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§ 2. THE PROCESS THEORY 
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whA_ch ,U, bMed an the modu.l'aJt gJtammaJt :theOJty fuewoed -Cn 

pJtev-CoUi> chap:teJt. 
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the JtepJtel>en:tat-Con conoi:Jtu.W, the MJtt ofi unguiotic Jteaoon-Cng 

and the eoni:Jtof. .;;tJtuc:tuJte afi the oyo:tem. Afi;teJt that we 

fucwo an exampf.e and oholttf.q -Cnd-tca:te how oi:Jtu.c:tuJtu can 

be exiltac:ted fiJtom :the Jtel>uU ofi the paM-Cng p!tocuo. 

In a .;econd oection we p!tel>eVIX veJty bltiefif.y Mme -Cdeao 

fioJt a natu.!<a.i f.angu.age pJtOdu.ung oy<ltem whA_ch conou.I'U the Mme 

ungui.;tic -£nfio!tmation M ,U, Ul>ed by the paM-£ng l>ljotem. 
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introduction 

2.1. THE PARSING PROCESS 

2.1.0. Introduction 

In this section we present an exact model for the analysis of 

natural language based on the linguistic principles discussed 

in previous chapter. In this introductory part we define the 

parsing problem itself and present an overview of our system. 

Normally the parsing prOblem for natural language is defined as 

the problem of how to find for a given natural language sentence 

the structures upon which an interpretation can take place. 

However recently it has become more and more clear that this 

goal is not reachable simply because the input sentence itself 

does not contain enough information for an effective interpretation 

to take place . Based on the principle that the more intelligent 

the receiver the less explicit information you need to transmit, 

the information in a natural language sentence is restricted 

to the minimum. 

So we restate the problem as follows: A parsing system extracts 

from the natural language sentence as much as possible information 

which is relevant for the interpretation process as can be 

done on the basis of a grammar. 

The parsing problem consists then in the construction of a parsing 

system. 

If we stick to our terminology of language phenomena and 

language factors, we can define the main problem in the 

design of a parsing system as follows. How can one observe the 

presence of a certain language factor. In the past two basic 

methods have been introduced and we want to add a third method 

here. 

The first method is the inductive method (called bottom up 

parsing in the computational linguistics jargon). It proceeds 

as follows: You start from observing certain phenomena andby 

gradual abstraction over the phenomena you try to re1ate a 

certain phenomenon to a certain factor. 
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A typical notion in this context is that of a surface structure 

(first level of abstraction) and one deeper structure and 

maybe even later still a more semantic structure, etc;. 

The second method is the deductive method(called topdown 

parsing in the computational linguistics jargon). It proceeds 

as follows: You start from certain grammatical expectations 

and you gradually translate these expectatiOns up to a point 

where you are able to compare them with the langua9e input. 

Notice the same ideas about small steps (but how in 

a reverse direction) leading from 'deep' structures to 

surface structures. 

The third method, and the one that will be followed here, 

is what we will call the method of falsification It proceeds 

as follows: the input elements themselves define a set 

of hypotheses about the factors being signalled. The system 

knows the relation between a factor and a phenomenon. Thus 

it can compute the implications of a given factor for the 

language situation. If these impliciations are not present, 

the hypothesis is falsified, else it is accepted, at least 

for the time being. 

So, in the first methods you consider a certain phenomenon 

over a given input element and ask the question what pattern 

of my grammar applies. Suppose you have found the pattern then 

you ask what pattern applies next, etc. 

In the falsification method a given input element tells right 

from the start what things it may be used for. Then you go 

to the grammar and ask suppose I use that input element for 

x, what itnplicatiOns does this have as regards the language 

phenomena over the input elements. Then you go back to the 

input situation and check whether it is as predicted. 

In general the falsification method assumes an active 

grammar consultant that computes implicitions whereas the 

other methods assume an active representation that changes 

from surface to deep in small steps. 
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From this option follows the way in which the next 

main problem is approached: How are you going to bring 

the variety of knowledge sources relevant for parsing 

in motion. 

In the recent history of parsing systems the discussion 

has been centered around the dichotomy between syntax 

vs. semantics directed parsers. Let us introduce these 

two modes of thinking briefly before we present our 

own position. 

The first attempts (around 1960) to analyse natural language 

mainly from the point of view of automatic translation were 

mostly directed towards morphological processing and the 

construction of large dictionaries (see Vauquois,1976, for 

an overview) . 

The second school of thinking (around 1965) was strongly syntax 

based. The problem of analysis was split up in two subproblems 

(a) the discovery of preliminary structures representing the 

syntactic properties of the input, and {b) the discovery 

of the actual semantic structures. 

In the syntax-direc_ted parsers designed during this period, 

the preliminary structures represent the syntactic aspects 

of the sentence (in particular functional relations a1beit that 

functional relations are sometimes indirectly represented in 

terms of constituent structure trees ) . To construct these 

preliminary structures a grammar in the usual sense is consulted 

as source of knowledge. The semantic structures are obtained by 

still quite complicated mappings starting from the !)reliminary 

structUre. 

A typical well known example of such a parsing system is 

the Woods' transition network parser {Woods, et.al.,l972). In 

this system recursive transition networks augmented with tree 

transforming actions and register manipulations are used to 

obtain the preliminary structures. To compute the semantic 

structures semantic rules are applied. These rules have two 

parts : a ·left part with 'templates consisting of a(syntactic) 

tree fragment plus additional semantic concidtions 1 (ibid. 2. 18) 

and a right part wi·th 1 forms or schemata' upon which the evaluation 

can take place. 
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The mapping of' rules proceeds by matching a syntactic structure 

with the left part of a rule, and if successful the result is 

the right part. 

Another example is Petrick's tranformational recognition procedure 

which uses a reverse transformational grammar to obtain the 

preliminary structures and a mapping based on patterns to compute 

the semantic structures stated in some predicate logic language 

(Petrick, 1973). 

It may be of interest to point out the parallellism with the 

so called standard theory of transformational g.rammars as 

presented in Aspects (Chomsky, 1965) . The preliminary structures 

correspond to the deep structures in this theory and .the 

semantic structures which in a Katz-Fodor conception often 

associated with this standard theory, consists of feature 

sequences, are obtained by some system of projection rules 

(Katz,l973). 

The third school of thought (around 1970) which is said to 

perform semantics-directed parsing does not use the intermediary 

step of having preliminary structures in which J:unct:i..onal, re.lations 

or category information pl~ys a rOle. Here one starts imrnrnediat~ly 

on the level of constructing structures which are to be used 

in the interpretation. A typic.al well known example here is 

Wilks' analyser(Wilks,1975)or Riesbeck's parser (Riesbeck,1976) 

Wilks uses templates and other forms of semantic knowledge 

to discover the semantic structureS directly.on the basis" 

bf the input. The parallel to the generative semantics viewpoint 

should be obvious here. 

In the light of our own parser it seems that the syntax/semantics 

directed dichotomy can be resolved into an option for 

all available knowledge directed parsing . It is only because 

an hierarchical dimension was introduced in the parsing system 

that the question arises. We will see that this hierarchical 

thinking need not be the only way. In particular we will show 
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the various knowledge sources can act in parallel and can 

be brought together by a supervislng control structure. 

We stress that these two developments, i.e. the falsification 

method and the parallel application of knowledge is an 

immediate result of the linguistic theory presented in previous 

chapter, more in particular of the modular property of 

this theory and of the fact that the grammatical rules 

define a relation between a factor and a language phenomenon. 

The intuitive model: the particle theory 

Let us now create a picture of the lang\].age process as we 

see it happening. (Theoretically of course. No claim is made about 

the psychological reality of the whole thing, although we hope 

psychologists may find inspiration in the model.) The description 

here will seem to be rather intuitive. But our aim at_the moment 

is to evoke understanding of, the general spirit and underlying 

ideas. The exact account up to the level of computer programs 

simulating the language process, as we will depict it· here, 

will follow later. 

Language can best be seen as a form of energy exchange between 

two information processing systems. What interests us is how the 

exchange takes place. Obviously there_ is a system which emits 

the energy and a system which accepts the energy. First we discuss 

the accepting process, normally called language understanding. 

Language understanding is the evocation of a series of actions 

caused by the incoming energy of a language sentence. Imagine 

a sort of work space, \.Jhich we will call the state space: 

state space 
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Each time an element of a language sentence comes in, it 

provides the energy to create one or more particles: 

0 
state space 

l 

IN UT l 

time: tl 

The particles are numbered for ease of reference. The time 

dimension is very important. Indeed, at the next moment of time, 

a new pulse of energy comes in (but the old particles 

remain in the state space of course) : 

10 02 

0 
3 

Os 
state space 

0 
4 ~ 

INPUT 2 
time: t2 

Now comes the second sort of action : the combination of two 

particles to form a new one. This combination is caused by the 

activation of a number of forces which are resident in the 

state space. The word force is important here. Think about physical 

forces as magnetism or gra~ity. Although certain conditions should 
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be met with by the particles for a force to become active, the 

force should be seen as a global phenomenon, present in the 

Complete space. 

/ 
' I / 

v~r:: 
0 p 

1 

I 2+5 

~ 
5 

state space 

time t2" 

There are some general conditions for the combination of two particles, 

such as {i) particles created due to the same input pulse are never 

combined (ii) a particle that was combined earlier to a 

certain particle can later not be combined again to this particle, 

(iii) it is allowed however to combine the same particle with more 

than one other particle. 

Another interesting thing is of course the investigation of the forces 

themselves. We ,.Jill see that there are two types of forces: {i) Forces 

which incorporate aspects of the system of conventions that the language 

users agreed upon (in such a case an alternative word for force is 

knowledge source) and (ii) forces which incorporate results of previous 

actions by the system, e.g. the status of the state space as 

a ~"'hole is (paradoxically !) a force in the state space. 

