an atom, and
returns a truthvalue indicating that.

LIST should be declared LOGICAL in the program calling
it. NIL is considered to be a list.

LOBICAL anfTIﬂN LTET (11}
LOGIEAL =1 &F

pOMMAN Ak (3RAR), COR(30PA) AF (3201)
I.IST a FALspc

lprnpfli),gw.?J |L18T=,TRIE.

ENP

- 3,21 -

list prncaséing

LOOKUP

parameters: ID, IZ, IY

operation: LOOKUP cohsults a dictionary (ID) to sSee whether
infermation in a cell (IZ) is present. If so,
the peoint in the dictionary is returned as JY,
else the dictionary is extended to deal with.the
new informatien.
In addition there is a check whether the space
for list cells 1s not exhausted. If so an error’
message is issued: "STORAGE EXHAUSTED DURING LOORUP".

code:
Bamy COBRRDUTINE LNNKUR(TR, I?.TY1
neEee . TMeLIrY INTFRER [A=mk)
2B LORICAL »1 AF
aprd CamYnE PAR(ZRFA], F”h(?”“ﬂ) AF (3w
alalala COMMOtE #IFREER 1FkFF
ekl NIL ® b
Cof)y Lnney
A3RT 1 TEUCOW 1) R MELY RRTO 7
anpe 2 I8 = In
REISB R Ii'l = Chv1s)y
zat) = 10 .
nmie I#fAFfTP} Fria®Y IY = RAN(IHJ
anyd 4 TFICan{)Y) nE,CARLTZY) GOTA -3
o mle Im s I¥
Sam? BE T LR
1A 1 TFLIY MF TR GOTy 2
C (2] CREATE nEW EMREANTAG
Arndd 9 rFAag T35y 3 [FREE-
Bpal AF{[FRFFY) &= I
paze CAR(IFFFEY 2 LD
P2l 10 = [FREF :
PARY ‘ TFLIEREE ER,I0HN) n0To 1A
PP . TEAEF = FRR(IFRER)
C (1) rRFATE wew CELL Nb RTCTTIAMAKRY
ag2? 7 rhe(Isy = 12
apesd . T™ho s 17
Aared cakl{tny = ¢
67 3 ' 172 = IFw#EL T
Aaxy TROTF#EE 20, 3008) 60T 1A
ANTRR [EREE & £ (IFkbh\
934 Lne ety = :
FAAS) Jy = 1If
NGIHET Y RF TUR
: ¢ (4) FAaROAS
. BniT o WEITE (6,111 - _ ‘ :
S an%A 1 FOSHMAT ¢tv, "STUWAGE FYHAUSTFD NURTNG LOOKDR?Y

ne 39 caLL FsfT - 3.22. -
A 4 B Ean .

list processing

NEW

parameters: I

operation: NEW takes one cell from the freelist and sets I equal
to this cell. In addition it checks whether the memory

space is exhausted and if so an error message

"STORAGE EXHAUSTED IN NEW" 1s issued.

code:
AAN1 SURAADUTTIMNE nFR (1)
Anine THRELICIT TNTFGER ([A=i)
fpan3 LDBTICAL =1 &F
rPaea CNAMON Car [3AFR), CNR [3A0E 4
nanG COMMON JTEREFR / %§¢E§[3AG?)'AF(5HHHI
L THE SUBKOUTIF WEw TAKES NNE CELL FROM THE FREELTAY
nate TFIIFREF ¢ T, 3700 BOGTA 9 - o
"ARR T = IFkFFE
AR TFREF = ChwtIFREF)
J R COR(TY = o
21 RETURM
epie 9 WRITE(B, 4)
[Z150 BCR- FOIMAT 11y, "STORAGE EYHAUSTER TN NEW*)
?@a14 Tl FeTd
ga1s Fhin

- 3.23.-

list processing

PLOTLI

parameters:

operation:

code:

a9}
ped2
poRsy
apad
2e0s
opee

20ar
ages

-anr9

I1, I; K, L

PLOTLI writes a list Il on a file on disk: FOROO4.DAT

"in a format which c¢an be consumed by the PLOT program

It denotes a value for the size of the characters of
horizontal lines and the space between the leaves.

This value is equal to I x_O.25 com, So, if 1 is set

to 1, the size of the characters will be '0.25 cm which

is more or less the hgrmal size. ¥ dénotes~eipher O or 1.
If K is O then the lkee is not centered, if K = 1 the tree
is centered, i.e. the lines from dominating nodes will
end at the middle of the bar.éonnecting‘the dominated
nodes. L denotes either O or 1. If L is O then the

.leaves will 'hang' right under their dbminating'hodés,

if L = 1 then the leaves are plotted on one line.

SURROUTINE PLOTLIC(IL,I.K,L)
IMPLICIT INTEGER (A«W) .
0 kLul AF .
ED%%%NLCARtBGQUJ COR(ZPBAY, AF(SBGa]

_ralL PRLTST(Ii,I 41

WRITE(Y, 1) ToK,L -

1 FORMAT (312)

' RETURN
END

- 3.24.-

iist processing

REMARKS 3

1. ‘Files from PLOTLI are written on FOROO4.DAT 80 do not confuse
thig with other output on thls file by PRLIST. _

2. When all structures ‘to be plotted are processed by PLOTLI,
one should call the CLOSE subroutine in the FORTRAN program,

in particulaf CALL CLOSE (4). This is needed to 'close' the
files, i.e, add an 'end of file symbol' to it. -

- 3,25, =

list processing

POPUP

parameters:- I, Il with I an atom or a list and Il a list..

operatlon- POPUP sets. I equal to the contents of the top cell

code:

Aprl
rame
annd
Bmirg
anps
lrdal)
PoRT
2ap9
i R
VAR
n31e

I
FL14
a1
016
AN
regd

LAm1 g

Ap2p

of a list TI1 and then removes this cell from the top.
"This is done by transferring all information from the
second to the first cell such that the value of Il

remains the same.

SUAR AT INE POPURTT, T1)
L THPLICTT . T TEGRER fa=u)

LAGTR ALY AF .
CUMHUY CARCRARR], (0w (3dam), aF (X80
roaMm JIBPREE) T1FREF

T = Caqqt1) .
TRICNE (T el) BT |

I = 0a0T1)

roe(liy = chR(TS)
"LAR[TiY = CAR(T™M

AFIT1Y =2 2 1M)

T REMOVE Spofme rELL
CNR(T2) = TFRFE
CAR(IZ2Y = »

AF(T2) = 2
1FRee = [
RE TR
1 CLLy, TarA{1q
IR
CEWD

-.3.26. -

list processing

PROP

paraméters: Il, I2, I3 with I1 an atéem, I2 an atom and I3 a list
or an atom.

operationg PROP appehds the property I2 and the associated
' value I3 which may be an atom or a list to the
property list of atom Il if and only if the
property 1s not yet on the list, else the old value
is replaced by I3 without wérning.
If Il is not an atom, an error message is produced:
'"FIRST ARGUMENT OF PROP SHOULD BE.ATOM.‘

.code:
"Ry SUARQUTINE PRLP(IL, 12,19
Anp2 TMPLICTT TRTERER (a~=w)
SRR LoGTreet &l &F
PaARY pOMAny AR g@AA), CRR(3AAM) , AF (T30
¢ CHECK wHETHews. THE PROPFKTY 15 aLrREADRY THERE
1905 MIL = 7 : .
ANk TFIRF(TLY, NELPY BATH 4
FAmA WETTE(H,S)
aapy S FoRMgT 1y, PFTRST ARPGUMENT OF PROP SA0ULEL BE ATOM?)
Ay Cai FiT :)
Aty J1 o= 11
nal2 Ji =2 COR0INY
4Nt 3 10Dk TF{CO={T1) BR ,NILY GDTN 1
1S LRI - R R
nE1e IF(CAR[mam (]I}, NE,12) GNTR Lk
£ IT 1% THERF
218 e o Y UL I T I |
pa19 e TiiGn
C 17T 18 MN{'T THERF
pm2g e caLi tEL ()Y

CaL. Arednny (J1.1,11)
FARLT) = T2

cuRi{ly e 12

RF Fuiw .

END

list processing

PRLIST

parameters: INP, BUF, DEV

operation: PRLIST prints a list or an atom.
INP is a pointer to a list (i.e. to the first
element of a list) or the base register of an atcm
BUF is an integer value dencoting the position on the
outputline from where the system should start printing;
if I2 is ¥ a line is left open and the system starts
from the first character on the next ocutputline.
DEV is the device on which the output must appear,
if DEV = @ the outputline is constructed but not printed
out, This is of use in extracting the printname
of atoms via commonzones.
The result of PRLIST is that the whole list structure
pointed at by INP is recoded in alphanumeric characters

and transferred to the device.

remarks: 1.Tf list notation is impossible, dot notation is used
but only at the point where it is necessary:

E.g, given (& . (B . (C . D))} , this will be
printed as (A B C . D).

2. When the value of BUF is greater than one, all characters
on the outputline are blanks. One can use this feature for editing.
E.g. suppose you want the following as output:

THE NAME IS : JOHN, where "the name is:"is in the program
and John an atom referred to by the variable name, then the
output can be obtained by the following lines of.FORTRAN:

CALL PRLIST (NAME, 14, 6)
WRITE (6,1)
1 FORMAT (1H+, 'THE NAME IS :')

code

- 3.28. -

- 1list processing

code:
po SUBROUTINE PRLTST(INP, RUF, DEV)
agne EMBLLCIT INTEWER (4=)
a3 LOGTICal &y aF .
doed LOGICAL «) sTFIN
anes LORICAL &1 & F(SE)
11 . CcOMMDON ZSTRIN/STRIN(BT)
aee? COMMON CAR (3P0@),COR(INAAY, AF (300075
2ape DaTA ILEN 70/

£ THIS SUpRAUTTIME PYINTS a4 LIST POINTED AT HY IAP O & DEVILE CALLEL PEY
C FROM Tug FOSITION INDICATEN BY BUF

ndrl R MIL =

ae1@ TRLUF & BUF .
2011 TF(BUF LE 1) RUTD 4p@
2R3 Dp 481 [= 1,BuUF

eatd 41 STRINCT) 2 alF (1)

RE15 4a@ IF Q(DEV B0) ,OR(IBUF JNE ,B)IGOTO dn?
Q@17 WRITE(DEV, 40

a1 43 FORMAT f1x/1%)

P19 4dpe T1 & Imp

@20 IF (IBLF,FRn,k)} LRLF = |
noee T0UT = 1
C TOP cONTRUYL + SEE WHETHER 1NMPUT 18 aTOM,NIL, DK LIS8Y
PR3 TF(AF (D) (ERL1) GOTD 1¢0 ' .
RE25 TF{I1.EQ,0} ROTO 200
C IF LIST CFREATE PEG CELL ON TOP DF LIST
ep2v : 10Ut = 7 : .
ngae 1 =11
pa2g CALL NEs(TLY.
ol b CARMIYY = 1
apdy cALL NEW(RDE)
aaxe GOTR 2
. o
C NORMAL CORTRIL
c e e Wy
ee3I5 ¥ %% z ChR(11) N
apsa 2 IFely Fa,nll) ROTH 114
ap3e TFeaFeT1),Ea,0) BUTD |
ap3e : TF(CAR(11) ,NE,A) BTN A

C
C SECTION { PRIMTING THE AT(MS
e L L L L LY L L L L P e T)
€ 60TO FEINTMAME CFLL NF aTOM, DECORE THE PRINTNARE ANM WHITE IT DN THE [OUT=
_ ¢ PUTRUFFER (STRIND
epae 190 14 & Cuk(I1}

LIES PRN = T

pAae 1% T1 = LAR(PRNMI

npHasy TREG = T61F =

pa4s 11 IF{IBUF+L, LT ILEN) GOTO 44 _
BR4H TF (DEV NE) WRITE(NEV,R) (STRIN(1), e, THER)
e24e e FURMAT (1x, 12941)

Qu4a9 18UF =

S RAp8Y GOTD 18

ags1 14 STRIN(IAUF) = ALF(AF(T1)Y

ngse St s CcAR(11)

2253 TF(I2,E0,) Lnrm 12

@955 IBUF = [RUF +1

ZpsSe . - TEL12,LT,.000) GOTL 186

= 3.29, -

list processing

DS STRIN(IPUF) = aLF(12/10M)
PEs9 TRUF 3 TAUF +)
ppen 12 z 12 = ({le/100) 1 1)
2QEL 16 STRIN(IRUFY) = ALF(I?)
ARse TFLCOR(TI1Y,¥ia) LNTO 17
aped 11 8 COR{T1)
APeS 1BUF =z TRUF +1
NRke - GOTH 14
C END NF aTUM OR P=ATOM /7 al!ll RLARK
pReK?T 12 TBUF = 180F #+1°
RALE STRIN(IRLFY = ALF(1)
PRe9 IF(IRUF,GT,TILFN) GATD |1
anz1 TRUF 2 IRUF +1 :
agvre IF(INUTERLL) GOTG 118
agTd GNTU 114
c .
£ LEFT BAREMTHESTS
c ---p--—-—----—-—'-
C PUSH PRIMTER TN CURRENT CFLL aMD SET cuaﬂﬁnr CELL ESUAL TG CaR , Ai; LEFT
€ PARENTHESIS 1F FMEEUDING MOT DUE TG AN ATOM
erTs 1 IF(CARCILY e RWNILY GOTO 241 .
ger? CALL PUSK(141,FDS)

. BaTR IFIAF(CARCYIY) JEQLY) GOTO 117
ppap IFLIBUF LT, TLENY 6GRTO 19
apbe TRUF = IRUF =1 :

08l IF(DEVNE #) WwRITE(DEV,®) [(STRINCI),181,]RUF)
ap85s5 IBUF = 1 : . : .
2p86 19 STRINCIBYF) = ALF(P)
ppe? IRUF = IRUF +1
L T91 = CAH[TY,
BOR9 GOTH 2
c .
C RIGHY PARENTHESIS
c-ﬂ-----.----w-n-'-v
L POPUR POINTER Tn CURRENT CELL AND ADDR RIGHT PARENTHESIS TF EMHEDODING 18

C C NOT NUE TO an aTOM , TF THE @USHDOWH STORE 1S EMPTY GOTO END

2e%% 114 CALL PoPLP(T1,PDS)

2094 IF(CAR(FNSYLERNILY GATH 38R

apel IFrtAFrrAPr1131 Flag1) ,0R, {CARTIL), Fh.NIL]) ROTO 16
Ares- IF(IBUF LY TLEN) &UTO ??

- 0as? 1BUF 2 IBLF =) _
an9g TFIDEV HE_) wRITE(DEV,B) (STRINC(TY, 1=, TRDF)
rpe 18UF = 4 :
ptr1 22 STRIN(IBLFY = ALF(3)

Qyee ~ TRUF = [RBUF
nin3 8 TF{CDR¢EL) FR,NILY GOTO 114
C onT
f JF TN THE CIH THERE IS5 A POINTFR TO AWM ATDF WE ATIN 5 FOT
BIES TFIAF(CERITE)) LENMTLY GATD %
a1e7 ' 1F (1RUF.L.T,ILENY GOTN 23
169 TBUF = 18UF =1
ag1e TFIGEV,NE @) <RITE(DEV,6) (STRIN(IN,I=21,T1R4UF)
my1e TRUF =
8113 2% STRIN(TRUFY = ALF(5%)
AL14 STRIM{TRAYF+1Y} = ALF({1)
a1l TBUF = 1RJF +g
116 ROTD 3

- 3.30.-

list processing

a7
P19
piew

B33
g124
2125

Bigs

2128
2138

2131
A137
2133
Ay 35
Bitn
A136
a1%9

Qla¢
2141

2142
w143

C NIL

2nd

END
g

11m
5na

C ERR
!