Note that the newly formed particles may still combine later with 

other particles which float arond in the state space. As a whole 

you get a regular pulse of incoming energy creating particles, and 

of subsequent combination processes. 
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0 
0 l state space 

forces 2+5 

'--o--?O-r---o_o--"'2-~ 
INPUT 3 

time: t3 

1+4+8 

0 9 
l 40 

06+7 0 
2+5 

02 

06 state space 

90 0 10 

On 

INPUT 4 

time: t4 

Now comes the second part of the story. Imagine 

a second work space which t.Ye will call the .cognitive space on 

top of the state space. 
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inputpulse 

cognitive 

space 

} state space 

The particles travelling through the state space are 

now to be seen as input energy for action in the cognitive 

space: 

inputpulse for 

cognitive space 

--

INPUT for 

state space. 
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Actions in the cognitive space can take the form of changing 

the memory structures, cemsing sequences of commands for 

physical action, causing the evocation of thought processes,etc. 

The particles enter a new sphere so to say, they become 

forces themselves. 

The first type of actions (creation of particles and their 

combination) are called analysis actions. The second type 

(where particles themselves become forces) the interpretation 

actions. It is fruitles;:; to assume that the two types of actions 

occur after each other in time, rather we say that the two 

phases occur in parallel, even more, although the second operates 

on output of the first, it turns out that the interpretation is 

(paradoxically)one of the forces in the analysis phase itself. 

When reading this short description of the language process, 

the analogies with chains of chemical reactions or With interactions 

of physical forces will readily come into the reader 1 s mind. 

We do not discourage these analogies. 

too mechanistic conception of the language processing systems 

and the language process itself. Instead one should see it as 

a "living" phenomenon, in the biological sense. Typical are 

the goal directedness, the interaction with the environment 

(made up by other information processing systems) , the constant 

evolution known as linguistic change, the maintenance of a 

steady state, the high interaction of the subsystems, the 

interconnectivity of everything, etc .. See for a general 

discussion of this Steels(l976,b) 

A great number of questions are raised by the above description 

of the language process. The questions that will concern us 

most are: 

l.what is the nature of the particlesl 

2. what forces are operating ~ 
3. what are the mechanics of each force~ 

These questions will be our main concern in the next paragraphs. 
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First we will discuss the interior details of the particles 

themselves (2.1.1.) .then_ we will formalize the sort of 

reasoning that is embodied in the forces and how the results 

of reasoning interact. (2.1.2.). 

The next topic is the construction of new particles: the 

merging process (2.1.3.). Then we discuss the general control 

structure of the system (2.1.4.) and give a detailed example 

of a complete process for one sentence (2.1.5.). We close this 

section by showing how structures can be extracted from the 

particles (2.1.6.). 

Numerous examples of parsing processes will be given in next 

chapter when we present the experimental results. 
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2.1.1. Particles 

We said already that a particle is a linguistic object that 

contains sequences of primitive information items in a 

structured way. The following principles will be used 

for the design of these information sequences: 

(i) Only the information necessary to run the process 

is included. This implies that information which is available 

at other places (e.g. the dictionary) is considered to be 

superfluous in the particle. 

(ii) We try to preserve ambiguity as much as possible, 

that means until it can be resolved. In practice this leads 

to the following options: 

-a- An initial particle should be made for every 

possible function and for every predicate/viewpoint, i.e. 

for every sequence in the lexicon . 

-b- Ambiguity as regards syntactic features and 

semantic features is preserved due to our feature complex 

ca~culus. 

-c- Ambiguity as regards states in transition networks 

(both syntactic and semantic)is preserved. 

-d- Only if due to a certain merging (on the basis of 

an object relation) more than one case comes out, it proves to 

be necessary to construct more than one resulting particle. 

In all other cases the combination of two particles yields 

only one new particle. This is a very strong.result. 

-e- Lexical ambiguiy which has no influence ·an the 

parsing process is preserved, even up to the level of semantic 

structuring . In other words some sorts of ambiguity cannot 

be resolved on the basis of the grammar alone. 

(iii) It should be possible to compute the functional, 

case and semantic structures, as defined earlier, immediately 

on the basis of the particles~ In other words no other sort 

of processing is allowed as interface for the semantic component. 
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We now define the particles in full detail. A particle 

contains mainly 'configurations' linked with each other. 

So we first define the notion of configuration. 

Definition 

A configuration is an n+2 tuple: 

n;yo 

such that 

a 1 is a word 

a 2 is an information sequence 

ai+2 , . • . , an+2 for i ) 0, n 1r i other configurations 

Definition 

An information sequence i for adjuncts and functionwords is a 6-tu~le: 

i <il, i2, i3 ,i4 ,i5 ,i6> 

SUCh that:. 

il is the hypothesis of the word under consideration; we 

number hypotheses according to the moment of input: INPl,INP2, ... 

i2 is the function name of the word for that hypothesis 

i3 the state in syntactic network 

according to our principle. of the preservati.on of ambiguity we 

allow there to be a set of states; 

i4 the state in the semantic network, also here we will 

allow there to be a set of states; 

i5 the internal syntactic feature complex (the extension) 

i6 the qual/mod/undet characteristic 

An information sequence i for objects consists of a 7-tufle 

i =(il,i2,i3,i4,i5,i6,i7> 

such that 

il,i2,i3,i4,i5 are as for adjuncts 

i6 is the extension of the semantic features associated 

with the viewpoint of the word for the predicate in the lexicon 

sequence that immmediately caused this information sequence 

i7 the case. 
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An information sequence is initially constructed on the 

basis of the grammar but may be changed during the parsing 

process. According to our first principle, we need 

a special reason to incorporate an item. Let us therefore 

now give arguments for incorporating the above information 

pieces and no other ones in an information sequence. 

(i) The hypothesis is necessary because one word may have 

different hypotheses. 

(ii) The function is there because we want it to be possible 

to extract a functional structure directly from a- configuration. 

(iii) The state of the function in its syntactic network is 

incorporated because it can be changed during parsing. 

(iv) The state in the case network is only relevant if 

there are objects, but if so, it is obviously necessary 

because the state in the case network changes for every 

object that comes in. 

For adjuncts 

(v) The qual/mod/undet characteristic relevant for the 

semantic feature matching e.g. is incorporated because it 

is worked out (sometimes) by the parsing process which 

characteristic holds. 

(vi) The internal feature complex is incoporated because 

it may be changed by a synnactic feature match or by 

features being added to it due to the send-th~ough rule. 

Consistency must be kept, i.e. if a match was successful 

for a particular subset, then later on the same subset 

must be used. 

For objects: 

(v) For the same reason the syntactic feature complex of 

objects is incorporated. 

(vi) And for the same reason the semantic feature complex 

is necessary. If an object fills a slot in one frame 

on the basis of a particular subset, then if a test is made 

whether it fits in another frame this can only be based 

on the same feature set. 

(vii) The case itself is a necessary element for objects 

(except for the subject of the sentence) because it is 

computed during parsing time and the same initial hypothesis 

may later lead-' to different cases. 
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Besides a configuration a particle contains the following: 

(i) The range of the configuration, i.e. from which word 

to which word the configuration goes, 

(ii) whether the particle is open for further combination 

processes or not (if not we add the label LOCKED to a configuration) , 

(iii) the state in the syntactic network of the topword 

in the configuration when the reduction relation is proceeding 

from left to right. 

In the discussion and examples (i) and (ii) will often be left out. 

l. ((Nl) LETTER (INP4 NOM.OBJ NIL NIL ((SING OBJ) (SING SUBJ 3PS)) 

2. 

state word 

((THING)) 
semantic 
features 

hypo function 
thesis 

NIL) ) 
case 

state 
ln 

s:.f.nt. 
net 

state 
in 

sem. 
net 

syntactic features · 

(confiquration for object with state in synt netw added on top) 

(WRITES (INP2 VERB NIL (W/l FIN) 
word hypo 

thesis 
function state 

in 
synt. 
network 

(configuration for adjunct) 

state in 

sem. 

netw. 

((PRESENT) ) QUAL ) ) 

synt. 

features 

qual/mod/undet 
characteristic 

3. ((NS) GIRLS (INPS NOM.OBJ NIL NIL ((BY PREP DEF TWO PLURAL)) 

((PERSON)) NIL) 

(BEAUTIFUL (INP4 ATT.ADJ NIL NIL NIL UNDET)) 

(TWO (INP3 NUMl NIL NIL NIL NIL)) 

(THE (INP2 DETERM NIL NIL NIL NIL)) 

(configuration with three depending configurations) 

~or the ~ollowlng discussion we will use schematic representations 

of configurations in the form of tree structures: 
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Convention 

If c = <a1 , a 2 , a 3 , ... , an+Z) is a configuration with 

a 3 , ... , an+Z other configurations then we draw a tree: 

We can now define the particles themselves: 

Definition 

A particle is a quadruple (al,a2,a3,a4)with 

al the range {i.e. from where to where in the input sequence 

the particle contains words) 

a2 LOCKED or NIL (keywords i~dicating whether the particle is 

no longer or still subject to combination processes 

a3 a state in a network or a set of states associated with 

the word in the topconfiguration of a4 

a4 a configuration. 

Convention 

As was mentioned already the range and the LOCKED/NIL 

will normally be omitted in the discussion. 
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2.1.2. The parsing predicates and their combination 

Now comes the second step in the exposition: an investigation 

of what sort of reasoning can be used to decide whether 

two particles should merge or not. It is obvious that the 

more precise this decision process, the more efficient the 

parser. 

It turns out that there are two main sorts of reasoning about 

the information in the particles, the first one is based on 

linguistic knowledge about the systematic aspects of the 

source language. The second one is concerned with the general 

principles of parsing that seem to govern the whole process. 

Because there are many different knowledge sources available 

to support linguistic reasoning about language, we decided 

that the main problem, i.e. whether two particles should merge 

or not, can best be split up in a number of subproblems: 

should the particles merge on the basis of knowled~e source 

x {say word order), should the particles merge on the basis 

of knowledge source y (say concord), etc. Once this step 

is taken one needs a formal model to combine the outcomes of 

the different consultations. We will therefore develop first 

of all a formai model for the combination of the results of 

linguistic reasoning performed by means of the parsing predicates 

which will be discussed in the following sections. 