AR

TF ¢IRIF42 LT, ILENY GOTO 21@
TBYF = IRUF -1 - '
IFIDEV NE @) WRITE(NEV,6) (STRIM(I),I=1,1RUF)

RSN Erdur) = aLF(19)
STRINCIRUF+1) = 4LF(&)
STRIN(IAUF+2) = ALF (17
STRIN(ThUF+2) ALF (L)
IBUE = [HBUF +4
IFCIQUT, Ea 1Y B0TD 114
GOTD 3

STRIN(IBUFY =2 ALF(X)
C1BUF = JRUF #1
IF(FLAG_EH.11 RETLURN
TRYF a TELF =1
TFLDEV.HE,RY WRTTE(DEV,&) (STRIN(IY,1=1, [RUF)
TRUF = 1BUF i .
RETURN
R
wR1ITE (&, B&)

)1)

- RETURN
" END

- 3.31. -

FORMAT (1Y, "IRFEGULAR TNPUT FURPRLISTI(POSSINLY. PART

(iF

PICTIGHARY

list processing

PUSH

parameters: I, Il, with I a list or an atom and Il a list.

operation: PUSH creates a new cell on teop of a list pointed at
by Il and sets I in the CAR of this cell.
the value of the pointer itself does not change
during PUSH, bhecause actually the second cell becomes
the new cell and all information on the former first
cell is transferred to this cell.

cede:
il B SURPQUTTNE FUSHIT,T1)
apme TMRLICIT THTFGER (A=W}
L) LNGICAL 1 AF
anrd fomMHni CApafern) (DR (3Av0), AF (30AM)
. £/ TFRE
e o THISCgG;gSU4f§E$EéEATE§FA NEW CFLL DN TOP UF A LIST T{ AND STRars T I
¢ Tug caR DF Ta1s CHLL
POA6 TFeIy Ep,my GO0 3
naee 7 12 = 11 - ‘
C TRaNSFE& TNFORMRTIUN OF FIRST rewl, TO NEW CELL
newne TFEIFREE L8, 300K GNTA 1
raly 11 = IFFEF
R TFREE = rhiarJFREE)
Mizy % BEITIL) =& Ar (T2
[IR cak{111 2 ak(i2)
LS ENLElLY = CORCT2) .
£ STARE NEW JNFOKHATIODR TN TOP CELL
Atk AFfI2) a
wpT CAR(TQY = T
B A cor(tg) = 11
A€149 Tt =z I¢
go2n RETURHN
= T | WRTITE (8,2
G@p2e A FORMAT (1y, “STrRAGE EXHAUSTED TN PHSK*)
a3 CALY EXIT
ARz 3 caLL MFWIETH)
aR2s aOT0 7
PAPe END

- 3.33, -

list processing

RLIST

parameters:

operation:

BUF, IBUF, DEV

RLIST is an integer function for reading lists and

atoms.

BUF is a pointer to the position where the reading

should start.

IBUF it a pointer which results in the final position
after executing the function.

DEV is a code for the device from which the system should
read.

The result of RLIST is that all decoding and storing is
performed and that a pointer to a list {(or atom)

is returned as result.

The following conventions hold for the arguments:
1. If BUY is equal to P, then a new line of input
is consumed but the line is NCT printed out during
reading.
If BUF is equal to i,a new line of input is consumed
and the line is printed on the output device_(LUN: 6).
If BUF is greater than 1, the system starts
reading on the latest consumed line,
Whenever a line is completely processed, but more characters
are needed, the system keeps reading new lines from the
input device until a complete list (or atom) is found.

2. IBUF is set to the final character used in the RLIST
process. So, with IBUF we can keep on reading on the same
line if we take this as starting point for the next call
to RLIST.

- 3.34. -

list processing

3. DEV indicates the device from which the

input line must be taken.

if DEV =@ a special subroutine called IN is used

to fill the characters of the intputline in the
commonzeone STRIN. The user can himself define

the way in which this filling in is performed.

If DEV is greater than ¢ the relevant device should
during taskbuilding be connected to the logical
unit number specified in DEV.

Remarks: 1, Blanks are ignored if not meaningful

2. Superflucus right brackets on the last inputline are
ignored but if you keep reading on the same line, an error
message will follow: 'TOO MANY RIGHT PARENTHESES'.

3. A lack of right brackets will make the system look
for further brackets and therefore consume the rest of input
lines. Then a message will be issued: 'TCO MANY LEFT PARENTHESES'.
So, a lack of right brackets is a fatal erxror, in that it is
noticed only when all cards have been read.

4. The null string can be representedin the input by NIL
and (). NIL is the only atom that is present as soon ag the
program starts. {The integer value of NIL is @)}.

5. Each character that is given as input 1s coded directly
into an integer. Characters which are not in the ALF vector are
not accepted, a message 'UNRECOGNIZED CHARACTER' is issued.

6. An important (but difficult) gquestion is the fact
that there is a fundamental distinction between the FORTRAN
program and the variables for lists and atoms used therein and
the users' specification for the atoms and lists, a distincticn
which is not so stringent in LISP e.g., due to the QUOTE-feature.
Clearly the bridge between the two is the RLIST function. Therefore
any atom that is used as an entity in the program should be read
in by RLIST.

E.G. suppose 'NOUN' is an entity which is being referred to in
the program, then we can write

NOUN = RLIST (1,I,1) where NOUN is on the card.
From then on the variable 'NOUN' (in the FORTRAN program) will
refer to the same object as the atom NOUN in input/output.

- 3.35. -~

list processing

code:

anny

naqaz2
npns3
a0Qg
2aas

2rA6
naar

ApRa

2009
B394
natt
o412
2a14
AZ16
Ap1 8

ey
A2
neee

r@ed
Haz2s

waree
(lurgs

pr2n
Apde

ne%1

#n3p

R332
ants
Ad3n

AORT

IMTESGFR FunCTIAN RLIST (uUF, InlF.PEV]

c
C (1) sréar

c LA R 2 T ¥ F
TMPLICTT INTEGER (A=)
LOGICAL =1 &F
LNeIcaltel aLFtS6Y,5TRIN
LOMMION ,8TRIN/ STRIN(SZ)
CaMuny [Ap(12a0) CNR(I2AN), AF (37020)
COMMON sPRIN/TPRTN,BLANK,FTFST
NATA ALF/ ¢ Fyr (e, P) hr, PE P70 P U PR?,PCF, P0* PF?, r s "
PRL RN SRS RS LR R ‘ARl AR AR IS RS RS LIRS SIS
WA R P Gr FL Se FRE e PR PR FGR N r e e e e,

'"'—'l‘]'J"’l"’l‘:’l':'l‘?-]'"‘|.='1'.‘|'*'/

C FOR COMTRILING THF INFUT A KUFFERPOINTER (TRUF) TS USED WHICH POINTS TN THE
C FIRSY CHARACTER YO HBF. PEAD, TBUF INITIALLY ALSN RERULATES THE PHINTFI LG
€ C(YPRIMNY wWHICH 15 SET T 1 IF THE INPUTLINE IS TO RE PRIWTED OUT,ELSE TO &
NIL 2 @
IRUF = RUF
RLIST = 2

IFFIRYF GT,1) GOTO (@

TF(IBUF,EQ, ") TPRINS®

TF(THUF EN,1Y TPRIN=]

TRUF = Aj
€ DECOPRE THE FTIegT THPUT ELEMENT , TF IT 15 A LEFT 0OR RIGHT PakFMTHESIS
C WE §TaRTY PROCESSIRG FURTHER, ELSE AN ATAM IS GTISCOVERED ANN WE JHMME
£ DIAZTELY RETURN WITH RLIST AR PNIMTER Th THE AMASE CELL 0OF THE ATOM
1pa Coth JTHPUT{IAUE,JZ,DEV)

IF (12 €N 4q) GOTD 24

IFEIZ LT.?) GOTO)

RLIST=JZ

RETURM
C WHEN THE FIRST FLEMENT I8 & LFFT PARENTHESIS «CNDE = =X) AN KRHOR OCCURRED
0 ELSE WE CRELTE A HEW TOPCLELL AMD GOTD THE CONTRREL POTNT
1 [F(S7afie=3) ENTH 22

falL NEWCFLIST)

Cal L NENr%L)

1R = FFL‘[_S

GOTO 11

(2] MATN PROGRAM
& NEW ELFHENT TS TAKEN FRAOM THE [NPUT
CALL INBUTITRUF,J2,0EV)
£ CONTRAL POINT
Comemrrramraenmnen .
£ SENG TO 9ECTION FUR ATOMS OF LFFT DR RIGHTPAR DPEPENDING NN THE RESULT
L OF "fHNPUT* _ TF INPUT RPESULTS IN «1 (= END OF FTLF) AN ERRAR NCCURKED
JTFLJZ.6T,2) LLTR 1@
1t 1oz JZ2+a
GRTA (4,5,227,4

b lsNelalsg]

SECTION 1 ATOMS

aRuly)

WHEM TWg aTor 15 MIL , FIRST STORE o
J7 = ay

Y

- 3.36. -

agye
neay
ngae
tagd
ALY
ngas
nede

Aa47
ol]
aast

aEsSe
2953

wasy
LT
PASe
nAsT
AasH

Aps9
GABM
062
paey
PORS

AART
LY
GRS
anTR
enT

apre
naT3
BTy
apTs
naTY
w7
a079

paRn
nAAY
na8e
anA3
gk
APBS
ARAH
v@p7
Q88
eha9
auge

1i

st processing

€ IF THE CAR OF THE CURRENT CEL (I&) T8 FePTY We rnan IMMENTETELY STORHE YoF AT .
C ELSE A NER CELL MUST RF MADE , AND THEN THE ATow 15 STORE[
r (MDTE THE PROVISING FAR NIL)
10 IF(CaR(IF) FANTL) GOTO S
TF(CAQEIR) JFU,~5) CAR(IP) = P
rALL HFwil)
COR(IRY = 1
IR = 1T
5 CAR(IF) & 17
GoTD 7
[»
¢ SECTION 2 LFFT PAKENTHESIS '
C WHEN THE CBH DE THE CL'F’RFMTCFI T8 MOT FMPT* WR FIRST CREATE A NEw CFibp a:o0n
C HANG TT N THE al.kEanyY AaTATNEA LTST ' -
X JF(COR(IRY,FG,MILY GOTOD &
TFtCAR(TRY EN, =Y CARCIF) & @
CaLl HEwWCY)
CORETRY = 1
e = 1 - .
C THEH/ELSE WF pyust THF CURRENT CELL ON IL (THE PUSHAOWNSTOREY,, CREATE A NEw
C CELL aAMD HahG TT I® THE CAR NF THE CURRENT CFLL , THIS LASY CFLL 15§
C THE NEW CURPENT CEL ‘
[CalLL PUSHEIR,IL)
CAaLL MNEW(T}
W LAGTANE T
TR = I
GOTN 7}
”
C SECTTON 3 RYGHT FAakENTHESTS
C LLOSE THE LTST nlUwN (= MIL TN CRR DF CURRENT fELLY AND POPOR FROM I
£ THE BATNTER Tn WHEEE THE TNBENAING STARTED, NATE THE PRAVISION
L FUH NIL
i CRR 1My 2 =
TErCaR(IRY ER, I GUTD 9
TFICAGTIRY EO,=1t) CARCIRY =
CalL pPoRup(IK,IL)
IF(CARITL) ,NE NIL) OTD 7
C END)
r TF THE FLUSHANWN T8 EMRTY WE HEACHFD Tep END OF A L TSY 4H0 G0 8ACK Tu
C THFE CalLLTNG PEARRAM

C<No-Nale]

C

K = #L1&T

QLTSr = Car(rLIST)

CALL BACK (W)

call RACK(IL)

RE TR .
IN THE CASF OF NTL A8 () THE CFELL NUE TG EMHBERNING I8 RETURNEN TO THF
FREELTST &80 =1 15 STORED 1N THE EAR IF THE NEW RURRFNT CELL NSTAINED Ay
POPPTHEG LR FROM THE PIUSHIOWN

CALL RACKH TR

faLL PRRUR (TR, TL)Y

CAR(IRY = =4

TE¢Io MF gL IST) nOTER 7

capy, BACKCOTL)

call RaCK (RLIST)

RF TURL

C(3) E=RNRS

T
2
21

o

23

24
EL

WHITE(o,21)

FARMAT (1%, *MISSING RTOMT PAWENTHESTS®)
CALLL EXTT

WEITF (6,23 :
FoRrAT 1, *MTSKING LEFT PARFNTHESES ")
cAllL, EXIT

WRTTE (6,”5) ,
FokiaT (1x, *END DE FILE DURING INPUTTY
RLIST =0

RETURN

END

- 3.37. -

list processing

The library of list processing routines contains also

a number of routines necessary to plot tree structures

on the plotter. These routines, although very interesting

in themselves, will not be discussed here, partly because
it is a superfluous feature, partly because they make
extensive use of the special UIA library éontaining routines
for using the plotter, '

- 3.38. -

parser implementation

3.2. THE IMPLEMENTATION OF THE PARSER

We now start with an explicit documentation of the implementation
of the parser. As every programmer knows it is always possible

to make other implementations for the same problem or to construct
programs in other programming languages. One of the things we

want to do in the near future is to implement the parser in
another programming language. This is to say that we do not

insist on the present implementaticn nor on the programming
language being used, although it must be said that the system

works now very efficiently and very fast.

The presentation contains three parts. First we discuss some
auxiliary (but task oriented) routines such as the

consultation of the dictionary, the implementation of the feature
complex calculus and the implementation of the completion automata.
These routines have a general character because they are called

at several places during the program.

In a second part we discuss the programs which constitute the
parsing system itself. In a final part we provide all details
on the routines for computing functional structures, case

structures and semantic structures.

3.2.1. Auxiliary routines

3.2:.1.1. Storing and retrieving linguistic information

Because we are experimenting with a rather small computer,
we need to store the lexicon and other kinds of linguistic
information on an external storage device (a disk) although

this slows the whole process down considerably.

We will solve this ({(largely mere technical) preoblem as follows.
We assume that linguistic information is always related to a
particular atom. E.g. in the lexicon the information sequence is
associated with a particular word form, a syntactic network is
associated with a particular keyword, a case frame is asscciated

with a predicate, etc.

= 3'-39- -

parser implementation

As a consequence we organize the file on disk in such a way
that via an atom we can retrieve the information relevant for
that -atom. Note however that we assume there to be only one
sequence of information for one atom .

|
The list qf atoms is stored and retrieved on the basis of
a hashcode which guérantees fast locokup. Because we want
more then one language as 'working language', the language

is a factor in the retrieval.

The routines for creating dictionaries and for retrieving
information from them will now be discussed in some detail.

The implementation is largely due to L. Bamps.

INT

operation:
This main program initializes two files on disk. Cne for
the information in the dictionary (INFO.DAT) and one for the
.wordé themselves (WORD.DAT). Then the files are filled with

blanks. Space is provided for 5000 information items.

code:

pe01 LOGICALwY AL
nap2 DAT2 BL/*® ¢/
oeas CALL ASSIGN{4,*INFO,DAT’,0)
pan4 CaLl FDBSET (4, "UNKNOWN®)
poBS DEFINE FILFE 4 (Sapi,41,U,IREC)
pane CALL ASSIGN(3Z,"WORND,DAT*,7)
eanT CaLL FORSET(3, "UNKNDWN?)
anes PEFINE FILF 3(7991%,17,U,1REC)
o729 10=m
O 1p@ 121.7993
Sg}? 10g wHITE(S'IJ(BLpJ=1;31J;IU
gp12 na gmy I=1,%90}
Bo43 1e1 WRITE(4+7y10, (BL,Js1,80)
2014 CALL EXIT
2P S EMND

- 3.40. -

parser implementation

CRE

operation:
This main program creates a dictiocnary by reading the

atoms and storing the information about the atoms.

code:

nem LORTCAL 1 WORD(IAY, TA, WORGH{AUY ,TAM, HA(RY, RL
rpre LOGICAL 1 FaART (AR

rARY EOUIValLBER;e (LALHNI1))

enad Nata HL/s*" *7

alalnil DATA NU A2/

FEMG Cabl £SATonN{3, wORn DAT*, M
RanT : CaLl FuunSET{3, *UNKNDWN®)

kkad 4 NEFINF FILE 3LTIRE, LT,U,IREC)
A9 Call AasitmMiR, *LInFN, AT, D)
ALGR R CALL FlaSeT{d, *UneNOwy?)

wa1l DEFIME FILE 4(5A01,41,u, TREDY
eaie 9% REANCY, A%, ENDa3ERIMORD, TA

APy 3 99 FORMAT(ROAY1)

344 WRTTE (&, 981 TA.WURD

ArLS AR FORMAT [#1:# , 50, 81, 5K,3041)

Qo RN Aw (1) =unkn(e)

HayT HW (21 =R (3)

AR Tansmnnelea, 2993)

72019 298 Ten=Tafi+1

ne2a TFITAL BT, 799511801

pda2 © OREAD{EFTAD)WORDH, TaAH, INLH
2023 TFOWwaRDMCLY ER,HLIRD T 280
naARsS ny 120 I=s1,32

P82 TECUORDRITIT NEMORD(INIGE TN a4
~Rpd 1op CONTTNUE

ol -1] TR ETA NF TAHYLD TOH 2o

gy wRTTE (6,97

WAy 97 FUORMAT (F++7)

GA13 TRz Talik

2nta PRY BEANTL, 893Kk T

NERG WERTTE (6,961 (RAARTET),1=1,80)
\ 3 FLUFHMAT (pmX BdAL)

no3s # n§a0(4iT§nxixmnH

R L TR (RAART CAZY EA ALIB0O TH P2an
GEan INPxHE-TAD

rpay WETPE (A InnNE) INOSH, (KAART(TY [=21,8u)
dgug 2100 TELINDH LT M0 TO 290

pasd REANCA4"THOH) TN A

Mnas WRTTE (s Tann} iy

s ThPH= Ty

peaT g To 24N

pmaA PaR TR LINGRH, BT, MG TO 230

- 3.41. -

parser implementation

@S0
2as51
hase
Heh3y
Fas4
h5s
gk 1Y
nPST
NS e
BA%9
rasR
nneq
PnR2
63
] Y

NA&S
ALY
A6 H
ATy
an7y
Tz
oaT R

2%

250

251

120

READ(4*S5Gm1Y INDL

THD L =MD +1
WRTITEL4FTRD YT INDL, (MAART (T, T ,B80)
Thr A3 NN

GO T 2%

WEITE (4°Im0X)INDH, (KARRT (13,121,803
ITMPx=INDH

GU YO s

READ (L[1)YINDE

IkfbakaInlxey

WRTTE (3elaiyWORD, TA, TNDYH

Taulxs [HG K41

REAQ(1,499)8 KT

AFITE(&,95) (KAART(1),I=1,H0)