2.1.2.1. The combination of the parsing predicates 

As theoretical model for the interaction of the knowledge sources 

we adopt a model from automata theory that was never before 

presented as a model for language parsing but rather as a model 

for do::ing computational geometry or solving the problem of 

perceiving objects and pictures ! We are thinking about 

perceptrons (see Minsky and Papert,1969). 
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(1) A set of predicates which are computable independent 

of each other and which all deal with a particular aspect of 

reality, and 

(2) a decision function that brings the results of the various 

predicates together and thus computes the value of the predicate 

as a whole. 

You may imagine a perceptron to be a sort of voting system where 

each subpredicate is a voter. The decision function is then used 

to compare the results of all voters and to make the final 

decision. Formally, it is not excluded that the decision of one 

voter is considered more important than that of another one, 

we say that the first voter has more weight than the other. 

Another aspect is the treshhold which is a way to incorporate 

the idea that a minimum of voters must agree before the whole 

decision becomes positive: 

VOTER 1 

VOTER 2 

VOTER N-1 

VOTER N 

global 

decision 
RESULT 

Minsky and Papert define perceptrons using the notion of a 

treshhold and weight as follows: 
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Definition 

"Let ~ , ~ n be a family of predicates. 

We will say that W is linear with respect to ~ if there exists 

a number 8 (the treshhold) and a set of numbers 

a¢l' a~ 2 , ... ,a¢n (the weights) 

such that 

~(X) ~ 1 iff o
01 

1>1 (X) + +"on 1>n(X) ;? e " (ibid,lO) 

(Notice that the code for true is 1 and false 0). 

Definition 

"A perceptron is a device capable of computing all predicates 

which are linear in some given set ~ of partial predicates "(ibid,ll) 

Now we apply this concept to the parsing process. 

The main predicate for which we want a decision true or false 

is this : Is it necessary to merge two particles ? 

To decide on this we distinguish a number of subpredicates which 

we will call the PARSING PREDICATES where each subpredicate 

embodies a particular force. Take e.g. the predicate 

which applies the synDactic features match rule. This predicate 

checks then for a word in each particle whether there is 

concord between the two. If so, the subpredicate is true, 

else it is false. Similarly for all other phenomena. 

It is important to note that each subpredicate is computed 

independentl~f the other ones. 

We think that this perceptron conception of the parsing process 

solves the following problems: 
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(i) Each moment the system wants to merge two particles, all 

available knowledge sources can be asked to vote for or against 

the merging. In this way we can obtain a complete interaction 

of all knowledge sources on the decision and this prevents 

superfluous combination processes right from the start. 

Also we can organize the application of all knowledge sources 

in parallel, because each of them works independently of the 

others. This is certainly a fascinating idea and obviously 

leads to very powerful parsers. 

(ii) The perceptron conception solves another great problem 

on which parsers currently break down, namely the problem 

of unreliability. 

First of all there is unreliability of a knowledge source. 

Take e.g. semantic features testing. It is well known that 

any rigorous system set up to obtain consistency of semantic 

feature processing will break down because one can always 

produce semantically anomalous sentences and still be understood. 

The same holds for other linguistic phenomena. The sentence 

"he speaks not good English '' is perfectly well understood, 

as well as "he speak not good English" and (although matters 

obviously become worse) "not speak he good English". But on 

the other hand there is a boundary of understandibility. 

Consider "speak good he English not". 

Second there is the unreliability of the input. To say 

that every sentence formulated in a certain language is 

grammatically 100 % correct is quickly refuted by observation. 

E.g. there are bound to be numerous mistakes in this text due 

to the fact that its author is not a native speaker of the language 

and therefore does not know the conventions as well as someone 

who has been practising them all his life. Notice that the 

language user is not only able to understand these imperfect 

sentences, moreover he knows why this or that sentence is 

imperfect. 

These two factors can in our opinion only be coped with by 

a perceptron conception for the intenaction of the various 

knowledge sources, where we can attach weight to each knowledge 

source and where the treshhold should not necessarily be 

equal to a 100 % satisfaction of all subpredicates. E.g. if 
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all but the semantic features predicate yields true 

, the decision function may decide that enough evidence 

is there to insist upon merging the two particles. 

Notice that when we meet a linguistic fact that is 

not consistent with the linguistic description in the 

grammar we do not necessarily consider the grammar to be 

falsified by the occurrence of this phenomenon ! 

Having discussed the combination of the parsing predicates, 

we can now turn to a discussion of the parsing predicates 

themselves. As already mentioned in the introduction to 

this section there are two sorts of reasoning possible. 

Consequently we organize two further subsections. One 

about the systematics of the language and one for reasoning 

about the process or results about the parsing process. 

2 .1. 2. 2 .. Parsing predicates based on systematics of the language 

The question whether two particles are allowed to merge 

amounts to answering the questiOn whether a certain word say 

wl in configuration cl can act as the subordinate of another 

word, say w2 in configuration c2. The envi,ronment ,i.e. the 

other items in the configuration, may be involved in this 

decision as we will see and also the position of each word 

in its own configuration is not irrelevant. This will be 

discussed in§ 2.1.2.3 .. Here we concentrate on the two 

words themselves and their associated information. Consequently 

the predicates will be formulated on the basis of two words. 

We address the information sequence of a word wk as iwk and 

the n-th item in it as i k" n,w 

The discussion here runs parallel with the discussion of the 

grammatical rules, in particular there is a predicate fOr 

each rule. To make the relation between the linguistic rules 

and the parsing predicates explicit, we place a p-indicator 

before each rule, e.g. if function-of-head is a rule, then 

p-functioh-of-head is the predicate derived from it. 
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(l) FUNCTION-OF-HEAD and TAKING-OBJECTS 

Recall the structural property that given words wl 

(in configuration cl) and w2 (in configuration c2), if r,.1l 

is supposed to have a particular grammatical function f as regards 

w2, w2 should have a particular possible function, indicated by 

fUnction-of-head (f) 

From this we extract the following predicate: 

Definition 

p-function-of-head : W 

(1/w) (iZ,wl E F-adj 

x W -+ ~~TRUE, FALSE) is defined for 

u F-functw) as follows: 

TRUE if function-of-head (iZ,wl) 

p-function-of-head(wl,w2)= 

l FALSE otherwise 

Recall also that for objects the information was stored 

vice-versa by means of the taking-objects rule telling whether 

a word takes objects or not. This leads to the next predicate: 

Definition 

p-taking-objects: W x W -+(TRUE,FALSE) is defined for 

(Vwl) (i 2 ,wl E F-object ) as follows 

TRUE if taking-objects(i2 ,w2 ) TRUE 

p-taking-objects (wl,w2)= 

FALSE otherwise 
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( 2) Word order 

The second property is that two words should be in a relative 

position as regards each other for a particular grammatical relation 

to hold. 

We use two linguistic rules for this purpose: position (if 

the subordinate has the function adjunct or functionword) and 

object-position (if the subordinate has the function object) 

Consequently we will have two corresponding predicates. But 

first we need an auxiliary predicate. 

Definition 

as 

say that a word wi comes before another word wj 

wi ( wj if in the input sequence we have 

wi .•• wj wn n)Oandl~i~j.{ 

denoted We 

n 

Definition 

Let p-position : W 

(11 wl) (i2 ,wl E 

X w -+ LTRUE I 

F-adjuncts u 

FALSE] be defined for 

F-functw ) as follows: 

TRUE if position{i2 ,w1 ) before or undet 

and wl < w2 

p-position (wl,w2) 

FALSE otherwise 

Definition 

Let p-object-position : W x W -+ TRUE, FALSE 

(V wl) (12 ,wl E F-object) as follows: 

be defined for 

TRUE if objectposition(il,w~) before or 

p-object-position {wl,w2) undet and wl ( w2 

FALSE otherwise 
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(3) Syntactic networks 

Completion automata are used in the system to regulate in 

a nontrivial way the mutual restrictions that occur when 

different subordinates are related to the same head. 

An important assumption behind the use of these networks 

(when used in a left-going mode) is that the ranges of the 

unit relevant for the transitions in a network are bordering 

on each other and as soon as a unit is encountered that 

does not fit, the network is assumed to enter a final state. 

In this way we can discover the boundaries of word groups 

and it must be noted that the method works excellent. 

Another nice consequence of the assumption is that the state 

in the network should not be incorporated in the information 

seqUence of the topword of the combination but can be stored 

externally in the particle itself and be declared irrelevant 

as soon as the boundary of the network has been found. 

This is the reason why we defined such a state as 

being located outside a configuration. 

The predicate relevant for syntactic networks is then defined 

as follows: 

Definition 

p-synt-network: W x W ~{TRUE, FALSE) is defined 

(V w2) (syntactic-network (iz,wz) is defined) as follows: 

LetS= s 1 , ... sn be the set of states associated with the 

particle of w2 , then 

TRUE if ( 3 S E S) 

p-synt-netw (wl,w2) 

FALSE otherwise 
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The second aspect in relation to syntactic networks is that 

a set of new states is associated with the particle. This 

operation is however dealt with in the section where 

we deal with the construction of new particles. 

(4) Concord 

The next predicate has to do with the syntactic featu.re 

matches based on the feature complex calculus we intrdduced 

in previous chapter. 

Definition 

·p-concord: W x W_.{TRUE, FALSE! 

(V wl) (wl €'- F-object) 

is a function defined 

p-concord(wl,w2)= 

(5) Send-through 

TRUE if either 

(i) concord (i 2 ,w1 ) 

or 

false 

concord (i2 ,w1 ) =true and 

syntactic-feature-complex of w2 

matches with iS,wl 

FALSE otherwise 

The other aspect having to do with syntactic feature complexes 

is the phenomenon that certain features are 'send-through' 

to the feature complex of the head. This is again a situation 

where the information sequence is changed and this will 

be discussed in the relevant subsection. 

Now comes the second series of predicates related to case. 
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(6) Semantic features for adjuncts 

The next parsing predicate investigates whether the head 

of a function has the appropriate semantic features to fill 

a slot in a frame of a subordinate. 

For this purpose it is necessary' (i) to compute the semantic 

features that are to be satisfied by means of the viev.1point 

of the adjunct, (ii) to compute the semantic features that 

are associated to the slot filler (recall the additional 

complexity due to the modifier/qualifier dinstinction) 

to see whether both features match, in particular whether 

the result of (ii) matches with the result of {i). If 

(iii) 

the result of the match yields true the predicate is true, 

else false. 