TP Mz R

TR IRBART (RN L FR ALY THDYHE JND X 41
WHETTE (G2 TARY) TNDYH, fHAART (1), 121, 80)
IF["-AC\";'T(H‘/-] LEMGHLY GATH 281
WRTITE (O 931 Y IMLY

G TN pun

LT LHUE
E T

- 3.42. -

parser implementation

SEARCH

parameters: Il an atom

operation:
The integer function SEARCH consults the dictionary on
the external storage'device to find the information associated
with a particular atom (Il}) for a particular language (TA).
If no information is in the dictionary an error message
will be issued: 'LINGUISTIC INFORMATION MISSING FOR :'

This is a fatal error.

code:
510 1vB) INTEGER FUNCTION SFARCH (T1)
N YI-F IMPLTELT THTEREFR (4=W)
aun3 LOBICAL»y STRINCBR), WORD(AN) , HW (2), WORMH L3R, Tan, Ta, RL
aaps FalIvalLFneE (1AayHw(1))
Lans COMMON ,TNR, TNDX
PvRg CuMMON sTas TA
anmt COMMON ,STRIN/STRIM
pane Daya BLsqH g
ANAY CALL GFT(I1,=1,8EARCH)
aeye TF{SEARCH, ME DY RETURE .
a2 call PRLOTSTIIL,1,8)
LR Ny LeMzy, 8@
el TFISTRINILERY EG ALY ROTOD 2
wmlb 1 L"I:IF&'!:)(L,I:,E‘!] F] ‘:TPIN(LFM‘
an1T 2 Do 3 3 = pEr.dR
pa1e 3 HORDtJY = B
Il B Hat1)=knRD(2)
M aYskoRE ()
gg'?]ADEMDDtln,;QRSJ
Rare 420 Tan=Tan+1
r923 TROTADLY, 70931402
1713 QEAQ(A#VAD IR0, TAH, INDH
A2k TFEWORMK (1) NEGBLIGD 0 401
Qr2e CALL PRLIZT(IN,37,8}
reR9 WRITE(A,4)
Az3v 4 FRUMAT [Le+, *LINGUISTIE INMFURRATION MISSING FOK 1°)
nH3 CelLL ExITY
paxe 4e1 DO ap2 T=1,3%¢
pal3 TF rWdRDH (1) NELNORD TGN TH 4@
an3s 402 Camriyub
AN3e TFITA NE L TAMIGE TH 435
OB THEXEINMDH
Ll] SEARCH = RiLISTIGR,T,")
Q240 CALL PROP[IL,y=1,SEAKRCH)
pray RETLREN
raz Bl

- 3.43, -

parser implementation

IN

parameters: none

operation: .
This subroutine fills the STRIN-vector in the commonzone
for consumation by RLIST by reading items from disk.

This is an auxiliary subroutine for the SEARCH opefation.

porl SUBROUTINE IN

penr : LOGICALw1 STRIN(AB),R ,TEXT(A])
aea3l COMMON ,INDZINDX

Aand COMMON ,STRIN/ STRIN

aees DaTA BL/YH / _

gees READ (4* pnNDX) INDX,TEXT

pea’ PO 1 1 = 1,82

pgaea 1 sTRIN(IY ®» TEXT(I)

2ae9 RETURN

Pg12 END

- 3.44, -

parser implementation

3.2.1.2. The implementation of the feature complex calculus

To implement the comparing and combination of feature
complexes as defined in chapter I, we need routines for

computing set interpretations, doing truthlogical interpretations
and combinations of features. For this purpose we introduce

the following programs:
EXT

parameters: GCAL (a feature complex)

operation:
The integer function EXT takes a feature complex GOAL and

returns the set interpretation as value of EXT.

explanations:

Due to the recursive nature of the set-interpretaticn, we

will need pushdownstores to stimulate the recursivity not

present in FORTRAN.

The first phase of the program consists in decomposing the

whole feature complex into minimal units, where a minimal unit .
is an atom or an operator. Two pushdown stores are used for this
PD1 to push the minimal unitslupon and PD2 to run through the
list structure of the feature cdmplex. E.qg. '

after phase 1 the feature complex (AND (OR A B) (NOT A))

becomes:

A
NOT

PD1

OR
AND

The second phase of the program takes each of these minimal units
from PD1 and evaluates them. The result of evaluation is stored
on PD2 and if results of previous evaluation is needed, it

is taken from this pushdownstore PD2.

E.G.:

= 3.45.-

parser implementatioan

(1)

(3)

{5)

(7)

NOT

PD1

PD2

OR

AND

NIL

PD1

PD2

CR

((B))

AND

NIL

((n))

PD1

PD1

PD2:

((a B))

PD2

(2}

(4)

(6)

NOT
B
A
OR
AND ((a))
PD1 PD2
R - 1
A
OR
((n))
XOR
NIL
PD1 PD2Z
((A B)
AND NIL
PD1 PD2
aend

- 3.46. -

parser implementation

code:
2201 TWTERSA FUurTlin £aT(a081)
2% TMELTCTT INTEGE {AeX)
nnay LOGICAL AL &F
L Comine DAR(EANR) 60 (327r), 8F (3rgn)
=ans POMME o 67 R5D R, X 0T
AR FiT = O
ABny I = =0al
L [FIRAAL, Ed r) RETLEY
COFEATIME oM ex TS ATOM
Ay TFEaFEY), vi, 1) BATO LYy
2y 2 CALL dE(RXT)
013 CAalLL dE-(xy
2G14 CAY (B Ty = K
@5115 CAQI’P-) = I
A1k RFTURY
L OFFATUNE Co=p gx I3 LIST
T Phess

£ CECUMBILE FepT b CUMBLEX ARN PLSH On P

TE1T O 1Lm ealt vES(PDAY
Zﬂ}a raLL ME"(PH21)) R
12t 2 TECChr foan (1) YV aR2, 1) 009, (LAY E0,5)) 50Tn o
2a21 LoLl Fuakpl, Frg)
zn2e I o= o2t
raul-N.] Tal BV
anpy LELL PuSelpa™(l),P01}
#APS 2P 1 s Comtly
wloh TEET,E N, ») BTYA X
ZAAH GrTuy 2
2229 3 ERLEREESTED I SR A N Ta VA
2A3Y CatlL Panlip {1,rhe)
7Re Rl 28
2233 4 raLL BUanlr, o)
r PraSy 3
1334 % TEALOR(PLYY by, @) 6NTH 3m
CEET ChL pneusiy,PR1Y
€ SEND TC FpLgVawl PaNT
22Tt TFtI.Fn,) 5010 9
7119 PEOD, 0 0T GOTH 49
aa TR(r eo vy o071
‘A\?n“ !1*";:‘-’] Laln 1
n .
2247 CrLn nE-])
Mg cull “FLtL)
w049 CAROT] =)
AYGF ceROLY 2)
avey CRLL PUBMIT 0]
mp8e BOTS s
oNIL
MRS 9 Cay L HHSH[?,PD?)
nasd SRR
£ wNOT
LT 19 FAR[PI2Y =
EPETN oy s
(WS TR YOS
APST 1y THOL #Fe{LT)
ANS& oz ool

- 3.47. -

parser implementation

PNS9 CALL FURUPLJ,PRAY
AN6n0 TE(Jar) g0T0 S
ngez T = Caw(Pa
Ak TE (I FG,7Y GOTO 113
2265 Ju o= |
Apee 1@ FJ = Cep(Jt)
A6T 1t = 1
ALA 1P F1 = ¢an(1 1)
A0&q & z cuRYlE D)
aare Call afPgn; [H,5,¢)
2071 CALL apI(FT,$
aptp 11 = LGel1y)
raTs TRl 0 a?) BOTO 12
2g75 Ty = COR Gy
AR TH IF (J1,NE ey B0 To an
AATH CAR(EDZ) = CURILT)
ART9 CALl AaLkiyl)
no8y cOToD o8
anB1 123 CARCPDZ2) =
Aq82 GoTn S

C unk
2783 (13 AR ROpy =)
ARy CLAR LR
7385 1% Chyy poRLRLL.FD)
AARA TR aB i, @) T S
AQRK T & CakPny
ARBY JFCL . ED by 60T 12%
Aol e Call "Bulriraioll,)
2092 ko= CoRely
N393 Call #»aCr¢T)
an94a T = &«
NE45 TF1LME. %) @il 212
dAG7 CARTPLRY = L
2R9A GNTO &

C END
na%y Ip CALL AORIRCEXT, PRy
arpn Calll Sarx{FL1)
ERA Calll, BALXCRRZ)
IV RETURN
2103 ENF

- 3.48, -

parser implementation

MATCH

parameters: SOURCE, GOAL two feature complexes where GOAL.
is a set—-interpretatiocn; ’

INFTR an inference tree

operation: The integer function MATCH computes the subsets
of the domain (given by GOAL) which evaluate to true for the
feature complex source and returns the set of these subsets
as the value of match.,.

explanations:

MATCH works on the same principles as EXT except as regards
the evaluation procedure itself,

In a first phase the feature complex is decomposed in minimal
units and stored on the pushddwnstore PD1, The other pushdown-
store PD2 is used to assist in scanning through the structure.
The second part is the evaluation itself. Here we make use of
a special subroutine MATCH2 that checks whether an atom is in
a subset which is itself a part of the feature complex COAL.
The whole process is repeated for as many subsets as there are
in the domain, and the subsets which result in true are
accumulated and returned as final result.

The code for the truthvalues is 1 for true and -1 for false.

code:
Bant INTERER FuncTIOn MATEH (SAURCE,GGALY
Gim2 TMPLTIGET fRTEGER [A=X)
a3 LOGICAL 21 #F k
2974 SomMan CARE3I227) ,ENR(32RM), AF (3000)
ngRs ENMBI AL NG /AN AR, X0F, N0 T
naee | Fall NE=TIM)
BERY Mom TM
FHDS X 2 AL
Mape 2 TFpw Fré, iy T = 2
AR TF(x ~E,) 1% = LaR(k)
€ PHASE (1)

S ¢ DECUMPDSE FEATyKE COMPLEX pwp PUSH DN -PRY
2213 T = §00kCE .
nae 4 CALL “Ew{Pny)
wa1s caLt MFulen?)
2816 TE (1, €0,) c0TU 4
npLe TE{AF(]T.E0, 1) BOTO 4
4028 2 TROCAFCrar (1)) eEDL 1) JCK (T Er,B)) GOTU 1
gnge calLL DL‘{)P",],P\:P]
na2s 1 = Dapfny
el gnta 2

parser implementation

m@gs
nNed
prp2?
029
- ARI
duse
X3

AA34

nAk

aazr

pRZ9
fnay

G4l

mA4S

rA4T
mpaR

Aaa9
2A5@

Ang
Fps3
An54

BASS
amns7
NESE
20pE

AREY
ngel
nged

Maek

AneT
AHAGT
AapTu
CanTe
pata
ANTS
AAT 6
JATE
RRTY
vk 3!
1T
QA2
rPpaz
A
AREE
AnET

Ape9
AEge
Hal
3193
rR94
An96
npa7
[iEE!
R
Ginl
pyra

4
 C RHASF 32y
s

calb PUS=TLa®LL), DY)

I =z CBRCD)

1F ¢l ,ME &y GRTO 2
1F(CAp(p13R) BN, 2) FoTn 5
calL POPUPCY.FDA)

cOIL 22 -

CaLlL PUBKH(1, P

TFECNe(Pfey B0,) GOTR g
ChLL PURIPET,FEL)

r SENR T RELEVEMT F8RTS

TFLJ.Ex,8Y cOT0 9
TFLJ ER, MNT) HUTO 14
TRl ER nKT GCTH 11
TELJLEQR, 2Hn) HN1R 43
TFEJ FE0 Y0Ry 50TE 13

C ATOMS

C NIL
9

C oNoT
1@

C AND
12

C xD®
13

34

53

an
a1

CALL Fumk(@bTrWe (), 1w}, Fi
GNT0 S

CALL PUsH[q,FI2)
ROTIE &

IF(CﬂH(ﬁHE].FL'w} BoaTo af
CAR[PIAY = LRE(FNZ) wmy
GLTN B8

TR ¢CAH (FIRY L FD A nTo o
CALL POPURTL,#02)

TR R, 1) Bak(PI:3) = 1
GRTA S

M

TR e (RO, FL) GNTH ag

CaLL OSBRI, P02
VFLL,Eo,=1) CAR(RNA) = =1
GOTY 5

TEECAak(ER2) FH, NY 6GATO an
CALL PReURIL,PD2Y

TE{L FM, 1Y 0T 33
TEICAR(FORY FL 1Y 6GnTD 5
CAR(PH2) 2 =1

ROTD 4

TFECAR(FI2),EN, 10 6OTn 3y
Car{pi2y = 1

GoTD 9

“rITE (m, d1)

FURMART (1w, TUNRELLFORPMEQ
MaTlik = =1

GATE 3y

TErCap rpliay R E) 6G0TO 42
CLiL FOPUPCNATOH, BAZY
TEOaM(Flpy IE Y LLTN 40

C ACCHMULETE PEsIN TR AND ENT

LB

£5

rh L HEtr(pL?)

Call asnkePpty
TF(maTrr e, 1) LALL APFENDL
Kos MOR(FY

TE (¥ _“E 2y L0TH 20
b1l = o
TFECH=0Y g Y RETokm
MpaTOW 5 ok (b}

CoLL RACK (M)

DETURN

Fun

- 3.50, -

FEATURE CNMBTSATION TN MATEH TEST?)

{1, TR, IM)

parser implementation

MATCHZ

parameters: J; IK with J an atom and TIK a linear list

INFTR an inference tree.
operation:
The integer function MATCH2 checks whether the atom J is

in the list IK. If so, MATCHZ is set to 1, else to -1.

code:

2971 INTEGES FUNCTION 22TCHA (T, 1K, InFT)Y
paR2 TMELTCLT INTEGER (a=4)

ade3d LOSTC AL ®Y 4F

2204 ComMun CHR(I A0, CNR(AAY , AF (1000)
vIRS MATCHDZ o

230k K o= I

apmT o T (K, &m,py BOTO 1]

A0qg [FCCARIRY (g 9,J) GATH 1o

2e11 TECINFT B) GRTH 2

M3 TE(CRNSS T, CAR(K) , TNETY mE,) BOTH 1R
AA1H 2 K = E;?k(i&)

A0k EOTD

PE1T 1 MATLHE & |

2018 PETURN

aure 1 TF O], 5e.m) WETURN

Fea21) LT e

@wr2e EHD

- 3.51. -

parser implementatian

CROSS

parameters: SOU and GOAL both atoms,

INFTR an inference tree.

operation:

The integer function CROSS is an auxiliary subroutine for
MATCH2, it computes whether two atoms can be related to
each otﬁer on the basis of an inference tree. This is done
by running through the inference tree {(with a pointer LI}
using a pushdownstore (PDS} and by setting flags

at relevant points during scanning.

code:

Agal INTEGER FUNCTION CROSS (50U, GOAL, INFTR)
ap@ez TMPLICIT INTEGER (A=4)

f OG1CAL*1 AF
33@3 tuuﬁnu CcAR(32RA) ,CORCINARY , AF (3R00)
pees. CRoss =@ :

& Call, NEwWEPDS
gg%? calLL NEW(LT)
nans 5 5 |1

L. CAR(LI) =INFTR
%@10 3 IF(AF CCARCLINIANELL) GOTO L
nDLy ' IF(CAR(LI) LER.SOUIGATD 2
naie 4 LT =CDR({LI]
n@13 IFCLI NE,®YGOTD 3
neid CALL POPUP(LI,PDS)
neLs 1F(LTNE.@IGOTN &
ag16 & CALL RACK(S)
neLY RETURM
pa18 b} CALL PUSH(LI,FDS®)
wae19 Li=CARCLY)
luls -3y GOTD 3
B CA POPUP(I,PDS)

0923 ¢ TES 1 En.m) EoTo 6
poe3 IF{CARCCAR(IIY EQ, RODAL)} 6OTO 5
reRd GUTD 2
aB2S 5 caLl ERASE(FD®)
g CALL RACK (8]
pp2? CROSS =1
ae28 RETLRN
AE29 END

- 3.52, -

parser implementation

CoMB

parameters: I1 and J where Il and J are both set interpretations

of feature complexes

operation:

The integer function COMB computes the éxtensional combination
of two feature complexes and returns it as the value of

COMB.

This is done by using the ADD subroutine which adds all
atoms of a list to another 1list, if and only if the

atoms are not already there.

codes

aawt
rame
BaAR3
naRd
Qees
20Q08
eape
0209
aB1l
7@l
ra13
A1 4
P215
ap1?
2218
fp2a
Peat
peea
Ag23
PEed
apes
apeb
naA2y
o8
BAPY
eRia

o

TNTEGER FUnCTION COMB (Ti,J1)
THMRLICIT TNTEGRER (8=W)

LNGICAL*Y AF

FOMMON CARCIPARY, CDR(IAPA]) , aF (3020)

comMg = [1

JF C11,.FR,.7) RETURN

My F 1
t%Fﬂ[nyEm_gl RETURN
call mEW Ceahd)

C = CapA

It s C

bz

1F (J.FM.A) GNTa 2
T = It

1F (T.Eh.n} ROTD 3
F e CPy (CaR{T))
cALL ADOR fCaRCI),F)
Capl ApPSRN (LF,0)
I = [HQLT3

a1 4

1= fusd)

GOT 1

coM3 = COROIC)

ca L Y“ACKEITC)
RETINT

EnND

- 3.53. =

parser implementztion

3.3.1.3. The implementation of the completion automata.

We use transition networks at various places in the
whole system to control corder restrictions. Let us now
discuss the procedures that are able to consult the
transition networks. These procedures are located in a

subroutine called NETW.
(1) input:

Recall our conventlons for representing transition networks
in the form of list representations. A transition network is
a list of quadriuples: <Kal,a2,a3,adywhere al is the start
state of a transition, a2 is the resulting state, a3 is the
condition for the transition to take place and a4 is the
symbol associated with the transition.

al may be one state or a feature complex of states

a2 may be one state or a list of states ‘

al 1s a feature complex containing features

a4 is one single element or a list of elements.

A transition network under the given cornventions is the
first mailn piece of input information {(called NET). '
The second main piece is a triple (CON, STAT,RES> where
CON denotes the condition for a transition to take
place (CON is the extension of a feature complex)
' STAT denotes a state (or a set of states) .
RES denotes possibly a symbol associated with the transition.

The idea is that if CON is NIL, RES is the condition for
a transition to take place, so we can perform transitions
both on the basis of the condition itself and on the asscciated

symbol.
(ii) output:

The output consists of two things:

(a) A value for NETW, the call name of the procedure with 0O or
1, denoting that no transition or at least one transition took
place respectively, thus we can immediately check whether there

was any. result.

- 3.54., -

parser implementation

(b) A list of triples (called OUTP) {bl,b2,b37 with

bl the resulting domain of the conditional feature complex
b2 a new state {(or a set of new states)

b3 the symbol associated with the transitioen.

S0 we come to the following program:

NETW
parameters: CON, STAT, RES, OUTP, NET

operation:
The procedure is a straight forward list processing acticn
computing the states and the features according to the
specifications given. We introduce a flag (FL) to indicate
whether the condition or the associated symbol will determine
the transition. A pointer (INET) runs through the network.
First a match is tried for the state, next a match for the
condition of transitions.
If successful a new list (L) is created and attached to the
COUTP{ut) list via an APPEND cperation on the S-pointer.

coce:s

parser implementation

poM1
PAaR
RANE
ULY
ABMS
Anmh
annT
Zorg9
ApLy
A0
nu1x
maL 4
2215

2018

nN18
not9
a2

anza

LLEY
aAB25

ap2y
nAP8

npa9
AT

2032
ANY3
2A34
2O15
LAY

nAYe
BAT9

naae
4R
ARY L
AALd
ARas
pra6
araT
A@aLp
ARU9

INTEGER ®UNCTIUN METW{NON,STaT,RES,MITPR,FT, [NT ,FUNTRE)
1MPLICTT TRTFGER (a=W)

LoGIcaLay aF

COMMON [CAR(30MAY,,CRRLAPMY , 8F E3Q 40
MEY® T

FLep

IF(CON _EQ p) FLE)

IF(FL 80,1, AMN RES B,) RFTURN

INET = WET

CalLl HF&(NyTR)

8 = NITP

CALL NEwfiSY:

CARCIS) = STAT

€ CHECK WHETHFR coRNTTION 15 SATISFIED

1

b]

5

TECINET EQ,MY 3aTN ig

IpEs =2

1IF(FL,FA,1) 0T 5

TRES = #atrh (CARICNRICNR(CAKIINET)I)IYLOON,FUNTRE)
caly PRLIST (TRES,1,%)

EALL PRLTAT (CON,1,8)

IF(IRFS,EA,R) GOTN 15

HOTO0 2a

1F (RES . ME ,CAR(CIRICOR{NAF(CARCINETIIIIYY GOTH IS

C CHECK WwHETHER STATE IS SATISFIFD

20

C ADD

15

C END
in

1t

NETAT & MATOH{CAR{CAH(IHET)), IS, INT)
ralL PRLISY (NSTAT,3,6)
TALL PRLIST (18,1,6)

TFINSTAT.FA,.M) 60Tn 15
NEw TRIFPLE THO QUTPUT

Call NEWIL)

EALL APPEND (8,L,5)

Far(L) = IRES

CaLL APPEND (L)CAR(CPRICARIINETIIN,I)
TFICHR (LR (CORT{CAR(TNETYIII) (NE, 2
CALL APPFND (I4CARICNRICORICORICARCINETIINII,IY
INET =CL&(TINET)

GOTn 9

TELCNH(ONTPY NFE _®Y 5070 1)
FaLL RACKH (NUTR)
RETURN
I = COR¢(OUTRA)
Call BsCWINUTR)
METWE1
auTe = I
RETLRN
Enn

- 3. 56.-

parser Implementation

3.2.2, The main program

Let us now consider the main program of the parser.
It performs the following tasks: '
(i) Initialization

This includes

(a) Internal initialization of the list structure memory
and of the files on disk on which the dictionary is stored.

{b) Initialization of the variables which are needed in the
parser. In particular we input all terms which will be common
to the programming system and the user.

{c}) As sonn as the reader has given the language in which
he wants to work, we also read the grammar, the syntactic
networks and the relevant inference trees. After that the

system i1s ready to consume an input sentence.

(1i) Preparation
Then a regquest is issued to the user for an input sentence.
For each word in this sentence the system consults the
dictionary and creates the initial particles according to the
conventions we discussed in the previous chapter. The particles

are organized as described earlier

(iii) Send to parser
When the initlal particles have been made for a given input
word, the program control shifts to the subroutine who actually

controls the parsing process, namely the subroutine CONTR,

{iv) Send to semantic structurer
When all input words have been consumed in this way the
program control shifts to the routines which extract functional
structures, case structures and semantic structures from the

particles which cover the complete input sentence.

code:

- 3.57.-

parser implementation

aRy TMPLICTT INTEGEP (AwX) ;

ALY LOGICAL#1 Ta
aned LOGTCALwY AF
pmpd COMMDN /IFRFF/IFREE
pors cOMMONM JVECT/Z VFCTISR),wNRNS
reRe CoMMNl STHFTREZSYNTRE, SEMTRE ,FULTRE
neaY COMMON/ADN /SYNAFTY VERRAL ,CASEY
eReE FOMMON SCODES LLOCK, RULE,REFORE, AFTFR, THUF ,FALSE, UNNFT FUNLTE,
 SYNNET , FRaANE,DBJFC, UNMA,PRENIC :
opmg ' ERMMON o0/ MO, QUAL L AN
oo G COMMON 2IMVES/, TINVFS, MSTATS, LD
ar1y chssote JL0G/ ANNL DR, XOR,KAT
2pte : FAMMAN JCoMF/ COMF (30,1M)
N1 rOMMON sFThy FIM,TR
eeta gOMMDE /Tas Ta _
[l R] comMON/PRS s PLS,PNS?
B2y & CrikmoN sy yERR
ey COMRON CARIIAEM) ,CNROZAREY , AF (322 M)
g1 8 CALL IMNIT
C RFAN SYMRDLS _
we19 caLl ASSIGN (X, 7WORD.DAT?,)
nR2R Call FORSET(®, UNKNOWMT)Y
J1 -3 " PEFINE FILE. %(7993,17,u,TREC)
agae CALL ASBIGM{Y, "INFODAT!, M)
GRe3 FaLl, FOPSET (4, "UNKNDGWNSY
an2 g BEFINE FTLF a(S%R1,01,0, YFEG)
ages TR e @
neze MIL = 2
22 - pALL NEWM(PRS)
pR2k CALL NEw(RDN&?)
aG29 CONES = RLIST (@,71,2)
RARA ICN0E e FONRFS
r@Azy mapF & CARCICODE]
prig LOC¥ = CAR(CDRITCANED)
L J i RINLE = rakfpghE(CPRTCODEYI I
PR REFARE & CAR(CARICNRICHRCICORFTIY Y)Y
fRrs AFTER =z CAR(CNRICHR(CNRECNR(ICOPE)II)Y)
i d ol T ICONF = CRE(CORICDRICNR(CER(ICCRRY I}
AT THUFE = (AR (ICNNE)
PRTB NHGET g CAR(CNKLITEODFY)Y
ha%a ALY = CARCCPR{CDRCOTIGCONDE)))
epar FUNCTH = CaRICREICDRICNRIICANENNY)
Brat CORJEC = CARICRRIFPR (ERR(ENRETCOREY)N
Pl TEnnE = COR(CURP(CDPICOR (COR(TEANE) YD)
pHAR FRAME = Par (ICNIE)
ARy SYMNUFT a3 CAR(CHRIICNHUEY)
enus AND = CoR(CRRICOR(TIEONEY])
il Ry Or 8 CaR (CMPICRRICNRIICANEYI YY)
eoY7 XNR g CAMICRRICHB(EDFICPRIICOEE)IYIN)
Faae TCNNE = CRRICPRICERICPRR{CGRITOOREDIINY)
Cpnag MAT =2 CARITFTNE)
BB PREDIC =2 rax(chRIICMANE))
15} UHMA = CARCPDEICDRITICONEYY)
Aps 2 MOl = TAG(COK(CHR (CHR (ICOMEI YY)
Y LK Y Mial = CARICORICAR(ONRICNREICANEIIIN
gas4 , ICEDE = CRR(COR(CORICOR(COR (TCORENINY)
DRSS _ FIM = CaH(ICONF)

- 3.58. -

parser implementation

aRsSe
RRST
npBe
nasg
pR6eR
ARk
AP 2
nr3
ABpd
il L et
An6s
na6Y
AReR
REEe9
oryn
AE71
nRTR
ByT3
AT 4
arTs
ABTr
[red e
apTe
rATS

anag
PRRY
PeRF
rRa7
PRRY
neak
208
agRny
poes
2389
n@n9y
nose
Ao
PRI
PRy,
nrsa
P90
28 RV

a1
pine
g1y
Al1as
A1re
AnT
A1 rE
arta

nyte
MLz

g114a

lgrn

1ned
112
i1

N
D113

TRACE # CAR{CDORLICODED)

LUHON 2 CARGELF(ERRCTICONRE) DY)

GRAMMS g CARTCNRICNRECPDRIICODFIYIN
AYNAFTs CAR(LDPR{CDRICARINNR(TCONET)Y
TCRDE & CDp¢CRR(COR(CORICPRIICARE) YY)
SYNTR 3 [aAR(ICODE) ‘

SEMTHg rak (cPRITEONF]]

FuMCrR= CaR(CIRECORCTICODE) D)

VERRAL = Cap (FOR(CORICPRICONEDTY)
FEAT = CAg(CPR(CPRICDRICARCICCNEII)
TCOPE = (R (CPR(CTR(COR (EDRCTICONEY)Y
ARG 2 CaAFICUILE)

PRS = CARICHROICODEN)
SEMSTR=C AR (CDRICDREICODFY)Y

HYPL =z RLISTIC,I,2)

HyPP & HyPL,

CVERE = KLISTOS, [,2)

OLIST = FLTST (1,1,72)

WRTTE (R, 1270)

FRnemMAT (1x/1¥,*wElL.COME TD THE PARSING SYSTEr)
WRITE (6, 10i#1)

FORMAT (1¥/1Y, *SPFCIFY THE LANGUARE®)
READfY,11) T4

FORMAT (a1

WRITF (g,414) Ta

FOemAT (1x, "INBOT ANRUAGE 27,419

£ READ THE GRaMMaR

1e

13

15

2

J = n

GRAM 3 RFEARCH(GRAMMA)

Th = BRAM

T = CLR{GEMY

I, =,

J o= Je

CaLl PROP{CLRLTY RULE,J)

L. s L+)

K = CAR(IY

IFlafF (W) nF, 1) K & TRPY (K]
COMF g,y = &

TFOCNEDTY EQ.0) GOTo 1%

T = CO& 11

noTo 1%

TRICDRIGRAMY L EQ,A) GOTE 29
RRAM = CDRELRAM)

HITD 178

ralLl. ERASFrIR

C READ THP METWOKKES

73
|

fh

METS z SEARCHIHREFORED
1F (NETS, kA, 0) OTO 26

LoR 3 REFARE

In 2 MFTSH

CALL PHOP(CaR(CAREINIY, LAR,CRFICAKIINGD)
TN 8 ChRETM)

TRAIN NF 2) GRTO 2y

TF (LaR, En.aF TERY GNTHO 27

METS = SEARCHIAFTER)

L AR = AFTFR

TF (NETS NE BY HOTO 7%

- 3.59.-

parser implemsntatian

C READ INFEQENCE TREES

1t 27 SYNTRE = SEARCH (SYNTR)
a117 SEMTRE = SEaRCH fSFMTR)
A19B FIUNTRE & SFARCH (FLUNCTR)
g119 28 ratl NEL(HSTATS)
o8 -l caLy, NER OO
B171 CALL MEW {NSTATS)
aLe2 1o WRITE (6, 1002
123 10R2 FORMAT [1¥, *GIVE TNPUT SENTENCE "}
124 WORNDS = ®

C SENTENCE COMES IN
@125 INP = RLIST(®,I,1)
217k IFritp, Ei.?) 6nTo s8a
g1ep I = INP
@129 YECINP EG, TRACEY TR = |
P1%1 TFLINPER LUMDDY TR = @
@13 TE({INP En, TRACE) MR, CINP EQ UNDDYY GOTO 32
B13% INFP = TNP
@136 TFLINPP B, 2) GOTA 55¢
B134 15 J oz SEARNCROCARLIN
139 TF(CORLIY Ep.M) S0T0 4@
plal T = FORCDY
alag GeTo 1S
p1Lald 4 COMTINUE
2144 WRITE (R, 1203
PLA%S 1gma% FORMAT (t1¥/4%,°In2?)
Ride CALL PRLISTCINPE,1,6)
8147 TFLTR EN 1) WHTITE (B, 16P4)

Riug 1004 FARMAT (1X¥, "CONFIGURATIONS TN THE STATESPEACE:®)
Das TR = 1
C TAKE NEW WOHD

9153 5m WORD = CARCINPR)
w151 WORDS 5 wprNS &1
D WRITE (6,102
RLmp FURMAT (1Y ,q%)
n LaLL PRLISY (WORD,1&,R)
n WRITE(6,1005) WNRDS
NLAPS FrORMAT (1He, “uWlRD NF 1f,1%)
BisF CALL BETCADON, =1, TMO&F)
153 CIF(TMARE EN,RY BAOTN S50
c
£ CONSTRUCT TRITIAL STRUCTURE
[+
n WRITF(6,1vd)
nime FORMAT ¢1y, *.T, TWTITTAL PARTICLES ¢*)
G185 CaLl MEWfKY
A156 WLIST a ¥
A1e7 CAR(KY = wORD
n1s8 1 faLl NEW(L?
nisg CabLlL APREMD [kyl k)
21en CAR(L) = [ARIHYF!)
Alal ON = L
16 HYPF 3 CAR(HYRL)
Bln3 Ch L PROFCWORD,MYP 1)
f1ed HYFL, =2 CORTHYPLD
ai16% FLAG = I
[FOR FaCw LEATCAL TWFORMATION |LINE CONSTRUCT PARTICLE

~ 3.60,-

parser implementation

aee7

gemns
pera
et

pete
n213

7215
ERTS
n217
m2i e
p2ac
2221
EEE

12

C ()

C (83

c
c)
ci3)

£ (ny

FUNEL = CARTC2Rk CIMURF)Y
TFUM = @

IF(AFIFUMEY FR,1Y aATR &

TFyt = Fpne

FUNC g CARTTIFUN)

TFyn & CDgp (TFLUN)

TE (FLAGL.FR,1)Y GATD 3

FLAG = 4

GoTo g

call MEW(L)

calll aPREMD (¥, L,x1

FaR (L) = raR(HYPL)

ON = L

HYP & CARHYPL)

CaLl PROFIWOKU,HYP,L)

HYPl = CPE(HYPL)

ralLl APPEND (| ,CARCIMORFY, L)

caLl mEwW{F)

caLl APFEWD (L,F,L)

IFtunahs,Fp,1) GOTN &

CaLL PUSHIF, THVES)

CALL HEW{D)

CAR(F) = 1

Call APFENMD (F,w0ORNE=1,F)

CRREFY & NN

CaLl, GET(RUMC,RLULE, IR)

TF (IR.EW, @AY LDTD 5%@

KMET & @

AMET =22

CALL GET (FUMC,HEFOHE ,MMET)