Definition 

p-sern.feat-adju : W x W~ \_TRUE, FALSE\ is defined 

('il wl) (wl c F-adjuncts) as follows: 

Let(wl,w2) f.F, pl = predicate(wl), cl =viewpoint (wl) and 

p2 = predicate (w2), c2 =viewpoint (w2) then 

TRUE if 

(i) either F has the rnodifier/undet characteristic 

and rnatch(valuerestriction(self,p2), 

p-sem.feat-adju (wl,w2) 

valuerestriction(cl,pl)) 

or 

F has the modifier/undet characteristic 

and rnatch(valuerestriction(c2,p2), 

valuerestrictiOn(cl,pl)) 

FALSE otherwise 
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A side-effect of the p-sern.feat-adju predicate is that 

the domain of the semantic features complex of the 

head involved is restricted to the set of subsets satisfying 

the value restriction to be satisfied. 

' (7) I Semantic networks 

Next we have the predicate which conSults the semantic networks: 

on the basis of the syntactic features complex it is investigated 

whether there is a transition possible. 

De-finition 

p-sern-netw : W x w~(TRUE, FALSE} is defined 

(V wl) (wl ~ F-objects1 as follows: 

LetS ={s 1 , ••. , sn1 be the set of states in the case networks 

with the configuration of w2, then 

TRUE if ( J s S) ~ (i5-,wl ,s) i1l ) 

p-sem-netw (wl,w2) 

FALSE otherwise 

Notice the side-effects: we can compute c, because c is associated 

with a transition in the network, we have a new state in the 

case network and , because of the feature match, a subset of the 

syntactic feature complex will be cut out of the domain. 

This information will be of use in the construction of a new 

particle. 
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(8) Semantic feature test for objects. 

The final predicate deals with the test whether the 

semantic features of an object are compatible with the 

case it wants to fill in a certain case frame. 

Definition 

p-sem. feat-obj: W x W-----'}> {TRUE, FALSE j is defined 

(Vwl) (wl Eo F-object) as follows: 

Let (wl ,w2) t f, pl == predicate {wl) , cl = viewpoint (wl) , 

p2 = predicate (w2) , and c one of the .cases of p2, then 

p-sern.feat-obj (wl,w2) 

TRUE if 

match (valuerestriction(c,p2), 

valuerestriction(cl,pl) 

FALSE otherwise. 

A side effect of this predicate is the restriction of the 

semantic features complex of the object involved. 

We have now presented predicates for all rules in the 

modular grammar defined in previous chapter. We now turn 

to reasoning based on results of the process of parsing itself. 
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2.1.2.3. Parsing predicates based on the process 

In this subsection we present a number of forces which also 

help in the decision whether two particles merge but which 

do not use linguistic information to formulate a decision 

but rather information accumulated during parsing time. 

We feel that there are more facts to be discovered about 

these knowledge sources . Nevertheless the 

general assumptions about the parsing process which determine 

the sort of reasoning under discussion in this subsection already now 

proved to have a very strong impact on the efficiency of 

the parser. 

Let us present these assumptions in some detail. 

(i) The linearity of langauge 

The fact that the words of a language come after each 

other is used by several parsing predicates (e.g. p-position). 

It turns out that the linear structure of language sentences 

can also be used to optimize the parsingprocess itself, 

based on the following principle: 

Principle 1 

A particle can only merge with another one if the range 

of the first particle is bordering on the range of the second 

particle. 

Example: 

Given a sequence "w1 w2 w3 w4 wS" then if there are e.g. 

particles on w3 and wS containing the structures 

w3 w5 

/ ~ and I 
w2 w1 w4 

(particle l) (particle 2) 
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then We may consider the merging of these two which may lead 

to 

wS 
w3/ '---w4 

/'\_ 
w2 wl 

or 
w3 

/~ 
w2 wl 

I 
wS 

I 
w4 

But suppose we have particles on w2 and w5 with structures 

w2 

I 
wl and 

(particle l) (particle 2) 

then we will not attempt to link the two according to 

princi,ple 1 because w4 is in between the ranges. 

To see the value of this principle consider 11 the good old boy, 

which should result in a particle structure 

/0~ 
the good old 

But suppose we do not accept the principle, then the structures 

boy boy boy 

I /~ /~ 
the the good the old 

would equally well be constructed as there is no linguistic 

information preventing it. 

(From a formal language point of view it is interesting to note 

that the principle reflects the basically context-free character 

of natural languages !) 
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(2) The time dimension 

Another consequenc1bf taking this time dimension seriously 

is that if a particle will be attached to one of the sub­

configurations of another particle, what subconfiguration is 

allowed depends strongly on the time moment this subconfiguration 

was added to the particle. This is reflected in the following 

principle: 

Principle 2 

If the subconfiguration was added by a "forward merge", i.e. 

suppose aj and ai 

it is not allowed 

were to be merged, a. comes before 
J 

to merge any new particle ak on aj 

ai, then 

anymore. 

(Readers who think we may come in trouble with this principle 

should bear in mind that the parsing proceeds from left to right 

and therefore all possible forward merging that could be done is 

already done when the particle itself is subject to forward 

merging) 

To see the point of this principle consider the phrase 

"he reads a nice book 11
• Whatever comes after 11 book" or 

before 11 a 11
, as soon as the structure 

book 

/\ 
a nice is created, 

it is pointless to look for further combinations with 11 a" or 

"nice". 

Notice that the principle does not hold for .. backward merge". 

This can easily be understood when considering the 

ambiguous sentence 11 he saw the man in the park with a telescope 11
• 

(3) Power from structure 

The final predicate to be discussed now has to do 

with the interrelationships of the particles: 
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Principle 3: 

A partiCle with the same top as another particle but with 

more subcc:infigurations is more powerful than the other 

particle. 

To understand this hypothesis consider the following 

example: "The boys sing ... ". During parsing a particle 

will be made for "the boys", but the particle for "boys" on 

its own remains in the state space. Now we want to prevent 

that two structures are built one for "boys sing ... " and 

on;e for "the boys sing ... " although both of them go on the 

-baSis of linguistic information as such. 

Notice that the· hypothesis reflects the principle of goal-directedness 

which is found in most cognitive tasks: the structured objects 

will leave a stronger impression on our perception system than 

not structured ones. 

Some care is needed in using the above principles. Apart from 

the fact that Certain constructions such as coordination 

(which we have not yet considered) will not fall within the scope 

of the principles it is possible that deviations occur just 

as there are deviations from the linguistic predicates discussed 

in previous section. 

Some examples of deviations: Take the expression" the author"s 

article". Is 'the' a determiner of 'author' or of 'article' ? 

According to principle 3 'the' will be considered as a determiner 

of 'author', and most people would agree on this. But some people 

would argue that at least theoretically 'the' can be cohsidered 

as determiner of 'article'. Take as another example the expression 

'a brighter colour than this one', where 'than' obviously 

relates to 'brighter' But this is against principle 2 ! 
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2 ~-1. 3. The construction of new particles: the merging process 

Suppose that the various parsing predicates have been 

computed for two particles and that via the perceptron 

combination the final result yields positive, how is 

the construction of the new particle working then. 

First of all we stiess that this combination process is 

not fatal for the source particles, i.e. when a new particle 

is made the source particles from which it is made remain in 

the state space. Although the particle may be 'locked' 

according to principle 3 discussed earlier. 

The definition of the merging process proceeds in two steps. 

First we define the merging of two configurations, only 

then we turn to the merging of two particles. 

The definition of the merging of two configurations itself 

proceeds also in two steps. First we define the merging of 

two simple configurations , the so called direct merge , 

then we define the merging of two more complex configurations. 

Definition 

We say that 1wo configurations 

iff 
(al,i' ai a2

1
i 1 a2+1

1
i 1 

and 

aj <alI j I a2~j~ a2+1,i' 

then 

<al . ' ,l 

ai,aj 

... ' 

... ' 

a2' . ' ,l 

directly merge 

a2+m, il rn --:> 0 

a2+n
1
j) n ,;:- 0 

a2+1 1 i 1 
•• • 

1 a2+m,i 1 

How a2,i is computed from a 2 ,i will be discussed shortly. 
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Definition 

We say that two configurations a.,af merge iff either 
J " ' < d-rnerge(a.,a.) or aj merges with a 2+ . , 1 (, p , rn 

J 1 p,1 ~ ' 
The resulting configuration is denoted as merge (a.,a.) . 

J 1 

Example 

a2+l,j · · · 

then 

Now we can define the merging of two particles 

Definition 

Let pl and 

p2 = <.P1 , 2 , P2 , 2 , p 3 , 2 , P 4 , 2 ) be two particles 

merge (p2,pl) if 

(tor P2, 3 and p' 3 , 3 cf.infra) 
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During the merging process the information in the information 

sequences of the respective particles are changed. 

There are first of all changes in the configuration of the 

subordinate and second changes in the configuration of the 

head of the grammatical relation. 

(l) Subordinate 

(a) If the subordinate is an object, then side effects of 

the case frame application are: 

(i) That we know the case; 

(ii)That we know the subset of semantic features satis­

fYing the case slot; 

(iii) That we know the subset of syntactic features 

satisfying the case slot. 

So we change the three items in the information sequence of 

the subordinate. 

(b) If the subordinate is an adjunct we only change the 

qualfmod/undet characteristic. 

(c) If the subordinate is a functionword no changes are 

necessary. 

(2) Head 

(a) If the head is an object,then 

(i) The state of the function may have to be changed 

due to a transition in the netwo:r:_ks, 

(ii) Similarly the state in the case network may have to 

be changed on the basis of objects evoking transitions in 

the networks. 

(iii) The subordinate may have restricted the syntactic 

feature complex in the syntactic feature match. 

(iv) The subordinate may have restricted the semantic 

feature complex via the semantic features match to consult 

the case frames of the adjunct. 

(b) If the head is not an object, then 

(i) The state of the function may have to be changed due 

to a transition in a syntactic network, 

(ii) the state in the case network may have to he changed 

if affected by the income of objects. 
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, , ,JIF· the particle top structure we moreover change the 

LOCKED/NIL indicator if necessary according to principle 3 

and the state in the syntactic network for the leftgoing 

t.ransitions. Principle 2 is realized by hanging the 

indicator NIL after the information sequence of the 

subordinate as a sort of end marker. 