CALL GET (FUME,AFTER, ANFT)

wrie _
TF(WORDS (HE L, AND NNFT KE, @) CARCJI) = CAR(NHET)
callL APFEMD (0. %0KD,.)) :
TNFoRMATION SENUENCE

raLL MWEW(D)

CALL &PPERD CJ,T.0)

MYPAOTHESTS

CAR{I]) = HYP

FLUNCTION MAMF

CaLl APPEND (I,FUNC,T)
STATE OF FUNCTION FAR AFTER TRANSTITIUNS
CALL APFEND (1,8,1)

If (ANET,NE,_,P) CARCIY = CAR(AMET)

T =z J

STATE TH CASF METWORK C(LNKNOWN YETY
CAlLL aPPENMP [(T,G,1%

C aDJUNCTS

ces

TFICOMF TR, 2) L FH ORJECY ROTD &
FytTERMAL FEATURF COMPLEY & RUAL=MOM«UNDET CHARACTEWISTIL
T4 5 CHRIEDRICDK (CNRICARCINGRFITYIY)

CALL AppPEND (T,¢,D)

rall APFEND {1,C0OMF{TH,9}, 1
IF (J4,F4,m) 6QTD o

T4 = CAR(TH)
IF (T4, £G,8) GOTO 9
TF (AFTTa) FO. 10K, CARCIAY ENNOT, AR CAK(TA) ED,

- 3.61. -

parser implementation

3 AND , OR CAR(T4) ,ER,OR OR,CAR(TI4Y ,EN.XDF) GNTO 9

2229 CAR(I} = FXT(CARCCOR(TA)))
Aeeé G0Y0D 9

C ORJECTS

¢ {g) SYNT FEAT CPMPLEY
@227 & J = EXT(CaR(CDOR(CORICDRICOR(CAR(IMORFIY) I
A22R CALL APPREND (I,J,1)

C (h) SEM FEAY £OMPLEX
@229 CASE =z CAR(CNFICDRICORICAR{IMORFINTY)
A2%e] = SEAGCHICAR{CDR{CAR(IMARFYIM)
p23y 7 IF(CAR{CAR[I}) ,ER,CASE) ROTO R
-k K J =z thacdy)
a2%4 TFCI NE_ @Y BOTD 7
@216 WRITE(®,1226)

2237 1aak ForMAT (ix, "MISSIMG CASE MM FRAME) -
oe3s GNTO 94

@235 g CaLl APPEND (1,EXT(CAR(CORICAR(JIIYY,)
CrT) CASE (UnMKNnwn YET EXCERT FOR ARJUNCTIVE NHJIFCTS)
R4 caLL AFPEND (1,0,1)
C
pgat 9 IFrTR, EQ 17 CeLL PRLISTICAR(CAR(LIY,1,#)
LEr TF¢1FOn _GF ,2) 6OTD P
azus IMORF = CRR{IMORE)
PRde TF rIMORF NE NTLY GRTO
p248 VECT(WORDR) = COR(WLTIST)
a249 TFrWORDS ER_ 1) GOTO 111
0 WRITE (&,557)
PSST FORMaT (1%,’.]1T7, MERGING*)
E START PARSTKE
C
rR51 caLlL CONTR
paeSe 111 TF¢COR INPFy,EQ@,AY} GOTD 10
Ppsd TNRPP = rpROIMNEPR)
pass . Fotn 50
c
C COMPUTE SEMaNTTL BTRUCTLES
2258 17 FINL = VECT(WNROS)
aen? Hypi = HYpp
LY.} T =0
nasno WRITE (&, 440)
PRAF A4p FrrMAT (1 /1N, *FUNCTTIONAL AMD CASE STRUCTURES 3*)
Aenl CALL CLGSE(H)
GRéry 9% HYP = CaW(FINL)
n2k3 FEAT = TAR(CDY(HYR))
Arkd CONF = COE(EREIHYRYY
P2es 97 TF(CAR(NDRCCAR(CINFY)Y (ME.®Y GOTO 9w
QERT T = COw(CARTCARCCONFYDY)
dre8 CaLL FUNTT)
269 TRl Fa,.%) LOTO 9N
ety T = T+1
nete CAlLL CAs(T)
P23 9p rcONF = COPICGNFD
R274 TF¢ConF BEn,0) GOTO 99
ARTh GROTD 92
Az7TT 91 FINL =2 CIRIFTMLY
n2re TF(FINL NE L) GOTD 93
n2Re TF (T EG,0) WEITF (6,556)
gsﬁg 556 FORMAT qy oMU BTRUCTURE FOR GIVEN INPLTS)
B 94 n0~11nué
N TR = 2
gada - WRTTF (&, 5557 3PAR=TFFEF
B2as K55 FrrMaT (1¥/71% "MEMORY CELLS LFFTL714)
maBe CaLi. CLngF(4)
mag7 CALL aSSTGN 8y "INFG,DATe, @)
n2ag EAbL FORSFT (4 "LINKNOWNS)
RREY PEFINE FIiE a(9%0f,4%,U,1REC)
g rOTN 3R
ne91 [s5p COMTINUE
Apgz ENp

parser implementation

3.2.3 The general control structure

CONTR

parameters: none

operation:
The subroutine CONTR is the actual control program of the
parser. It takes two configurations and sends them to
the subroutine LR which performs the linguistic processes
(computation of parsing predicates and creation of new
particles).
The subroutine operates on the basis of a tasklist and a task
is a configuration in a particle that is to be investigated.
The main program places the initial tasks on this tasklist
{called INVES) and whenever new particles have been made
{by LR) they are placed on the tasklist to see whether new
combinations are possible.
CONTR takes one configuration from the tasklist. Accotding
to the principle that a particle can only merge with particles
bordering on its domain, CONTR scans all particles depending on
each hypothesis node of the word immediately before the domain
of a given particle. When these particles are not locked, they
are made subject t0the linguistic processor. Moreover a pointer
is provided to which part of the particle the other particle is
supposed t¢ be related. If the particle has heen processed, we go back
to the tasklist to Seeﬁf there are still other particles.
The final part of CONTR contains the procedure tc attach
configqurations to the relevant hypothesis node and to 'lock!

a particle if told so by the linguistic processor.

code:

- 3.63. -

parser implementation

2001 SUBROUTINE CONTR
Aap2 TMPLICIT INTREGER (A=W}
oaa3 LOgIeaLx! 2 FOL®)
Bpord : LOGICAL w1 AF
PanS JCOMMON CARz@2R),CNR(30n0) , AF (3000)
006 cOMMONM fonME/ COMF (IR, 1)
gan? COMMON ,CODE/ LOCK,RULE ,REFORE , AFTER, TRUF ,FALSE,UNDET FUNCTH,
w SYNNET,FRAME,NBJEC,UNMA,PRENTC
aPme COMMON/ INVES/ INVES,METATS,LO
pen9 ERMMON /VEETI VECT(SHJ WARDS
ppt@ commMON sv/ VERE
0211y COMMON/PDS Y PNS,PDS?
naye COMMOM sIFREE/ IFRFE
@@‘3 nﬂ‘rﬂ A‘.FI'A'J'H',‘C'I'D‘]'E'I‘F"‘G.I'H'l't'l‘\.",
rRYd & ® NSTATS
n A oQ
C TAKE TaSK FROM TASKLIST
pa1s 1 TF(CAaR(TNVES) ,EQ,D) GOTD 10
Py T CaLl, POPYP{CUMNE, INVES)
oA N BIPUCT = CAR(CONF)Y
Bd19 oWk % CAR(CPR(CNDNFY)
0 4 = A+
D WRITE(H,171) ALF (&)}
NIMY FroemAT ¢1x, "(7,41,7)")
n WRITE(e,)22}
N1R0 FORBAT (1N, #*=%x TRY TD EXPAND CONFIGURATION $*}
D CalLlL PRLIST(STRUCT,S,&)
ra2R gHyplL = vFCT(DWORY
n WRITE (g, 1p2) DWOR
B1P2 ENPMAT (f¥sx BY CAMBINING IT WITH CONFIG OF wORD NR_*,IT)
D e 7
£ GET ;gnTICLEs ADRDERING NN INVESTIGATED CONFIR
L 2 GHYE = CAR(DMYPL)
b T = T1 +1
n rall P«LIST(rAR(nhYPJ,E? [
n WRITE(&,12M) T
DI27 FORMAT ({H+,I2,*, FOR HYPUTHESIS §°)
0 T2 & i
222 ACOKNFS = CHKR(CRRINHYP))
pra’ a3 NCONF 2 CAR(DOONFE)
g2 IF(CAMICAR (ACUNFIY FR,LOCK) BOTD 199
el 1S T 2 CAR(CNR (CAR(CDRICDR(CARIOCONFY YY)D
oRAT J a CAR(CUR(CARICDR(CDNICARCCONFIINN)]
np2eé TF (I EQ VERB AND J,ER,VERA] GOTO 199
0 T2 = T2 +1
D WRITE (p,103) T1,72
N1e3 FReMAT (3y ,T2,%.7,12,%.%," CUNFIGURATION 1)
n calLLl PRUIST(CARIDCONEY, d,6)
0 T3 = &
- RE3D TF¢CAR(CAR(NCANFY) ER,PREDIC) &NTO 294
C cALL LINGUISRTIC PPGLFRSQR FOR LEFT TO RIGHT FOMBIMATTON
0 WRITE (b, 134)
DiRG FORPAT (SY fa» FROM LEFT 10 ®IGRT®)
re32 CALL LR¢CUNE,OCONF, 2, CORCCARCOANFYY Y

3y ane CONTINUE
C CALL LINGHISETTC PHOCESSNR FDR RIGHT TO LEFT t‘ﬂMF‘INAYIEIN
C FOR EACH "RIGHTMUST NDDE * TN THE STRUGTUKE

- 3.64. -

parser implementation

Res4:

ra3s

323
pal7

no3s
Prad
rAUZ
R4
P44
Pads
peart
rRy9
arso
a5y
uese
nasy
NS4
ApSS
REsy
nese
pasn
NhA
ApkR
Plad

ANkl
Re6%
BORT
PpLB
RAR9
ReTeE
PET
pey2
fnTd
BeTH
(15 XY
oeTs
ArT9
Q8P
pey

[w il e R SN\ VI

D
Dims

1Ap

197

196

{99

roz

WRITE (6, 1%5)

FARMAT (Sx,f<= FRCM RIGHT TO LEFT?)

I s CRORECARIOCONFY)
POTN &]
T = CNRCTY

TEICNR(1) NE.P} ROTD 19+
call, PRLIST(CAR(POIMI,29,R)

Ty 2 T8 +t

NQITEtb|1E5(‘) TllITP-JTv:

FORMAT flr+, 7%, 12,7,
CALL LREDEONFE,CHANF, 1,

17,7,.°
POTMY

TF(CARIPDSY ,FR,.?) GNTL 199

CalLL POPUP(T,POS)
CALL POPUPIPOIN,FNSZ
TF(T,EW, @) GOTD 165
GOTD 200

1

s 18,°

TFe¢CaR(CORP (1Y), EN M) GOTH 197

T = COREID

CALL PUSHTI,PDS)
CALL PUSHIPLIN,PNR2A)
Tz CAR(ID

POTN F 1

ROTN 201

IF(CNR{NCOKFEY ER, M) GOTN 2p2

OCUNFS = crRrCONFS)

FoTh 283
COMTINUE
Errna(u LY LFl, @
= (FHYPL)
rﬂTU 4

gaorTn 1

c ATTacH RESULTINR PAHTIFLES AMND LOCK

1
12

N&TATS 2 8

TF(LAR (MNgTs18) ERn, M)
palLl POPUPRT,METATS)
CONF =]
NHYP = CRR(CDF (COMF)
T = CDR(NHYP)
T = COR{]
TF(CDPrIJ NELB) BOTO
calLL APPEND (1,J,T)
fATD {2

IF(CAR (LMY, FU #) RET
CALL PUPuntI L2
CARCCARCTIIY = LUOCK
GNTO 13
EnD

GOYa 13

)

it

RN

- 3.65,

FOR WORD

HEg)|

parser implementation

3.2.4. The linguistic processor.
LR

parameters : none

operation:
This subroutine performs two main tasks:

(i) The computation of the parsing predicates, and

(1ii) The construction of new configurations when merging
two particles. This first task is further subdivided in two
main areas (a) the execution of the parsing predicates for
adjuncts and functionwords and (b} the execution ¢f the
parsing predicates for objects.
After the necessary preparation (such as getting the relevant
information pointers into the lexicon and to the syntactic

rules) we start computing the parsing predicates.

When cﬁnsidering the whoie set of parsing predicates and

in particular and in particular the domains for which they

are defined we come to the following schgme:

(i) predicates for adjuncts and function words:
(é:function—of—ﬁ;;a

p-position

|p-concord}7

(%isem.feat.adjuncts

decision

function

- 3.66. -

parser implementatian

{ii) predicates for cbjects:

(p-taking—-obijects

(?lobject—position

\

p-sem.feat.objectsf

decision

function.

T

p-sem.netw

¥or the investigation and development of the system at the

current state of knowledge and on computers which do not
allow parallel computation {(except by sequential simulation}
we decided to implement a sequential instead of a perceptron
like control structure, that means: we apply each predicate
after the other one and as soon as one predicate fails

we abandon the idea of merging. We stress that this method
will fail to account for the various points which were given
in favour of a perceptron control. Nevertheless the sequential
control structutre proves to be extremely useful in research
for the grammar, i.e. the strict contents cof linguistic
knowledge} we want to know precisely how far the linguistic

information goes and where it rejects.
We found out that the following flow of control is most efficient,
that means the fastest rejection of a possible merging by

as little as possible of computation.

(i) for adjuncts/functionwords:

- 3.67. _

parser implementation:

- 3.68. -

parser implementation

for objects:

////{E\\\\\
p-object-" -

positio
alse
triae
/////f;\\\\\
-taking- -

P

\\\QEziS;S// false

- 3.69. -

parser implementation

A deviation occurs for objective adjuncts which follow

the flow of control of adjuncts except that irnstead of

the p-position predicate comes the p-object-position

predicate.

Similarly for adjunctive objects, they follow the control
structure of objects except that instead of the p-object-position

predicate, the p-position predicate is used.

Now we give some comments on the computation of the
predicates themselves. In principle each time a predicate
is true, a message is produced,and when it is false
another message is produced and we return back to the

calling routine CONTR.

(1) Networks

We prepare the call to NETW by (i} getting the networks

and {il) constructing a special list format for the function
which acts as condition of the transition.-

Then we call the routine NETW which performs a transition if
allowed by the data, and filter out the result in the main
routine.

(2) Function-of-head/position

When the networks have been unsuccessful we check on the basis

of the grammar itself whether the function-of-head/ or taking-
objects rule and the position or object-position rule respectively
applies. If successful we proceed, else the linguistic

processor returns control to CONTR.

From now on the parsing predicates computation is performed
in two separate parts:

{(A) ADJUNCTS and FUNCTIONWORDS

- 3.70.-

parser implementation

(3) Syntactic features

If the grammar prescribes agreement we fetch the relevant
feature complexes and send them to the MATCH routines. If the
result is false, control shifts back to the CONTR program.
Moreover if the grammar prescribes sending through features
to the head, the relevant preparation is performed and the

features are sent-through by means of the subroutine COMB.
(4) Semantic features

Finally we do the semantic features test for adjuncts
which is mainly located in the subroutine FRAMES. A
complication arises in getting the relevant information in
certain verbal constructions where the semantic features
test is performed on the subject of the verb.

If the FRAMES test is positive we go to the second main
part of the : LR subroutine: the construction of new

information structures.
(B) OBJECTS
(1) Surface case signals

For cbijects we perform after the order/relations environment
tests the tests of surface case signals. To this purpose we
compute the relevant surface case networks by means &f viewpoint
ard function . Then we call the NETW program that consults the
semantic networks and delivers a (possibly empty) list of
triples syntactic features/states/cases.

{(2) Semantic features

Finally we compute the semantic features associated with the
case slots found by the surface case processing and perform a
match with the sematnic features assoc¢iated with that word.
If there is at least one case for which a match is successful

we construct new configqurations.

- 3.71.~-

parser implementation

IXI. New configurations

The construction of new configurations is a complex book

keeping task.

(1) Changes in the subordinate

First of all we make a copy of the configuration of the subordinate
and change the information resulting as a side efféct from the

execution of the parsing predicates.

(2} Particle superstructure

Then we construct a copy of the configuration of the head and
attach the old configuration to the new one. This is a quite
complex process. Not only do we need to add information about
the domain, e.g., but we also have to look into the structure
of the head configuration 1f the subordinate is not

attached on the topnode. This is done by a subroutine

NPOINT (to be discussed soon).