We leave a formal defi~ion of these changes to the reader. 

When a merging has taken place, the newly formed particle 

is investigated further to see if other combinations are 

possible. 

To explain how this is going we present now the general 

control structure of the parser. 

A note on the control structure 

To regulate the whole process we use the concept of a tasklist 

and a function picking out each time the task on top of the 

tasklist until no tasks are left. The execution of a task 

may cause the creation of new tasks on the tasklist. 

Schematically: 

tasklist 

When an inputpulse comes in all particles created by this 

pulse are put on the tasklist. For each particle on the 

tasklist we try to merge with each particle associated with 

the word just before the range of the particle. If a merge 

takes place, we put the newly made particle with extended range 

again on the tasklist. If no merging can take place no action 

is undertaken. If the tasklist is empty we consume the next input 

inputword. If there are no inputwords left we compute the 

structures contained in the final particles associated with the 

last word of the input. 
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2.1.4. An example 

The best way to see how a parsing process as dep~cted 

in this chapter is actually going is to consider in full 

detail an example. For this purpose we take one single 

sentence 11 tirne flies like an arrow" and although we know very 

well that one normally understands this sentence only as 

meaning "time passes by quickly" (basically becau!:?e the 

sentence has a proverb status) we will for the sake of example 

assume that all possible readings should come out of the 

parser. These readings are by the way all produced by anyone 

if you explicitly ask for thern.Much more examples will be 

given in next chapter when we discuss our experimental results. 

Here are the readings: 

reading (1) (the normal one) Time passes by quickly. 

"Time"is an object of "flies" which is itself a predicate. 

"like an arrow" is an adverbial adjunct of "flies". 

reading (2) There is a particular sort of insects, called 

time flies and they have the shape of an arrow. 

1tere "time'1 is an adjunct of "flies", "flies" an object and 

'
1 like an arrow 11 an adjunct of "flies". 

reading (3) There is a particular sort of insects, called time 

fY~es and they love arrows. 

"Time"and 11 flies" are as in reading (2), 11 like 11 is now the 

predicate and "arrow" fills a slot in the case frame of 11 like". 

reading (4) Measure the time of a particular sort of flies, namely 

those which are like an arrow. 

"Time" is now an imperative verb, "flies" object and "like 

an arrow" adjunct of "flies" as in reading {2) 

read:Ling (5) Measure the time of a particililar sort of flies and 

do this "like and arrow". 

"Tilne" is again imperative and "flies" object, "like an 

arrow" is now an adverbial adjunct of "time". 
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aefore we can discuss the parsing process we need a 

small grammar which contains all the information that will 

be necessary for the parsing process. Let us discuss this 

grammar first. It is an example grammar , that means that 

in later experiments we do not necessarily use the same 

grarrunar. 

( i) The grammar 

1.1. Type object 

(i) Function nom.obj (nominal object) 

type : object 

taking-objects: true 

. ·object-position: after 

eXample: 'flies' as in 'to capture the flies' 

{"ii) function: norn.att.adj (nominal attributive adjunct) 

being adjuncts formed of objects which consist of a relationword 

(that gets the function nom.att.adj) and an object. We will 

use the phenomenon of syntactic networks to make the object 

obligatory. 

type: objective adjunct 

position: after 

function-of-head: nom.obj 

Q/M characteristic: qual 

example: 'like" as in "there are time flies like an arrow" 

(iii) function: nom.adv.adj (nominal adverbial adjunct) 

being adjuncts of other adjuncts which consist. :of a relation 

word (that gets the function nom.adv.adjunct) and an object. 

We use again the syntactic networks. 

type: objective adjunct 

position: after 

function-of-head: verb (at least) 

Q/~4 characteristic: mod 

example: "like" in the proverb "time flies like an arrow" 

(Notice that it is possible to consider only one function 

for norn.att.adj and nom.adv.adj but we split them up for the 

sake of the example.) 
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1.2. Type: adjunct 

(i) function: verb 

being the main verb of the sentence 

type: adjunct 

function~of-head: nom.obj 

position: after 

taking-objects: true 

object-position: after 

concord: true 

Q/M characteristic: undet 

example: "flies" in the proverb"tirne flies like an arrow". 

1.3. Type: functionword 

(i) function determiner (det) 

type: functionword 

functio·n-of-head and position are specified via the syntactic 

networks associated with nom.obj 

concord: true 

send-through: true 

example: "an" in "an arrow 11
• 

(ii) function: casesign (casesi) 

type: functionword 

function-of-head and position are specified via the syntactic 

networks associated with nom.obj. 

send-through: true. 

(this function is only added to make the example more;interesting) 

2 • The syntactic networks 

There is one left-going network and one right-going network .. 

for 
casesi~ det 

where OBJ/1 is the initial state. 

and 
nom. obJ 

for FIN is the final state. 
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(3) The case frames 

The surface case frames are only given if necessary. 

-i- MEASURE 

abstract case frame: 

self 

ag nt 

I ANIMATE I 

what 
(OR THING 

ANIMATE 

surface case frame for function adjunct and viewpoint agent 

-ii- ENJOY 

objective 

[what] 

abstract case frame: 

self 

what 

surface case frame: 

agent 

for function adjunct and viewpoint agent: 

[;hatj 

-iii- INSECT 

abstract case frame: 

I ANIMATE ~~s~ 
surface ~frame~bjective 

V kind 
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- i v- INSTRUMENT 

abstract case 

INSTRUMENT self \THING \ 

-v- MOVE 

abstract case frame 

80 VE 

i(XOR ANIMATE E} _ ___;s~e"-!ol!o_f_____ ~-----a-g_e_n~t---L THING ) 

-vi- SHliLAR 

abstract case frame 

IPROPERTY~~-~s~e~l~f ____ ,8IMILA ! ______________ r~n ____ ~(XOR ANIMATE 

· (XOR THING ACT)) 

XOR ANIMATE 

(XOR THING) 

surface case frame 

for function adjunct and viewpoint what= 

-vii- TIMELINE 

abstract case frame: 

(XOR THING PROPERTY)) 

4. The lexicon 

self 

(i) AN function: det 

syntactic features: SING 

send-through feature: UNDEF 
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(ii) ARROW 

(iii) FLIES 

-a-

-b-

function: nom.obj 

predicate: STICK 

viewpoint: self 

syntactic feature complex: 

/XOR" 
AND SING 

/""' OBJECTIVE SING 

function: nom.obj 

predicate: insect 

subpredicate: flying 

viewpoint: self 

synt.feat.complex 

XOR 

/~ 
AND AND 

/\ /~ 
PLURAL 3PS OBJECTIVE AND 

I~ 
PLURAL 3PS 

function: verb 

predicate: move 

subpredicate: through-air 

viewpoint: agent 

synt.feat.complex 

~D~ 
NOT AND 

I I\ 
OBJECTIVE SING 3PS 

internal feature complex: PRESENT 
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(iv) LIKE 

-a-

-b-

(v) TIME 

-a-

-b-

function:nom.att.adj or nom.adv.adj 

predicate: similar 

viewpoint: what 

function: verb 

predicate: enjoy 

viewpoint: agent 

external feature complex 

/D~ 
NOT XOR 

I ~~ 
OBJECTIVE PLURAL AND 

/~ 
SING NOT 

internal feature complex: PRESENT 

function: nom.obj 

predic:timeline 

viewpoint: self 

synt.feat.cornplex 

XOR 

/~ 
AND AND 

/\ /~ 
OBJECTIVE AND SING 3PS 

/\ 
SING 3PS 

function: verb 

predic: measure 

viewpoint: agent 

ext.feat.complex (AND SING 2PS) 

int. feature complex: imperative 

I 
3PS 

We now start a discussion of the parsingprocess. We try 

to keep the presentation as understandable aS possible and 

avoid formal representations. 
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Before the first word is consumed the state space should be 

considered completely empty. Each time a word comes in 

particles are created and confronted with already existing 

ones. For ease of reference we number particles according to their 

moment of creation. For each particle the configuration contained 

in it will be give explicitly. 

I INPUTPULSE NR. l TIME 

I. Initial particles 

The first particles are created for each possible function 

of TIME according to the lexicon: 

(i) Particle 1 (for function nom.obj) has configuration 

(TIME 

(INPl 

NOM.OBJ 

N-IL 

NIL 

hypothesis number 

function 

state in right-going synt.net 

state in sem. netw 

((SING 3PS) (OBJECTIVE SING 3PS)) ~ synt.feature complex 

( (THIUG) (PROPERTY)) 

NIL) ) 

Notice that all information to construct this configuration 

comes from the linguistic description syste~. E.g. the semantic 

features are computed by taking the extension of the features 

associated with the case frame of TIMELINE (the predicate of time) 

with the self~case (the viewpoint of time). 

(ii) Particle 2 (for function- verb) has configuration: 

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET ) ) 

II. Merging 

As no other particles are in the state space, nothing more 

happens and we get as first result: 

Qi 

state space 
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IINPUTPULSE NRo 20 FLIES 

I. Initial particles 

Again we make a new particle for each function: 

(i)particle 3. (for flies as nom.obj) has configuration 

(FLIES (INP3 NOMoOBJ NIL NIL ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)) 

( (ANIMATE) ) NIL) ) 

(ii)particle 4 (for flies as predicate) has configuration 

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET ). ) 

II. Merging of the p_articles 

For each particle of inputpulse 1 and for each particle due to 

inputpulse 2 it is investigated whether they can merge either 

from right to left or from left to right. The last 

one created is always the first one to be investigated further, 

so we start with investigating particle 4: 

Investigate particle 4 (with flies as verb). 

1. Let us try to merge this particle with particle 1 embodying 

INPl (time as nom.obj) 

In other words we investigate Whether a nom.obj and a verb 

may form a link. 

From left to right will not do. Although a verb takes objects 

they come after it, so "time" is in a wrong position to be 

an object of flies. 

From right to left however is a good combination:because 

- function-of-head {verb) = nom.obj and time has the function 

'nbrn.obj. So the function-of-head test is successful. 

- position(verb) = after and flies comes after time, hence 

there is a successful order test. 

- The syntactic features match is necessary (a verb agrees 

with its sub-ject) and it yields true because the features of 

"flies" are (AND(NOT OBJECTIVE) (AND SING 3PS)) and those 

of time are ((SING 3PS) (OBJECTIVE SING 3PS)) o Notice that the 

possibility of time having the case signal objective is ruled 

out. 
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- The semantic features match yields also true because 

the viewpoint of flies is agent, the predicate is MOVE and 

the feature associated is the abstract case frame of MOVE 

with agent is (XOR ANIMATE THING). Recall that the serna .ic 

features of time in particle 1 are ((PROPERTY) (THING)) 

So there is a feature match for the subset ((THING)) 

as well for modifying as for qualifying. 

On the basis of these results it is decided that the particles 

should merge to form a new one: 

particle 5 with the following configuration 

(FLIES 1 (INP4 VERB NIL NIL ((PRESENT)) UNDET ) 

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS)) ((THING)) NIL))) 

Notice that the semantic feature complex of 'time' has 

been restricted to time ·as a thing. 

Notice also that the predicate forms the top of the structure. 

This in contrast with the normal procedure of merging 

particles. 

3. We try to merge paiticle 4 with particle 2 containing INP2 

(time as verb). 

From left to right will not do with the verb flies because a 

verb has no head and certainly not a predicate. 

From right to left is for the same reason not a good combination. 

Function-of-head(verb) is norn.obj and nom.adj is not a nom.obj. 

As we now confronted all particles of inputpulse 1 with the 

particle 4 of inputpulse 2 we can 'turn to the next particle of 

inputpulse 2: 

(b) Investigate particle 3 (with flies as nom.obj) 

(1) We try to merge with particle 1 (time as norn.obj) 
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From left to right the order test is successful because 

we specified in the grammar that objects may come as 

well before as after a nom.obj (not necessarily a good 

assumption in general). Now we investigate the networks. 

As initial state with flies we have INS/1 . The network 

itsel~~ectiv· 
\NS') (kind) 

So we go from the initial state INS/1 to the state FIN. 

The associated case is KIND. 

The next step is the matching of the semantic features. 

This yields also true, because with the KIND-case in 

INSECT, we have the feature •property•, and property is 

in the feature complex of time. 

We conclude that time is a nom.obj of flies. Notice that 

this could only be concluded after considering time as 

some kind of property. 

A new particle (particle 6) can now be created: 

(FLIES (INP3 NOM.OBJ NIL FIN ((OBJECTIVE PLURAL 3PS)) 

(PLURAL 3PS)) ((ANIMATE ) ) NIL) 

(TIME (INPl NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS)) 

((PROPERTY)) KIND) ) 

Notice how the featUres of the subordinate are restricted 

and how the case 1 kind 1 has been added, the case state of flies 

is now FIN. 

From right to left a merging is possible accordin9 to the 

position and taking objects tests, however there is no 

prefix state in the case network of TIMELINE, so we abandon 

the idea of merging in this direction. 

(2) For particle 2 with INP3 (time as verb) 

From left to right no merging will take place due to wrong 

positions. 

From right to left we have more success. A verb takes objects 

and they come after the word, so we proceed with the investigation 

of what case is filled by 1 flies•. 
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For this purpose we call the semantic network of MEASURE 

which is the predicate of time, and try to make a transition 

from the initial state MEAS/1 on the basis of the syntactic 

feature complex ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)). 

The transition is successful and we come in the final state 

FIN with associated case· 'WHAT'. The syntactic features are 

now restricted to ((OBJECTIVE PLURAL 3PS)). Next we investigate 

the semantic features. The what case requires (OR THING ANIMATE) 

and this matches with the feature complex of flies. Hence we 

may merge the two particles which yields: 

particle 7 

(TIME (INP2 VERB NIL ((~RESENT)) UNDET )) 

(FLIES (INP3 NOM.OBJ NIL NIL 

((OBJECTIVE PLURAL 3PS)) ((ANIMATE)) WHAT)) 

We have now checked all particles of inputpulse 1 against 

those of inputpulse 2 and obtained some new particles. 

Summary of actions in the state space: 

from 

to 
l 

t 51 ,' I 

4 3 

3 

0 

7 
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Although particle 1,2,3,4 remain in the state space 5,6,7 

will be the stronger ones. 

So a better representation of the state space at the 

moment would be: 

sO 
Q 

IINPUTPULSE 3 LIKE 

I. Creation of new particles 

First four initial particles are created for each function 

assigned to 1 like 1 by the lexicon. 

particle 8 with configuration: 

(LIKE (INPS CASESI NIL NIL NIL)) 

particle 9 with configuration: 

(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET)) 

particle 10 with configuration: 

(LIKE (INP7 NOM.ADV.ADJ A/1 NIL ((PRESENT)) UNDET)) 

particle 11 with configuration 

(LIKE (INP8 PREDIC NIL NIL ((PRESENT)) UNDET )) 

(NOtice that in particle 9 and 10 like does not have a final state ) 
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II. Merging 

Again we start with the latest made particle to see whether 

combinations are possible with previously made particles. 

(A) Particle 11 with INPB (like as verb) 

1. Let us confront this particle with particle 7 (time as verb) 

Neither from left to right nor from right to left is linking 

possible. A verb does not relate to a verb and vice-versa. 

2. Let us confront particle 11 with particle 6 (with flies as 

nom.obj and time as nom.obj depending from it) 

From left to right no merging will take place because the objects 

of· a verb come after their head and not before it. From right to 

left a merging is indeed possible on the following grounds: 

- the head of a verb, i.e. its subject,comes before it, this 

is the case, hence the test on order is true, 

- a verb agrees with its subject, so we have to perform a 

syntactic features match between (AND (NOT OBJECTIVE) (XOR PLURAL 

(AND SING (NOT 3PS)) ) being the features of the verb and 

((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)) which is the extension of 

the features of flies. The match process returns true for the 

domain ((PLURAL 3PS)). Next we investigate the semantic features 

via the viewpoint of like (agent) we find that the features of the 

slot should be ANIMATE; because flies has ((ANIMATE)) this test 

is again successful and we decide to merge both particles yielding: 

particle 12 with configuration: 

(LIKE (INPB VERB NIL NIL ((PRESENT)) UNDET) 

(FLIES (INP3 NOM.OBJ FIN NIL ((PLURAL 3PS)) ((ANIMATE)) NIL) 

(TIME (INP1 NOM.OBJ NIL NIL ((OBJECTIVE SING)) ((PROPERTY)) KIND))) 
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3. Let us finally confront particle 11 with particle 5 

(INP3 flies as verb on top) 

Both from left to right and from right to left no success 

is obtained because a verb does not link with another one. 

Notice that if the verb Would have been placed structurally 

under its head, the merging would. in principle be considered 

but the syntactic feature matches would have resulted in false. 

(B) Particle 10 with like as nom.adv.adj 

1. Particle 10 in relation to particle 7 (with time as verb 

on top) 

From left to right no merging takes place because the position 

tests are unsuccess.ful. 

From right to left for the word TIME we have more success. 

- The head of a nom.adv.adj is a verb and because flies 

acts here as a verb, this test is successful. 

- Moreover the position of a nom.adv.adj is after its head 

and this is so. 

There is no synt.features match but there is a sem.feat 

test. The features associated with the viewpoint of like 

(which is BETWEEN) are (XOR ANIMATE (XOR THING ACT)). In the 

frame of MOVE the feature act is associated with the SELF-case 

(norn.adv.adj is a modifier). Hence there is a match. 

The new particle (particle 13) has configuration: 

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET) 

(FLIES (INP3 NOM.OBJ FIN NIL ((OBJECTIVE PLURAL 3PS)) 

((ANIMATE ) ) WHAT) 

(LIKE (INP7 NQM.ADV.ADJ A/1 NIL MOD) ) ) 

(Notice that like is not in a final state yet) 

- 2.51. -



example 

(2) Let us confront particle 10 with particle 6 

From left to right no test is successful , the objects 

of a norn.adv.adj come after it and not before. 

From right to left is not possible because the head of a 

nom.adv.adj is another adjunct and not an object. 

(3) Finally we confront particle 10 with particle 5 

(flies as verb on top) 

From left to right no success is obtained. The head of 

flies is an obj·ect and not an adjunct. From right to left 

we are successful: 

- The head of a nom.adv.adj is a verb and because flies 

is a verb, this test is successful; 

- Moreover the position of a nom.adv.adj is after its head 

and this is so: 

- There is no syntactic features match, but there is a 

semantic features test: The features associated with the 

viewpoint of LIKE (which is WHAT) are (XOR ANIMATE (XOR THING 

ACT ) ) . In the features of MOVE we have with the SELF-case 

(note that nom.adv.adj is a modifier) the feature ACT. 

So this test is .true. 

To conclude, we construct the new particle , ~article 14, with 

configuration: 

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET ) 

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS ) ) ((THING)) NIL)) 

(LIKE (INP7 NOM.ADV .ADJ A/1 NIL MOD)) ) 

(C) We try to expand particle 9 (with like as nom.att.adj) 

Agciin we confront this particle with all particles. actiVe 

before the inputpulse of like came in. 

(1) Confrontation with particle 7. 

From left to right will not do. The objects of a nom.att.adj 

come after their head. Now from left to right. 

We start by investigating the word flies. Here we are 

successful: 
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- The head of .3. norn.·att.adj is a nom.obj and this 

is the case; 

- The position is as expected; 

- There is no syntactic features test, but there is a semantic 

features test. We have to see whether 'flies' fills 

a slot in the frame of like, namely the viewpoint of like which 

is what. To do so the features (XOR ANIMATE (XOR THING ACT)) 

must be satiSfied. This is the case and we get a new particle: 

particle 15 

particle 15 with configuration: 

(TIME ( INP2 vERB NIL NIL ((PRESENT)) UNDET 

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS)) 

( (ANHIATE)) WHAT) 

(LIKE (INP6 NOI!.ATT .ADJ A/1 NIL UNDET ) ) ) ) 

or the word time in particle 7 there is no successful 

function-of-head test. 