(3) Chénges in head configuration

Finally we make the changes in the information of the head
configuration as specified earlier. A special procedure
comes then into operation for verbs, in particular

we reverse the usual head-subordinate structure. This

turns out to lead to a more efficient semantic structuring
process and to a more efficient representation for the rest

of the parsing process.

code:

- 3.72. -

parser implementation

@ert BURRAOUTIME | RINCOME, IPNMF, F,POINY
nare IMPLICTT TRTEGER (A=X)}
nHp % LOGIcaL*l aF
pend CoMbOn CAGCIZUZ) ,rnR{3IARE) ,4F (3301)
PURE QUMMM L Of AN LR XOR NOT
emne LossMUN £INE TPF/SVNTRF-RFMTQE.FUNTﬁf
ere7 COMMON /CnMF/ COMF (3B, 10)Y
Punk cOMMON ,CONE/ LUCK RULE,REFNPE, AFTFR, TRUE, FALSE, UNDET, FUNETE,
* SYRNET, FPAMF DBlFr UNML PRED1c
P9 C”MRUN/TNVF%/ INVES,NSTATS LG
erie cOMMON /Ein/ FIN,TR :
AR COMPON s TFREF/IFREE
apy e coMPRnN /CPﬁE’ MOD, RLAL, ANJU
P13 COMMON 20D, SYNAFT,VERBAL,CABE)
C INITTALTZE ruangE INDICATUPS
R4 OSFM = @
LR ANELg = [
PO & RES = n
eny 7 ASYN = @
ZR1H ™ =g
ap19 DLTP = @
rren TCASF o &
R NEFM = p
pp22 NEYN 3 [
nea3 rHa® & M
Rp2a MEwWS & &
ap>5 CASEST o
PAPR STYR = p
erT nyg = @
PARA NRES g ¢
r .oy o= 1
C GET RELEVANT IwWFOKMATION POINTERS
¢nég NSTRUC e rNEITARINCONFY)
pA3e STRUCT = CAFIHCONF)
am3y OSTRUC = COKICARTONONF))
ez CalLl GFT (CAR{OSTRUC) ,CAR(CAR{CURINSTRUCII) ,,OMYP)
epT3 CALl GETICAR(PNIN) ,CAR[CARC(COR(FPQING)) NHYP)
C GEYT LEXIrOW JMFORMATTON ([O/h=FEAT)
pAZY NEFAT a CAF(CHRINHYP))
PE3s MFEAT 3 Lap(CRR{NHYPI)
C GET TNFORMATINN SERNUENCE (D/T=TNF}
YN D1HMF =z CARCCOR(OSTRUC))
pasT SITRFE = CARCCDK (FOINDY)
C GET FUNCTION (ONeFUNE)
AQXE nFUNE = CAR(OPR(DOINF))
pATY NELINE 2 CAR(CPRRININFY)
C GET SYRTACTIC RULE (O/T=RULE)
L drd Yy CaLl GETIMFUNE KULE,NRULF)
5MGE] CALL GETI{NFUNL, KULE,DORULE)
C (1) NETWORKS
C (AY GFT WNETKORK
A | TF(F FO,u) Call GET (NFUNC,REFORE,NNET)
easa TFCF,EQ, 1Y CALL GET (NFLNC,AFTE®R,NNET)
Ruae TFLMNET EPL) ROTH 2
L (BY GET STATE
QRLs IF(FER, @A) MNSTATE =CAR(CAW(NCONFY)
oSy TEIF.FU, LINSTATE & CARCENRICNR(MINFIY)

- 3.73. -

parser implementation

anseg TFINSTATE FOR,.#) NSTATE =2 CAR(MNET)
PeG4 TNFTR = CAR(CDRIMNETY)
Hagy NNET & CARCCDRICORINNETI)
CICY PREFPARE YmPLyT FOH NETW
AUSE caLl NES{cOMR)
pes? LALL NEW(IY
AEse CAR(TY = DFUNE
Prss CARCCONDY = 1
BRew L =@
FR6Y J =z MSTATE
Cip) conSULT
de2 T = NETw(COND NSTATE,L ¥ ,NNET,INFTR,FUNTRE)
e caLl FRaASE (CONDY
ehe 4 TF(1.E0,@) GOTO 2
C(E) FILTER
AREE CALL NEW{MEWS)
roe? L = MEWS
TN 1 & K
pO6? 1% T¢I ER,wY FCTOD 12
a7 CALL "APD (AR CCPPICARCI)) Y, NEWS)
opre T =« CORCTH
ftn73 GOTD 11
poTd 12 NEWS 3 (DF{NEWS)
aRTs CALL BaCK(L)
n CALL PRLYST (J,3%,8)
) WRTITE (a,t12m)
D1AR FARMAT (1H4,TX, "SUCCESSFUL TRANSTTICN FRNM®)
n CALL PRLTST {MFAS5,%1,8)
" WRITE (6, 571)
reTE Q0 FORMAT (Li4#,7X,°T0 THE MEW STATE(S) :°)
ae77 IF (F,EL, 1Y AMNEWS = NEWS
@a2vo IF {F.EMa1) MEWS = ¢
APE Gortu 3
Cez) FUNCTION UF HEAD /4 POSITION
2Pa2 2 PO& 3z @
opad TF(COMF (ORLLE,3) L,ER,DAJEC) PDS o COMF (NRULE .1
RARS IF (COMFCORULE, 3) JNE,ORJECY PDS = COMF (OWULF,S)
peay IF(POS EQ 2y GNTD {201
Enay 1F{FER, ¥, AND FOS,FR,AFTER) ruTn 1pel
o991 IF(F.EQ,.1,AND,POS ER BEFNRE) ROTO (ot
PEea caLL NFw(CUNDI
7roy CALL NEW(T)
fAgs CAR{IY = MFLINEC
fNgk CAR(ConG) = T
nney 1=MAT8H(CGHF(DRULE,4).EGND.FUNTREJ
RA9E IF(1.ER,A) GRTO 12641

D wRITE(&,101)
niey FORMAT (pY¥, *SUCCESSFUL NRDER AND RELATINNS ENVIRONMENT TERTS")

£(3) SYNT FEATURFS

nigr 3 TF(COMF (ORLILE,3) ER ORIEC) GOTD &
Ay TFICOMF (ORUILE, 7Y NE.TRUEY GOTD 35
Crl) GET FEATUKFS
Birod NOAOM 2 CARICRKR(CRRCCDR(CRRINTIMFIIIM
A4S NFEAS = CarR(CPRICOR(CNRICHRIDFEATININ)
2ine TF (AF(OFEASY EG, 1Y GOTH 3
IR IF (CARCOFFARY EQ.AND, OF CARCOFEAS) EQ, (R QR CARINFEAS)

w JER ANR L OR,CAR(OFEAS) ,EG.NOTY GDTR 31

- 3-740 -

parser implementation

AR
niyd

Ri1e
113
2115

Aile

2117

a119
2121
A1P3

*i124

D12k
n1r7
€128
n179
B131
e13g
2134
2135
711e
pyx7
a136
2139

Alal
[
plaz

p145
2146

2147
@la8
Mmya9
f1en
A1s]
nyseg
?15%

3
CCII)

“103

44
n
Dip2
]

NFEAS = Cag(DFFAR)
CONTINUF

MaToHING
WRITE [g,1n3)

FNRMaT (aX,*MATCH THE fFOLLOAING FRATURE COMPLFXES:?)

call PRLTST (UFEAS,R,b6)
call PRLIST (MROM,R,6)

FES m MaATCwH (UFEAS, NDOM SYMTRE)

1F (RES.FP A1 ROTN {npwa
cGN11

WRITE (g1

FogMaT (By,RESULTING NOMATHNE)

FaLL PRLTRT (KES,R,f)
NSYH o BES

C (IITYy sENG=THROUGH

35

n
Dine
n
c (4
4

41

21e7

c(B)

Cend
6

&1

TF (COMF (ORULF , B) JNE,TRUEY ROTD &
1F (RES,ME M) RES = GNPY(RES)

TF (RES,.F, %) RES 3 CARICNRICOR (CORICDFININFYIYIYY
NEYN = COMA (EXT(CAR{CNDRICDR (COR(CORICMR{OFEATINYIYI)IY,FES)

ARTITE (&8, 108D

FORMAT (8%, *NEW FEATURE COMPLEXZ?)

CALL PRLIST (HSYN,B,8)
SEMANTIC FEATURES TEST

1F (COMFLORULE,Q) ,FO.PY GOTO &
CeIy SFEaRCH IMFORMATIOM SEQNENCES

TNFEAT £ MEEAT
TMTNF B NTNF
THMRLLE = NRULE

TF C(OFUMC NE JVERBAL) $:0T0 419

SURJ 3 CAR(CPN(CNR(CDR(STRUCTIII

TF (CRRICNR(CORININFYY} . NELFINY GOTO
CaLL GET (CAR(SURJY,CARICARCICDRISURIYIIY,INHYPY

INFEAT & CAR(CONRCOINHYR))
ININF = CArR(COR[SUBJIY)

fALL GET (CaRCINFEAT),RULE, INRULF)

1= n

IF (COMF(INRULE,2),EQ,0BJEC) 1 =
! CAR(CNE(CORICDRIEDR(CORCININFIIIIY

STYP = (COMF(OFULF,9)

NRES = FRAMES (INFEAT,OFEAT,STYP,T)

IF (MNRES,En.,R) GAOTD 12@%
WRITE (g,107)

FNRMAT &y, *SEMANTIC FFATURES MATCH suCCquruL,

CALL PRLIST(MRES,8,5K)
N =
GOTD A/

DRJECT

1013

SFMaNTIC METUORKS FORF SURFACE CASE SIGNALS

ROLES = SEARCH (CAR{CPR(NFEATY))
NROLE ® CAR{CDRICNRICHR(NFEATIII)

CALL NEW (NFURSK)
CALL NEW (T}
CAR(NFUMSY = 1
CaR (1} = MFUNC

TF (CAR(CAR(ROLEBY)JEQ.NROLE)Y GNTO &P

- 3-75.

DOMATN

")

parser Implementation

2155

aisa
P1el
AR
LY
P164
@les
2ip7
2169
g1
2171

#1772
173

R175
0117

AL7A

W

1RO

Pirl
f1R2
0183
A184d
i8S
nikeL
A1ET
RIRS
2lgl
P19
B193

giga
®195

¢197
2198
Ai{s9
gean
@201

paag

ROLES = CDOR(ROLES)

IE (ROLES EQLNKOLE) 6T b2
1F (Ro(FSIEN.?) EOTD 1RBS

GNTR A1
LTS 4850 & CDRC(CDRICARCRDLESI)Y
IF (4380.EQ,F) BOTO 1005
63 TF (MATCH(CARCCAR(ASSD)), MFUNR, FUNTRE) NF M) GOTD &4

AS80 2 CDR(ASSD)
TF (ASST.FR.2) GOTO 1nns

GOTO 63
Y} MHET = CRR{CAF(L850))

FEATR: = Cap(COLR(NDR(CDR(CPRICTINFIIIN
0 WRTTE (6,1029)

0109 FORWMAT (ax, “CANSULT CASE FRAMES w]ITH SYNT FEATURES :*)
0 CALL PRLIST (FEATS,8,6)

CASEST = tAR(CDR[CnR(GDP(NINFJJlJ

TF (CASFST,EQ,.7) CASEST a CaR(NMET)

IF (CASEST _ FO,2) GOTH 16306

& = NETW(FEATS,CASFSY,n,0UTR,CAR(NOR(CNWINNET]Y)

H JCAR (DR (MNETY) , SYMTRE)
TF (DUTP.¥Q,.0) GOTO 1206
n WRITE t&,111)
N1y FORMAT (&Y, SUCLESSFUL TRANSTITION 1IN SFMANTIC NETWORKS®
H FRY,*RESULTING TRIPLFS (FEFATURES # STATE « CASEY ")

callk PRLIST (DUTPR,8,e)

\ KRTTE (gat114d
114 FprpmdT (By,*MATCH THE FOLLO®YNG SEMANTIC FEATURES *)
SEMF = CaR (CNRICPROCPRICARICRR(OINFY}IIIN

L

n

€ SEMAMNTTI; FEATURES
)]

o

o CaLL PRLIST (SEMF,a,&)

n WRITE (hei12)

0112 FORMAT (Bx,rWlTH FFATURES OF RESP, CASES *)
T = QUTP
Catl NFy (NuTR)
1L = DUTE

65 ICASE 3 CaR(CHUP[LMR(CARCIIIN

RALL PRLIST (ICASE,R,m)
NRCOLES = SEARCH (rAR(cDR(NFtAT)J)

L] IF (CAR(CCAR(GROLES))FULICASEY GPATN A6
OROLES & CDR{ORDLES)
T¢ (NRGLE3L,EM,») GOTD 10p6

GOTO 69
1.3 SEMF = CAR(COR(CARCORDLESYI)Y
D FALL PRLIST {DSEMF,8,5)

J = MATCH(NSEMF,SEMF,$EMTRE}
1F (J.EQ.m1 BOTD wa
o WRITE (gs114)
N11& FORMAT (Bx,*SEM FEATURES MATCH SUCCESSFUL ")
CaLl APPEND (CRRICOR(CAR(INII,JI,L)
CALL APPENP [QUTP,CARIT),OBUTR)

[N = IN +
GOTO &7
b3 CORTINUE
n WRTTF (e,117)
N{1T FORMAT ¢ay, *NiE SFM FEATIIRES MATCH?)
a7 T = cpRCID

- 3.76. -

parser implementation

A2m3 1F (T,NE,RY EOTO &5
n275 TF (CoR¢TLY Fu,@) GOTND (@07
nEoy auTP = chR(IL)
p2na Cap| RaCK{I)
LELL] 1F (1,60, aMO LN EQ,2) GOTD 1007
@211 g CONTTMUE

n WRITE (e, 105 '

Dyas FORMAT g%, *»>>>» ALL TESTS SUCCESSFUL, KEW CONFIGUPATINN 7]
ge1e PN g 10 = ¢4 1IN
2213 1F (OUTPL.FG.A) GOTO Sa
pa1s NsyHTF = CAR(CAR(OUTPY) :
peie NSEM = CAp(CNR(ONRICOR(CAR(OLTRYIIII
2217 TCASE = CaR(COR(CDR(CAR(QUTPII))
@21a FLSEST 2 caR(CPRICAP(DUTPIN)
n219 AalTe = COR(ALTPY

(1) CHANGES TN SUENRDTINATE COMFIGURATION
@222 Sg ONFW a rOPY {UsaTRUC) '
GaPi FEs = COR(CAR(CNRIONEWY))
Rpz2 TF(COMF (DORULE ,2) HE JORJER) GNTD 193%

C €AY FnNr ORJFCTS
2224 I3 = COR(CARIGNR(FESIY)

LetI) symT FEAT
paas CTF(CAR(I3) NE, M) CALL ERASE(CAR(IX))
gaa7 CaR (133 = DBYNTF

C(I1) SEM FEaAT
p228 TF(CARCCPRIIZILNE,B) CALL ERASE(CAR{CDR(IZ)IN
Pazd CAR(CDR(TIZ)] 2 NSEM

Cl{ITIY CASE
ez _ CAR(EDRICNRILZYI)}) = TCASE
na3z GOTO 194

€ (BY anJincTs
p233 193 IF OFUNC LEn, YFRRALICAR (CTHR(CNRECOR(FES)))

* NEYM _
waxs TF (nFuNC EQ,SYMMETY CAR(FDRIFES)) = FIN
p2y? TFISTYP ME ,@}CAR(CDRICORICPR(CDR(FES)I)IIII= STYP

Ct2) CrousTRUCT PIRTICLE SUPERSTRUCTURE
mZi% 194 CALL NEW(NSTATE)

Redr NSTRLLE = CopY(CAR(NEDONFIY
241 CAR{NSTATEY = MSTRULC

- € RAMNGF
rede TF(F.ER, 1Y ROTD 201

£ FOR NIRECTION LEFT TN RIGHT
g244 209 CALL APPEMD (WSTATE,CAR(CLUR(OCONF)),JN)

agas tne(J)) & COR(CORINCONFID
) ’ CALL PUSHCNCOMF, L ()
pae? GATO a7

€ FOR NIRECTIOM FIGMT TN LEFT
R4k 201\ ralL APREND (MSTATE CAR(CDR(MNCONFYY,))
%249 CAR(JY = CPRELOFCOCONFY)
ERTY Call, PUSHULDNF,LA)
: C PUSH DN MBTATH, TNVES, L ACK
p2s1 RPnT? TFLCARCCDPR (NSTATE})Y NELPY CaLL PUSH(NSTATE, INVES)

gesl call, PLEHIMSTATL,NSTATS)
C MERGE

nas4 PRFL = p

#asy WOR 2 CARIPOIN)

- 3.77.-

parser implementation

#2546
pas?
LELY)
n2s9
p260
@261
P26l
e265
F2ho
ez2e?
-1
LR

QeTn

f21e
n273
@275
g2rTT
#2786
o279
p2en
@gR2

w283

G2ed

RERb
*PBY

@29
2914

R293
naad

Begk
@296
g3¢a
a3e

a3ne

pipd
n3dg

R3In7
nIne
2309
3R
LETR
Y2
f313
a314
2316
2317

n3L8

HYPO & Cak{CAR(EDRIPDINYYY
C1STRUC a CRREMSTRUCY
NPOIN & NPATNT (TSTRUCWDR,HYPN)
T = CORINPDIMN]
: K g CNR(CORICARCIN
192 IFICPR{IY,En,2) GOTO 19M
IFrCAﬂ(tDn(IJ) FR,MY GNTH 171
T = COR(TY
GaTn 192
191 rall BACK(CPR(IN
19@ caLL APPENG (T,0MEW,.J)
AaMH = 1
1F(F WE ¢y &0TO 82
T = CDRIOMFWY

5% TF(CDOR(T) . F,P) BOTO S1
TFICARCCNR(TYIY EQ . B) GOTH 52
T & CDR(IY

_ GOTO 5%

51 call aPPERD f]1,0,1)

52 TF(CONF (OpuLE, 3,60, PREGICY PRFL = |

FETR = CPR(CAR(CDR{NPOINID)
C SYNTACTIC STATE
CAR(NSTRUCY = NEWS
Cl3) CHAMNGES TN HEAD CONFIGURATION
en? TFLANEWS ,NE,B) CARC CDR(FETS)) ® ANEWS
Celly STATE IH CASE NETWNRE
2rd 13 2 CORCCARCCDRCFETSI)
TF(CASEST ME,®) CAR{CDR{CDRIFETS))) = CASEST
C HEAD 1I5 O0RJECT
ctzllj SYNTACTTC FFATURE rGPPLEx
2q4 IFI{(NSYN.ER.M)Y GOTD R3S
TFrCaR (132) NE, ®) CALL ERASEC(CARCIN)
CAR(I1y) & MSVN
205 IF(COMFINFULE, 2) JNELORJIER)Y GOTO 2P6
crIvy SEM FEATURF COMPLEY
IFINRES,ERN.M) GATO 1946
IFCCARCOCDR (THY) (NE,) CALL ERASE(CAR(CDR{IZI])
CARCCDECTIXY) = HRES
GnTH 196
C HEAD T8 aDJUNCT
206 TFICHAR NE D) CARCCNR(IZI) = CHaR
C VERBS
19% TFiPRFL ED, a) GOTO 197
J = aaN
1 = CDanAR(NSTATE]J
COP(CARINSTATEY) = CAR(CNRLJ))
CALL ARPEND [CRRCCDRCCARCNSTATEY N, T, L)
L a2 ChELN
Capl. BACK(L)
CALL BPREND J,@d,.1)
198 CAR(CAR(MSTAYEY) = PRENIC
197 TECTR,E(Q.1) CALL PRLIST(CAR(NSTATE) jR)8)
SR CONTINUE
RETURN
C ENMD MESAAGES
181 JF(NU.EQ,.2) KETURH
b WRITE(G, 1011

- 3.78.-

parser implementation

DIP11 FORMAT (By,”+ WRONG HEAD OR NO TRANSITION TR SYNT NET*)

P . RETLRN
a3z ARZ TE(QU.ER.™) RFTURN
n WRITE (6, 17212)
Din1e FppMar (By,** SYMTACTIC FEATURES MATCH UNSICCESSFUL*)
n RETURN
B322 1003 JF(NU.FR.?) RETURN
o WRITE(®,1m3)
DI@Ls FnRMAT (B, "+ SEMANTIC FEATURES MATCH UMsuccESFuL)
o RETURNM
e32d 1emd qpo(r n,g@.m) RETURMN
n wnx 1114}
D1p14 FommAT (Ay,*+ HEAD TAKES NN ORJECTS OR WRONG POSTTION®)

D RETURHY
326 1225 1F(QU,EN,P) RETURN
b WRITEC(H,1219)
DIMLS FARMAY (BY, "+MTSSING CASE DR FUNECTIDN IN SEM KNETWORK ?)

) RETUPN
P328 (@gk TF (0L FQ, @) RETURN
) NRTTE (6,171R)
Dinie FOPMAT (Ry,*+ND TRANSITION IN SEM NETWARK’)
n nfTunm
03% 1nn7 (o, Em My RETURN
b wpyra e, 1217
N1@17 FORMAT (A%, '+ SFMANTIC FEATURES MATCH LUNSUCCESSFUL?)Y
b RETURN
@337 END

- 3.79.-

parser implementation

NPOINT

parameters: STURC, WOR, HYPO

Operation:
This small auxiliary function is used to locate in
a configuration {pointed at by STRUC) the informaﬁion
of a word (addressed by WOR) for a certain hy@othesis
(HYPO) . The result is a pointer to a cell where the
addressed configuration started. '

code:

INTEGER FUNCTION NPODINT (ISTRUC,WOR,HYPO)
IMPLICIT INTVEGER (AeW)
CALL NEW(PDS)

193 IF (CAR(ISTRUC) .NE WOR) GOTO 199
IF(CAR(CARCCDR(ISTRUE)}) NE HYPO) GOTO 190
NPOINT a T3TRUL

1 1F¢PDS EO, @y RETURN
calL POPYP(1,PDg)

GOTAO 1§

19m ISTRUC = COR(ISTRUC)

IF(CORCIsTRUC) . Eg.wJEGnTn 123 02
IF(CARtCOR(IgTRUCY) JER,) 0710 %
call PUSH s? ﬁc phs)

ISTRUC a DH(I%T ue)

ISTRUC = CAar(TsTRUC)

G0TO 193

192 CALL POPUP(ISTRUC,PDS)
1F(ISTRUC,NE,.@) GOTO 192
WRITE(&,196)

196 FORMATC1X, "ERRQR IN FINDING ATTACHEDINT IN TREE®)
CaLL ExJr
END

- 3.80. -

parser implementation

VFRAMES

parameters: FEAT1, FEAT2Z being two information sejuences as found
in a configuration
STYPE the qual/mod/undet characteristic

SEMF (optional) a semantic feature complex.

operation:

FRAMES computes whether the semantic features are. compatible.
Result of FRAMES is NIL if no match ({(neither for qual nox
undet) or the resulting semantic features domain if

a match was successful. Moreover FRAMES decides which

characteristic holds if possible on the basis of semantic

features.
code:
aanl [NTEGER FUNRTION FRAMES (FEA&T1,FEATR2,STYPE, SFMF)
agp2 1MP%IC1T1IN;EGER {Ami)
el LOGICAL*1 & _ o . N
ﬁgﬂi comMaN/copg/ LOK, RULEREFORF, AFTER, TRUE ,FALSE (UNDET, FUNCTH,
- * 3YNNET, FRAMEDRIEC, UNMa,PREDIC
nas FOMMONCOMF yCOMF (3%, 10)
gﬁga FAMMON/RNR 2 AMOD, B ”nL,nnJH
it cOMMON CAR(3APA),COR(320M), AF (3002)
ranA rUHHﬂH;IHFTPFISYNTQE,SEMTHF FILINTRE
C GET CASE FRAMES
“pen9 FRAMES a n
rALA 1FR g 7™
Ayl IFRNAM 2 CARCCOR(FEAT2Y))
12 WA M CaR (CNRIFEATL))
2313 %; r?PqﬁAM EN,W,NR_JFRMAM FG.B) GATO 8
n@Ls JEOLES = SEARCH (JFFNAM)
2Ok IR = JROLFR
P17 1%0LFS = SEARCH C(IFRNaM)
a0 8 1F (120U F8, ER, A, 0RIRNLFS,EQ,P) GOTO &
c SEARCH FEATURES TD bF SATISFIED
el TRASE =z Cak (MORICORCENRLFFAT2Y)))
Pyt 2 IF (Cak(Can¢IRNLFSYY ER, TLARE) GOTO 3
ne23 IROLFS a CRR{INOLES)
AR2Y IF (TRALES , NE,.B) BOTO 2
an2k GoTa §m . .
#0p? 3 SEMFp = CaRk(CNP(CARCIFOLES))D
D wRTTE (R,11)
Dy FORMAT (éx, #IBVESTIEATE THE FOLLOWIHG 8P, FEATURFS:®Y
D paLk PRUISE (SFmE2,R,8)

- 3.81. -

parser implementation

L SEARCH FEaTHRES OF SL0OT FILLER

PR2g 1F (STYPRE, FAMDDY GOTA 7
C (A) UUaLIFYIhG
nAIY TFLSEMF NE .Y GDTD B
Yo 1 JCASE a CAR(COR{CDR(CNR(FEATLIIN
ARYY 4 1IF (CAR(CAR(JPOLESY)Y ,EQ JEASE) nROTO S
PRTS JRPOLES = chik (JRULES)
73 %4 IF (JIRALES . NE,P) mnTD 4
PA3B GOTO 12
019§ SEMF = FYT(CAR(CDRICAR(IROLESIIN
C COMPARE ' :
a0 & FRAMES = MATCH (SEMF2,SEMF,SEMTRE)
n CaLlL PRLIST (SFHF,R,n)
foal IF (FRAMES,EN,H) 6GNTD 7
AQ43 1FR = FRAMFS
C(B) MONTFYTING
LYY TIF (STYPE EQ,0OUALY RETURN
PAdR IF (STYRF ERJUNDETY STYRE = Gtiag
Aras 7 TREMF = FXT(CAR(CORINAR(IR®IIIY
C COMPAKF
D CALL PRLIST [(T8EMF,8,8)
B4 FRAMES = M4ATCH (SEMFP?,15FYF,SEMTRE)
Pl 1F (FRAMES EuU,@) GNTN 42
Pige : TE (STYPE FQL,RUALY STYPE = UNDET
rRS4 1P IF (TFR Nt ,0) FRAMES = IFR
©AGe PETURNM
C ERRORY
BReT 8 WRITE (&,9)
1 3 M
S
L A r e . s J S |
P RE T [DIkt CASE IN FRAME *)
YR) B[}

- 3.82, -

structuring

3.3. The domputation of the structures

We present now three subroutines which extract the
linguistic informationstructures defined earlier from

the particles, The implementation of this subroutines is

mainly due to K. De Smedt.

(i} Functional structures

FUN

parameters: CONF (a configuration)

operation:
FUN computes the functional structure and prints it on

an ocutput device

At SURROUTTNE FUN (FrNF)
eaae TMPLICIT TNTEGFR (AeW)
code Aol LOGICAL &1 AF
:gﬂg COMMONZETNZETIN, TR
' “ LuMtON £av(3DER) . ChR(3a00))
Qaas IFrcaNFEEq.ﬂJ RETURN TeaFC3aae)
onnT Cali NEo(PES)
AYAs CaLL MEY(FLINK)
gring NUTFUNRE YK
g1 TawlgsCNF
Pa11 1 THFUNSCnR (CAR(CDR(INKORY Y)
go1e J2COR(COR(CAR(CNRITINKWORYY)Y :
ap13 TF (CAR () BA A, OF CAR (Y B, FTN) LOTP 3
0214 IF (e gm(FINLCARIIIY ER,®) GUTE 50)
Be1 S 3 I = CER (LRI
ﬂgib TF (JLEN A, DR, I FNFIN) GATH &
ity 7 TE (ELEMIFIN,JY BN P} 6BOTO s
et 6 CAP (DLTFUM) 2CAR [TNFLN))
%19 THAZCPR (ONR [INWOR))
wpaQ TEOCIMGE FGLRY JOR, (RARCINKY JEf, @]
eazq COLL nwEw(nLTHORY PARCINKDLER.) GO0
Ga2e CAP LU YUNR) ZCARETRWHK)
mae3 CALL &FPESD(OUTFLY, RUTXOR, 13)
auAY S LawNRaCAR (THin)
;wgﬁ CALL HEWENUITFIN)
Bes CALL APREND{OYTY a '
azy TNN:CmF(EHM; UTHOK QUTELN, 130
ae28 TR (QINm FL E) NR, (CARCTNY) _EW . @)
@ne CALL PUSH(TE,PnS) T LB D) buTl 1
2axB CALL PUSH{TNW,PDS)
231 BOTH 9

- 3.83. -

5trﬁcturihg

0@z 2 CALL APPENB(OUTFUN,CAR{TNWOR) , OUTWDR)

8A%3 CALL PORIP{INA,PRR) Lo
a4 TR{TR,FR,R) GRTD 4 '
2235 CALL PIPURP([HUTany,pPnad
T . LGATN & :
apx7? 4 CALL FRLISTUIFLNE,1,n)
" @gxa CaLl FLOTLICFUNK,1,1,1)
.9 CPETURSY
apup - 217 CONF =
Ul RETLRY
Apag END

{ii) Case structures
CAS

parameters: CONF , a configuration

operation:

CAS computes the case structure and printé it on an outputdevice,

code:
anny SURROUT INE CAS(COMF)
Qo2 IMPLICET 1F;EGERtn-w1
(The] ne al A
;mmi Eu;;g:Lcaprxmmmj.coﬁtsmmm].AF(SGQEJ
erns CIOMMON ,cﬂD?/ MnazmgsL;;?Ju
ME/ COMF 32,10 o
gg:s EB:E%E ;Egﬁﬁ/ LéckpﬁULE!BEFDRElﬁFTEPrTwUE.FALbE,UNUET'FUNcTﬂ,
. * S*NNFT,FQﬁMErﬁHJECJ”NMArPREDIC
enas Cagy = FpaME
@i IFICONF Eti,") RETURN
a1y CALL NEy(CABE)
paELL CSef 88K
a1 2 . CAR(CSYelrAST
P13 cal L PUSHILONF,PRSE)
en14 | CALL PUSHA,PDST)
2y ElL &
2216 Fq RALL PUOPLPIR,PNER)
an17 |7 FALL PORUPLT,PDSTY
peLs DOIFIREW, M) GOTN 9p
B9 C FLAGER
aA2a - . PFyY = CLRECARICDRIPIY)
aneal boCalLl GET(CRRC(PRUY HDLE, IR
aRea PINWarDE (P)
pn2l TF(FL, En.?) 6OTC 2
Pz IF(COMF (IR,2) ,NE OBJFCY GOTO 11
apes 2 IF(COMF (IR, 2) FG,0BJECY GNTH 12
npRe CALL GETCCARIP),CAR(CAR(COR(PIIY,HYR)
Ara7 P SURS = meR(IOR(CPRECDRICAR(ENECHYPIYIIY)

- 3.84.-

structuring

QGes 17 FlLay

LY L) & PINKerNP(PINK)

a3y TFC(FING 6N, MY OR, (CARCPTNW) B,) LOGTN
PE3Y P2zsCARIPINW)

pns2 17 P2R2FUSCORICAR(CNRIFZ2))Y)

pR33 CALL GET{CAF(PRFLY,RULF,IR)

padd IF(COMF (IR, 2} JNF OUBJECY BOTO &

AeEs PPCASCAR{CRRICDRICDR(CPDRICNR(PAFUIYINY
BRde IF(PACA ¥, ») PPLa = SURJT

pazy 1F(FLaAG FO.1) GNTID 4

P3%5 CALL MEW(TX)

fAa1g CaLL APRENDICS,TY,C05)

pann CAR{TX)aCAK(P)

gndi 4 CALL mfFe{ix)

npae CALL APRENDITE,m¥%,TX)

npal CAR(MY1gP2C A

PAua Capl, akkEnB(MY,FAR(PRY, MK)

raas FLaG=]

Pddm PRNWRCNRICNFIRR)Y

aga? TEI(F N FL MY AR (CAR(PANW) (EN,2)) GOTE 18
Paus CALL PUSH{PE,PDEP)

eau 9 CALL PISWIE, PLST)

pRse 1R TF(PLSF2 NE ®) RITH {5

g%l cUTO S

ans2 & TF(COMF (TR, 2Y Nt ,aDal) 5070 14

aps s CALL PUSH(FZ,PDSP)

Aasa . Call. PUSHIF,PDST)Y

rASS TE(PNSPRA NF Y GOTL 15

AR5k GuUTL R

Bzs7? 1o TFLCOMFITR,2) NE fUNTTH) CALL PRLIST(COMFOI®,2Y,0,6)
npsH CALL PUSH(PPNWFY PHERE)

2@%sy FANWFIWELNR(P2)

MPew 15 P2NWFWsLDNR(P2HWFR)

AGEH] TE((PPHUFW ER P) MR, (CAR(RANWFN] ,FG,®)) GUTOD 16
Bk PraCAk(HEHWFW)

@6l GOTO 17

oned th CALL POPURIPPNYFW,PNSPA)

ANLS TFERDSPR,oE ,2IGOTN 15

ABen LOTC &

ReT t1 TFA(COMF (TR, 2) JNE ADJU) GNTD 1

Q068 CaLL RETICARIP),CAR(CAR(CDHIRP)IY ,HYR)
An&9 vIEwp = CAF(CDRICOEICAR(CAR(CDR(HYPIIIIN
LR TFIFLAL,FRL1) GOTA 13

anTy CALL ME(TX)

anT2 cerlL aPPENDICS,TX,C8)

@n73 CarrTX)=aCArR(P)

aGT4H 13 Capyp mEwfpX)

en7s CAlLL APPEND(TX,MY,TX)

AATh CARIMY)zVIEWP

QurT Call APPEND [MX,CBR(T),Mx)

paTa FLAG =

paTa LUTD ¢

egBy an CALL PRLISTLCASE,1,.R)