(2) Confrontation with particle 6 

From left to right no merging will take place because the 

object of a nom.att.adj should come after 'like'; from 

right to left we are successful because: 

- The head of a nom.att.adjunct is a nom.obj and flies is 

a norn.obj. 

- Moreover the nom.att.adjunct comes after its head and 

this requirement is fulfilled . 

- No syntactic features match is necessary here, but we 

have a semantic feature match with flies which has the feature 

((ANIMATE)). Because the viewpoint of li~e is between, 

the features to be satisfied are (XOR ANIMATE (XOR THING ACT)) 

So the ·test is successful. 

We make a new particle: 

particle 16 with configuration: 

(FLIES (INP3 NOM.OBJ FIN NIL ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)) 

((ANIMATE) ) NIL) 

(TIME (INP1 NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS)) ((PROPERTY)) KIND) 

(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET)))) 
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(3) Confrontation with particle 5 (flies as verb on top) 

From left to right and from right to left no success is 

obtained due to the function-of-head tests. A norn.att.adj 

has as head a norn.obj and not a predicate whereas the head 

of a predicate is a norn.·obj and not a nom. att. adj. 

(D) Particle 9 (with INPS, like as case sign) 

All confrontations with previous particles yield false 

as the reader can find out for himself. The cause is 

always the function-of-head test. 

The particles resulting from the third input pulse 'like' 

have caused a strong activity in the state space. 

In particular we went from: 

6 

to 

8 009 
Qo 

We will carry on with the most powerful particles in the 

state space. 
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I INPUTPULSE 4 AN 

I. New particles 

There is only one: parti.lce 17 with configuration 

(AN (INP9 DET FIN)) 

II. Merging 

For all particles the tests will be unsuccessful. On the 

basis of the function-of-head tests and/or order tests, 

so we are left with the following state space: 

IINPUTPULSE 5 ARROW 

I. New particles 

There is again only one particle: particle 18. 

(ARROW (INPlO NOM.OBJ NIL NIL 

((OBJECTIVE SING 3PS) (SING 3PS)) ((THING ) ) NIL)) 
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II. Merging 

(A) We try to merge particle 18 

(1) With particle 17 

Due to one of our principles that you cannot 'hop' over 

a word, the first job is to merge with particle 17. This is 

possible from left to right because: 

- A determiner makes a transition from the initial state 

(OBJ/1) associated with the norn.obj 'arrow' which brings 

us in the network in the state OBJ/2 ; 

- moreover the syntactic features match is successful, 

'AN' has 'SING' and arrow has ((OBJECTIVE SIKG)) So there is 

a match. Also we have to send-through the feature 'UNDEF' 

which brings us to the new feature complex ((OBJECTIVE SING 

UNDEF)). No more tests are necessary which brings us to the 

new particle: 

particle 19 with configuration 

(ARROW (INPlO NOM.OBJ NIL NIL ((OBJECTIVE SING UNDEF) ( 

SING UNDEF)) ((THING)) NIL) 

(AN (INP9 DET NIL)) ) 

We now have the opportunity to show what happens if a particle 

is made and it does not cover the whole input sentence 

yet. In such a situation a chain reaction can be said to take 

place: We try to merge with other particles floating aroung on 

the border of the range of this partiCle. The whole process 

is set in motion again by placing particle 19 on the takslist 

which is a pushdownstore; this implies that it is the first 

particle again considered for further combination. 

(B) We try to expand particle 19 

(1) Let us confront it with particle 8 (like as casesign) 

Recall that the latest state associated with norn.obj was 

OBJ/2 .So we try to make a transition in the network which 

brings us to the new state OBJ /3. Although there is no syntactic 

feature match, we have to pass features to the feature complex of 

the head. 
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This yields particle 20 with configuration 

(ARROW (INPlO NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF LIKE)) 

((THING)) NIL) 

(AN (INP9 DET NIL)) (LIKE(INPS CASES! NIL)) ) 

Notice how the case sign is now in the feature complex of 

the nom.obj and ready to become active in surface case 

signal tests. To show this was the reason to incorporate 
1
like1 in this function. No further results with this particle 

will be obtained. 

From right to left there is no merging possible because 

like' (as casesign) takes no objects. 

(2) Let us confront particle 19 with particle 16 ( 1 flies• as 

nom.obj on top) 

From left to right the order test and the taking-objects 

test is true. But we did not include a semantic network for 

'flies• and therefore do not investigate the possibility any further. 

From right to left we are successful for the word like . Li~e 

is a nom.att.adj it takes objects and they come after it. 

The transition in the sem.netw is also successful. We go from 

the state SIM.IL/1 to the new state f'Tl'l ,.Jith 

associated case TO for the syntactic feature complex 

((3PS OBJECTIVE SING UNDEF)). The sern.features test yields 

also true and we get a new particle: 

particle 21 with configuration: 

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS)) 

( (THING ) ) NIL) 

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SIN6'3PS)) ((PROPERTY)) KIND) 

(LIKE (INP6 NOM.ATT.ADJ FIN NIL UNDET) 

(ARROW (INPlO NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF)) 

((THING)) TO) (AN (INP9 DET NIL))))) 
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Notice how 1 like 1 has entered a final state and how the 

case has been added. 

particle 21 is the first particle which is final in the sense 

that it covers the whole input sentence 

From right to left no further combinations are possible 

for the word flies (no transition in sem.netw) . 

(2 .2) For particle 15 

From left to right will not do because a verb comes after 

the object which is its subject. From right to left 

there is greater success. Take the word like (function 

nom.att.adj) It is obvious that on the same basis as for 

the creatiori of particle 21 we will be able to link the 

object to like. Hence we get a new particle: 

particle 22 which is again final: 

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET) 

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS)) 

( (ANIMATE ) ) WHAT 

(LIKE (INP6 NOM.ATT.ADJ NIL NIL UNDET) 

(ARROW (INP10 NOM.OBJ NIL NIL ((3PS OBJECTIVE SING UNDEF)) 

((THING)) TO) 

(AN (INP9 DET FIN)))))) 

Still from right to left for the word flies, no linking 

takes place because there is no transition possible. For 

the same reason we cannot merge for the word time. 

(3) For particle 13. 

From left to right no merging takes place because a verb 

(which is on top of 13) stands after its subject. However 

from right to left we are again successful. This time for the 

word 1 like•. Again on the same basis as for the two previous 

particles. 
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The new particle (particle 23) has configuration 

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET) 

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS)) ((THING)) 

(LIKE (INP7 NOM.ADV.ADJ FIN NIL MOD) 

(ARROW (INPlO NOM.OBJ 1.1 IL NIL ( (3PS OBJECTIVE SING UNDEF)) 

((THING ) ) TO) 

(AND (INP9 DET NIL))))) 

Still from right to left we try to merge for the word 
1 flies•. This does not work because no transition is possible 

in the semantic network. 

(3.2.) Particle 14. 

From left to right will not do because a verb comes after 

its subject. 

From right to left is more successful. Not for the word flies 

because no transition is possible in the sern. network . 

But fOr the word like, the order test is successful and there 

is a transition from SIMIL/1 to the new state· FIN. The 

sem. feat test is also successful which leads to a. new 

particle: particle 24 with configuration: 

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET 

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS)) 

((ANIMATE)) WHAT)) 

(LIKE (INP7 NOM.ADV.ADJ NIL NIL MOD) 

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF)) 

((THING)) TO) (AN (INP9 DET FIN))))) 

For the word time there is no transition in the semantic 

network although the ordeitest was successful. 
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(4) For particle 12 

Here we are successful from right to left (from left to right 

is not investigated because the top is a verb) . First of 

all the order test and taking objects test are successful 

for like, also we can perform a transition in the.case 

frame of ENJOY and the semantic features test is successful. 

This leads to the following new particle: particle 25: 

with configuration 

(LIKE (INPB VERB NIL NIL ((PRESENT)) UNDET) 

(FLIES (INP3 NOM.OBJ NIL NIL ((PLURAL 3PS)) ((ANIMATE)) NIL) 

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SING 3PS)) 

((PROPERTY)) KIND))) 

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF)) 

( (THING ) ) WHAT ) (AN ( INP9 DET FIN ) ) ) ) 

(C) It remains to be investigated how particle 19 can be 

further expanded. 

The investigation of this is left to the reader. There will be 

no successful mergings. 

As a summary of actions due to this inputpulse we get: 

from 

- 2.60. c 



example 

'' 

to 

Here is a summary of all actions on particles that occurred 

during the analysis qf the sentence: 

(Final particles have double rings) 
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2.1.6. The computation of the resulting structures 

We now discuss how it is possible to extract from a particle the 

structures defined earlier. These structures (even the semantic 

ones) are all auxiliary constructs mainly used for didactic 

purposes. In principle semantic interpretation can take 

place immediately on the basis of the information contained 

in a particle. (Notice how the distinction deep/surface 

structure disappears). 

(i) The functional structure 

It is possible to extract a functional structure (as defined 

earlier) from the configuration in a particle by means of 

the function F-struct: 

Definition 

j );- 0 

be a configuration with 

> an information sequence 

then 

for j 0 

(i 2 ,k (al,k F-struct (a2+l,k) ... F-struct(a2+j'k) 
for j / 0 

Notice that this yields a list structure which is co~ted into 

a tree by the standard conventions. 

- 2.62. -



structuring 

(ii) The case structure 

It is possible to extract case structures from a particle 

by means of the following method: 

Definition 

j ~ 0 

be a configuration 

with 

a2 ,k 
sequence 

then 

(i) 

and 

an information 

case structure 

with 

label ( ( a 1 , a 1 k) ) 
,a2+i,k ' 

i 
?,a2+i,k 

with 

iff 
i 2 'a2+i,k 

a '> 
l,a2+i,k 

F-obj 

case structure 

label a ) ) 
l,a2+i,k 

l. ff . 
~2 ,k "- F-adju 
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Some examples 

We give some particleS of the earlier discussed example of 

the parsing process and present each time the funct-ional 

and case structure. 