27281 N Call FLATLI(CASF, 1,1,

Gane RETIHHL

Anald END

- 3,85, -

structuring

(iii)Semantic structure

SEM

parameters:CONF, a configuration

operation:

SEM computes the semantic structure and pr1nt5 it on an

cutputdevice
code:
opal - suBRAyUTINE SEM(CONF)
aon2 IMPLICIT INTEGER(A-X)
0 Luy AF
§°§Z to&&gﬁ ;}Rt!@m@).CDR(BQQEJ AF (3pop}
Q@ COMMAN , SEM/0LIST,SEMSTR, PRED ARE, FEAT, MOD, 0BJEC , ADJU,FUNCTWY
8@@2 cDMMDNIcDHFICDMFtBQ e
aon7 cOMMON ,anD/RULE
AARA D NUMa g
Agng P2NWFLi gD)
RITE (6,101
351? g 191 ynnml#cii. *CREATING TOP OF SEMANTIC STRUCTURE®)
amig CALL NEW(SEMA)
2513 CAPESEMA)sSEMSTR
gp1d SMzSEMA
apis - D WRITE (6, 102))
PEL6 D fmp FORMAT (1%, "CREATING INITIAL TASK IMAGE*)
2017 CALL PUSH(COMNF,PDSCM)
P18 CALL pUSH(®,PDS8E)
2B19 CALL PUSH(B,PD3OX)
2Q2a CALL PUSH(2,PDSPR)
aa2i { CALL POPUP(PCO,PDSCOH)
ap2e D NUMaNM+]
na23y o} WRITE (&, 1463 NUM
pazd D 146 FORMAT(IHA,1H[,T2,1H)}
fp2s b WRITE(L,103)
agas D 173 FDHMAT(;HB;'.I. POPPING UP NEW TASK IMAGE*)
oa27 D WRITE(&,184)
0p28 D 1pa FORMAT(SX,"PRESENT POINT IN CONFIGURATIONI®)
@Ry D Call PRLISTC(PCO,9,8)
AN CALL POPUP(PSE,PDSSE)

- 3.86.-

structuring

2031
2032
@33
P04
2015
2036
pa3y
2018
239
2040
P04
LITH
2043
2044
eaus
0046
2047
LYY
2949
2050
2051
2e52
7953

- pas4
2055
#e56
npesy
nasa
eas9

AR&0
2061
aake
00k3
pR6d4
28s5
2266
D7
aQs8
2269
a7 e
2971
adye
eaTs
2074
pATS
2876
77
2278
2779
#opA
ag81
fap?
ARa3
Aasd

2@a5
apae
2@ay
AQas8
Pdg9
LT

==y D oo

Lo I - |

(=)}

o 9909

o900

D0 300 0023 00003

== Nw R

2

23

WRITE (4,135)

185 FORMAT ¢S5y, “ATTACHMENT POINT IN SEMANTIEC STRUCTURE:®)
CaLL PRLIST(PSE,0,%)
CALL PODPUP(MROYX, pnsoxl
WRITE(k,196)

1ps FORMAT(S5X,“TOP OF NODE (FOR QUALY:Y)
Ca)| PRLIST(MQOX,9,8)
CaLL POPUP(MRPR,PDSPR)
WRITE(k,127}

107 FURMATth.'PREDICATE NODE (FDR MARY:*)
CALL PRLIST{MQPR,9,4)
IF(PCOLEQ.?) GOTO 90
I1F(PSE ED,B) GATD 17 :

18 IF¢CNDR(PSE),NE,Q) PSEeCDR(PSE)
IF(COR(PSE} ,NE.BY GOTD 18
WRITE(6,109)

109 FOAMAT(SX, *READJUSTED ATTACHMENT PDINT2*)
CAlL PRLIST{PSE,9,8)

17 PFUaCDR(CAR(CDR(PCOI))
CALL GETCCAR{PFU)Y,RULE,IR)
WRITE(B,11@)

119 FORMAT(1HQ, ", 11, EXECUTION OF TASK*)

CALL PRLIST (CAR(PFUY,30,8)

WRITE(H,111)

111 FORMATI{H4,*FUNCTION OF PRESENT WORD IS1*)
PNWECDRC(PCO)
IF(PSE NF,®) GOTQ 19
WRITE(e,11%)

§1% FORMAT ({x, "« PRESENT WORD IS FIRST WORD IN CONFIGURATION®/

5%, "STARTING TO CREATE INITIAL OBJECT NODE®)

IF(COMF(IR,2).EQ,DBJECY OLISTHCDR(OLIST)

P2aPCO

R2FY=PFL

GOTH 16

PSEaNPL

MROX=0X

MAOPRePR

WRITE(6,114)

144 FORMAT (3x,”"CHANGING TASK IMAGE AFTER CREATION OF NQRE')
WRITE(6,11%)

115 FORMAT (5y, "ATTACHMENT POINT IM SEMANTIC STRUCTUREZ®)
Cap PRLIST(PSF,9,86)
WRTITE(&,118)

116 FORMAT (5X,°TOP DF NODE (FOR QUAL):*)
CALL PRLIST(MQOX,%,4)
WRYITE(H,117)

117 FﬂannTrsx "PREDICATE NARE (FOR MODY:")
fLALL PRLTIST(MBPR,9,4)
WRITE(A,120)

1ep FORMAT(1x, "SYARTING 10O TRACE DEPENDENT WNRDS”)
GOTOD 4

19 IF¢COMFIR,2),NE.OBJECY GOTO 12
CaLl, PRLISTICAR(PCOY,15,6)
WRITE (e, 118)

118 FORMAT (yH4, "PRESENT WORD: 15 OBJECT«TYPE®/
w1¥,"STApTING TO TRACE DEPENDENT WORDS'’)

4 PNWaChRIPNW)

IFC(PNWLEQaP),OR.(CAR(PNW] ,ER,@)) GOTD &%
PRarAR(PNW)
CaL pPRLISTCCAR(PEY,27,6)
WRITE(S,119)

119 FORMAT(1H¢o' z» DEPENDENT WORD FOUNDT®)

n

- 3.8%.-

structuring

LI.LI 25 p2FyusChDR(CAR(CORIFPE])) _
@rq2 caLL GET(rAR{P2FU},RULE,IR)
rasl 0 CALL PRLIST(CAR(P2FU)Y,18,6)
0Red D WRITE(H,121)
n@93 D 12y FORMAT ({H4, 4%, *FUNCTION I5:°)
1. T IF{cOMF{IR,2) LNE NBJECY GOTO 7
297 n CaLL PRLISTI(CAR(P2),11,8)
?0qp D WRITE(H,122)
?a99 D 427 FORMAT ((H4,4Y, "WORD: 15 OF OBJECT=TYPE?/
) 5%, PSTARTING TQ CREATE NEW OBJECT NONE*)
23100 16 CaLL NEWINPL)
Q14 OX=CARCOLIST)
21@2 OLISTaCBHR{OLIST)
Lol CAR{NPLY®OX
aia4 CALL APPEND(SM,NPL,S8M)
2105 calLL NEW(PR)
210 C AR (PR) aPRED
2107 call APPEND(INPL,PR,NPL)
a108 calLl GET(CAR{P2),LAR(CARCCDR(P2))),INF)
Ay0q IHPRzLNR (INF)
e CALL APPEND(PR,CAR(CORICOR(IHPR))),PR]
a11} CALL APPEND(PR,CARCIHPR) PR)
ay12 1F (AR (epRIJHPRY) ,NE.P) CaLL APPEND(PR,CAR(COR(IHPRY),PR)
FEAIN,CDR(CDRtCDH[PEFUl3)
Atz 1F (COMF (7Rr2) JNELOBJEC FEAINBCOR(FEAIN)
D515 eall FEACDM(CARCFEAIN),FEAQUTY
oli; . IF(FEaOUT,E0,0) 6OTO 20
NEW(FE)
alid EAGrESarEaT
211 PPEND INPL (FE,NPLY
8120 AL AL RENG(FE, FEADUT, FE)
212y) URITECH,123) ‘
B122 D 123 FORMAT(1y, "« OBJECY NORE COMPLETED AND ATTACHWED TO *,
1] w?GEMANTIC STRUCTURE®)
ai23 D rabl PRLISTCCAR(SM),T,6)
o124 2a P2CA=CDR(COR(COR(CNR(CNHR{PRFUINI)
a125 TF((COMF¢IR,2) NE,OBJEC) ,OR, (CAR(FRCA).EQ,R)) GOTN 2
nige p CALL PRLISTIOX,27,8)
#1127 D WRITE (6, 124)
@128 D 124 FORMAT({M4,8), "NOW ATTACHING NBJECTI TO ARGUMENTS®)
nig9 1F (CAR (CAR(PSE)) ,EQ,ARG) GQTOD S
2130 CALL NEWfAR)
2131 CAR(AR)E=ARG)
213 © ALl APPEND(PSE,AR,PSE)
2133 S CalLlL NEWTCA)
P134 CAR(CA)NCAR(IP2LA)
Ailg CaLL APPEND(AR,CA,AR)
8136 CALL APPENDCCA,0X,CA)
@137 n CALL PRLISTI(CAR(PSE)},7,8)
?y38 PaNW2LDR(CORIPRY)Y
2139 o Ca PRLIST(CAR(P2),S,8)
Bi4p IF ¢ (PaNu EQ,P},0OR, (CAR{P2NW) EQ,2)) GOTOD 29
f1d1 n WRITE(w,125)
142 D 125 FORMAT({H4, 17X, HAS DEPENDENT WORNS = PUSH NEW TASK IMAGE")
D143 calL PUSH(NPL,PDSSE)
ALa4 . CALL PUSH(P2,PDSCO)
A1Ls CaLL PUSH(NX,PDSOX)
2i46 call. PUSH(FR,PDEPR)
Bidy GOTH 27

- 3.88.-

structuring

@148 29 CONTINUFE

0149 o WRITE(H,126)

a15¢2 D 126 FGRMIT[1H+ 17X, *HAS NO DEPENDENT WORDS*)

a151 2? 1F (pDsP2.NE.,B) GOTO 24

Bis2 - GOTD 4

9153 14 CalLl GET (CAR(P2FU),RULE,1R)

2154 IF (COMFLIR,2).NE,ADJUY GOTO B

2188 CHARICAR(CDR(CHR(CDR(CDRtP?FU)))))

2156 D CALL PRLIST(CAR{PR),1{,8)

2157 D WRITE(H,12R)

@158 D 128 FORMAT {{HMa, 4%, “WORD) I8 OF ADJUNCT=TYPE")

a159 Y CALL PRLISTICHAR,t&,6)

eiea D WRITE (b, 129)

2161 D 129 FORMAT (1H4,bX, *SURTYPE: ~ PUSHING NEW TASK IMAGE")

@162 IF{CHAR FQ,MOD]Y GOTOD 2%

2163 CAlLL PUSH(PSE,PDISE)

A164 GOTR &

P165 21 CALL PUSH(MOPR,PDSSE)

L6k b CalLl. PUSH(P2,PDSCO)

Qis7 | callL PUSH(MAOX,PRSDX)

A168 " call puUSHM(B,PDSPR)

B1s9 IF(PDSP2 . NE.®) GOTO 24

a17Q GOTO 4)

a17! 8 IF(COMF(IR,2) JNE.FUNCTW) GOTO 23

a172 D caLl, PRLIST(CAR(P2),11,8)

A1y3 D WRITE (p,131))

2174 D 131 FORMAT(1He, 4%, *WORD? IS OF FUNCTICNWQORD=TYPE®)

A175 CALL PUSH(P2NWFW,PDSP2) ‘

eLTh P2NWFw = CDR(P2)

o117 24 P2NWFWapPR(P2MUFWY

2178 IF((PaNWFW,EQ,.B),0OR, (CARCPANWFW) EQ, 2)) 6070 26

B179 P2sCAR(PANWFW)

2189 1] CALL PRLIST(CAR(P2)},13,m8)

@181 n WRITE (6, 132)

Q182 b 137 FDRMATt1H+-61|'NQRDI : IS DEPENDENTY FROM FUNLCTIONWORD*/
n wiX¥X,"AND I8 CONSIDERED TO TAKE ITS PLACE?)

0143 GOTO 2%

2184 24 CALL POPUP(P2NWFW,PRNSPR)

@185 IF (PDSPE.NE,A) GOTD 24

B18s6 D WRITE(6,13%)

B187 D 133 FORMAT(TY, = NO (MORE) WORDS DEPENDENT FROM FUNCTIONWORD®Y

@188 v} WRITE (&, 134)

A189 D 1340 FORMAT (qMHe,58X,?= PDHS EMPTY?)

ai9a GOTO 4

2191 23 CALL PRLIST(CAR(P2FY),39,4)

2192 WRITE (&, 113%)

2493 138 FOPHAT(1H+,'S ERROR § «=CANNDT IDENTIFY FuUNCTIONI®)

2194 CAL, PRLISTI(CAR(P2),39,6)

2145 WRITE(6,1348)

0194 136 FORMAT (1 Her29%,"0F WORDI®)

197 5070 4

9198 12 IF (COMF (IR, 2).NE.ADJUY GOTO 13

@199 n CaLl PRLISTCCAR(PLDY,15:4)

p2an D WRITE (6,137) .

penl D 137 FORMAT {{H4, *PRESENT WORN: IS OF ARJUNCTeTYFER)

p2p2 0xXeCAR(CORCCDRICDRICNRIPFUIIIN

A2a3 v} CalLL PRLIST(OX,14,86)

nzed n WRITE (b, 138)

pzns D 1%8 FORMAT{LH+,2X,"SUBRTYPE;*/
n #SX, *STARTING TO CREATE NEW ADJUNCT NODE*)

-3 .89, -

structuring

nzde CaLy NEW(NPLY
n2ar7 CAR[NPLY eOX
Pensd CALL aPPENN{PSE,NPL,PSE)
22089 CALL NEW(PR)
212 ‘LAR(PR)2PRED
@211 CaLl APPEND{NPL,PR,NPL})
pat2 cALL GET (CAR{PCOD),CARCCAR(CDR(PLOINY,INF)
2213 IHPR = CDR(INF)
214 CALL APPEND(PR,CAR(CDR(COR(IHPRY)),PR)
e21% CALL APpEND(PR,CAR(IHPR),PR)
216 IFCCARILORCIHPRIY NE.?Y CALL APPEND(PR,CAR(CDR(IHPR)),PR)
g217 IF (0¥ _EQ_MOD) GOTO 2
2248 7] CALL anIsT(HQOI.Eﬂ.el
219 D WRITE(6,139)
e22e N 138 ngMan1H+.;N0w ATTACHING TOP1 " TN ARGUMENTS OF QUALIFIER")
pa21i WlaR
9222 EALanSaanc
3333 Call APPEND(NPL,AR,NPL)

24 gaLL NEW(EA)
p22% CAR¢CAYaCAR(COR(CDR(IHPRI
822¢ Eall APPENDCAR,CA, AR)
@227 taLl APPEND(CA,MROX,CA)
ne28 D cabl PRLISTICAR{NPLY,1,8)
n229 D caLl PRLTIST(0x,3,8)
@230 n WRTITE(6,141)
n23y D a1 FORMAy(iHe,1Hn,TX,*NODE COMPLETED AND ATTACHED®)
LEA T 0 CALL PRLIST(CAR(PSE),!,8)
@233 GQTO 2 ’
2234 1% CalLL PRLIST(CAR(PFU),39,4)
@235 D WRITE(&,142)
2236 D 142 FORMAT(1H+,"$ ERROR 8§ ==CANNOT IDENTIFY FUNCTIONG?)
237 bl CALL PRLIST (CAR(PCOY,39,8)
Pals o] WRITE (6,143}
p23sy D 14% FORMAT({H+,29%,"0F WORDS*/

D 12X, *0R TINCDRRECT INPUT FROM POPUP®)
P4 6GOTQ &
@241 . 82 CONTINUE
n24ag D WRITE (&, 144)
o243 D 140 FoRMAT(1X,"= NO (MORE) WORDS NEPENDENT FROM PRESENT WORD®/
n wibE, * 111, SEMANTIC STRUCTURE AT PRESENT STAGEI’/)
A244 D SMABRSEMa
7245 D &1 SMamCDR(SMA)
LEETY o TF¢SMA FR,2) GATO Bp
azar D caLL PRLIST(CARC{SMAY,T,B)
248 D G070 B9
0249 82 60OTD 1
22%a 9m WRITE [6,145)
P251 145 FORMAT(1IHE, *»>>»> SEMANTIC STRUCTURE COMPLETED NOW*?/
*TX, *FINAL DUTPUT?*/)

FLE] SMAa5EMa
Q293 91 $Ma=CDR ($MA)
pas4 1F ¢(SMA ER,8) RETURN
255 caLl PR IST(CARCSMAY,T,8)
A256 CALL PLOTLICCARCSMAY,1,1,1)
f257 GOTO g1
n2s8 END

- 3 90.-

	PhD_Steels_1977_Aspects of modular theory of language_volume2a
	PhD_Steels_1977_Aspects of modular theory of language_volume2b