For particle 21 with configuration: 

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL.3PS)) ((THING)) ) 

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SING 3PS)) ((PROPERTY)) 

KIND) 

(LIKE (INP6 NOM.ATT.ADJ FIN NIL UNDET) 

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF)) 

((THING)) TO) 

(AN (INP9 DET NIL)) ) ) ) 

functioral structure 

NOM.OBJ 

liES~ 
Nm1.0BJ NOM.ATT.ADJ 

I 
TIME LIKE 

I 
NOM.OBJ 

I 
ARROW 

I 
DET 

I 
AN 
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case structure: 

casestructure 

~ 
FLIES LIKE 

I I """ KIND WHAT TO 

I I \ 
TIME FLIES ARROW 

For particle 22 with configuration: 

(TIME (INP2 VERB NIL NIL UNDET ((PRESENT)) UNDET ) 

(FLIES (INP3 NOM.OBJ NIL NIL ((oBJECTIVE PLURAL 3PS )) 

((ANIMATE)) WHAT) 

(LIKE (INP6 NOM.ATT.ADJ NIL NIL UNDET ) ) 

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF)) 

((THING)) TO) 

(AN (INP9 DET NIL) ) )))) 

functional structure: 

VERB 

I 
TIME 

I 
NOM.OBJ 

FLES 

I 
NOM.ATT.ADJ 

I 
LIKE 

I 
NOM.OBJ 

I 
ARROW 

J~ 
I 

AN 
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case structure: 

CASESTRUCTURE 

~~ 
TIME LIKE 

WlT WH~~O 
FLJES FLjES AlROW 

(iii) Semantic structures 

The extraction of the semantic structures in the format of 

the SRL language is a straighforward process. It works on 

the basis of a task oriented control structure just as the 

parser itself. 

A task here contains two things (i} a pointer in the structure 

of the particles, (ii) an attachment point, i.e. a point where 

the structure resulting from executing the task should be attached 

in the already obtained semantic structure. This attachment 

point is in fact a set: a point for if the function of the 

in the configuration addressed to by the pointer is of type 

object, then the attachment point- is the list of cases in the 

head of the object, a point for if the function is of type 

qualifying adjunct, then the attachment point is the variable 

word 

node of its head and a point for if the function is of type 

modifying adjunct, then the point is the predicate structure of its head. 

The initial task contains a pointer to the top of the structure; 

the attachment points are NIL. 

The system takes each time the algorithm on top of the tasklist. 

Then the task is executed according to the following specifications: 
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If the word on top of the configuration pointed at in the 

task is of type object 

(i) create a new object node 

(ii) hang the viewpoint, predicate and subpredicate as 

specified in the lexicon under the predicate node 

(iii) add features if any 

(iv) construct a new task for all depending nodes 

(v) if the object fills a slot in a case frame, attach 

the case label and the pointer to the object node in the 

semantic structure under the node defined in the attachment 

point. 

If the word on top of the configuration pointed at in the 

task is of type adjunct 

(i) make a viewpoint/predicate/subpredicate frame and 

hang it under the attachment point indicated in the task 

(ii) add features if any 

(iii) construct new tasks for all depending nodes. 

If the word on top of the configuration pointed at in 

the task iS of type functionword 

(i) construct new tasks for all depending nodes. 

Extensive examples and detailed descriptions of several 

semantic structuring processes will be given in the chapter 

on examples and experimental results. 

Notice how the distinction between objects/adjuncts/functionwords 

which proved to be basic for the formulation of the grammar 

rules is also fundamental to the semantic structuring process 

as we have predicted. 
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2.2. The PRODUCTION PROCESS 

In this section we present a short outline of the production 

process based on the modular grammar theory. We will not 

present a very detailed model for two reasons (i) the size 

of the present work would grow out of the envisaged proportions, 

(ii) the deadline forced us to remain in the presentation 

here on a rather intuitive level. This does not mean 

however that the investigation on the production process 

was not carried out within our general methodological framework 

(i.e. that computer programs should be constructed to prove 

the operational ccpaciti·es of the approach). In fact we worked 

extensively on a system for producing natural language even 

before starting out for the parsing problem (results 

are reported in Steels, 1976); and many important discoveries 

were made during the investigation of language production 

rather than recognition. 

In particular the idea that grammatical function is one of 

the basic factors in language functioning (more basic than 

grammatical cateogry) and the idea of 'viewpoint• as a way 

to compute surface case frames from abstract case frames and 

thus to provide an alternative for transformational grammars 

on this point were both discovered during studies in language 

production. 

By the production of natural language, we do not mean the 

generation of a sentence from an initial symbol by successively 

applying the derivation relation on the basis of some generative 

grammar, but rather the realization of a mapping from information 

contained in a store into sentences of some natural language. 

Although recent work in transformational grammar is more and more 

approaching the same subject matter, it must be noted that 

there is a fundamental distinction between generating and 

producing. 
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Generation is a process precisely defined in the theory 

of formal grammars as an operation over strings (called a 

derivation) which when applied in sequence as controlled 

by the rules of the grammar results in one sentence of the 

language that is to be defined. One of the main features of 

this concept of generating is that it is uncontrolled, 

that means if somewhere in the grammar two paths are possible 

there is no mechanism that tells what path should be 

followed. 

Production is a transduction process and it is assumed 

that every action that is undertaken finds its final 

motivation in the intenstion of the system. In other words 

a producing system is a goal-directed system, it wants 

to convey information and uses certain means for that. 

It follows that to construct a successful producing system 

we must represent in the grammar the relation between a 

certain intension and how this intension is made clear 

to the reader/listener according to conventions agreed upon. 

We claim that the modular grammar that was introduced previously 

contains just the kind of knowledge we will need in order to 

produce natural language. Even more, while we needed for the 

parsing process special predicates (the parsing predicates) 

it turns out that we now can consult the knowledge directly. 

So, if a modular grammar is biased, it would be as regards 

production (and not as regards analysis as probably all readers 

have been thinking) . 

Intuitive explanations of the model. 

Let us again start from the •particle concept' as used to 

explic ate the parsing process. Now the particles will be 

called tasks because that seems an easier way to capture the 

ideas we have in mind. There are two sorts of tasks, the first 

type contains the basic impulse to create language code 

for a certain piece of semantic information (we call this 

a taskbuilder task) . This task then enters the language 

production space and is expanded to a sequence of other tasks. 

The new tasks are of two sorts, either from the first type agin, 
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i.e. a request for new impulses from the semantic processes, 

from a second type, the so called leXicalisation 

tasks. A lexicalisation task contains every information 

that is necessary to produce one single word. It is handed 

over to the dictionary routines which produce then 

the word itself . 

The crucial point in the system is of course the moment 

of taskbuilding. This involves two aspects (i) the 

scheduling of the tasks and (ii) the determination of what 

information should be put in a newly formed task. It is performed 

on the basis of the various knowledge sources already discussed. 

Each module (or in other words each specialist for a particular 

part of the language) is asked to contribute in order to 

accomplish the complex job. 

From the explanations it follows that the following points 

need to be clarified (i) the exact definition of the contents 

of the tasks, (ii) the control structure for the execution 

of the tasks and (iii) the process of executinq a task. 

2.2.1. The tasks 

There are two sorts of tasks: 

(i) Taskbuilder tasks which contain a pointer to a node 

in the semantic structure that is to be receded in a 

natural language. These tasks consitute the 1 stimuli 1 for 

the production system to become active. 
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Definition 

A taskbuilder task is a 4-tuple (al 1a21a3,a4( 

with 

al the keyword TKB (taskbuilding) 

a2 = a pointer to the task which was the imrnrnediate source 

for this task 

a3 a pointer to a node in the semantic structure 

a4 = a feature complex which is already due to earlier 

processing. 

(ii) Lexicalisation tasks which contain all necessary 

information for the dictionary lookup process to do its 

job. 

Definition 

A lexicalisation task is a 6-tuple (al, a2 1 a3 ,a4 1 a5 1 a6) 

with 

al the keyword LEX 

a2 the function of the word 

a3 the predicate 

a4 the subpredicate 

aS the viewpoint 

a6 the feature complex(es) 

No other sorts of intermediate representation constructs 

will be used. In other words everything else is in the 

process defined upon the tasks. 

2.2.2. The process 

Ideally a producing system should be able to reason about 

language in a similar fashion as the parsing system 

discussed in previous section did. Such a reasoning process 

could again be organized in a nondeterministic process by organizing 

particles which cover a whole sentence. (Cf. hints in this 

direction when discussin5the transduction relation for completion 

networks). 
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In the simpler account given here we assume that the process 

of language production is straight forward and probably the 

more we learn about language the more it will turn out to 

be very strongly determined how a sentence should be 

produced in view of certain meaning, context, situation,etc. 

As regards the control structure of the system we need the 

following: 

(i) a store on which tasks are placed in a last in first 

out manner 

(ii) a function which takes one task and sends it 

either to the taskbuilder (if it is a taskbuilder task) or 

the dictionary specialist (if it is a lexicalization task) . 

If there are no tasks left the sentence is complete. 

Let us now provide some more detail on the taskbuilder and 

the dictionary specialist. 

(a) The taskbuilder 

-i- The computation of the factors 

The first assumption underlying the operation of the system 

is that one can compute on the basis of the semantic 

structures what the grarrunatical function of a predicate in the 

structure will be. This is the exact reverse of the semantic 

structuring process discussed before. There we saw that a 

particular grammatical function implies a particular sort of 

semantic structure. Now we reverse this relation: a particular 

semantic structure implies a particular grammatical function. 

Obviously this relation (and its reverse) are strongly depending 

on the type of grammatical functions that the linguist 

designing an empirical interpretation for a particular natural 

language wants to use. 
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A second assumption is that it is possible to compute the 

vie'i.'7point. When a TKB-task is resulting from a previous 

TKB-task this viewpoint is the semantic relation holding 

between the two nodes in the respective TKB tasks. When the 

TKB task contains an object (as happens most of the time for 

the first task) the viewpoint is the relation between the 

predicate used to introduce the object and the entity 

node itself. 

If there are some more factors introduced in the grammar 

later on, they ~uld also be computable on before hand. 

-ii - The scheduling of the other tasks 

Once it is known what the function of the predicate pointed 

at in the task is, we have acces to the grammar (i.e. to 

all rules with factor function/case, to the synt. networks, 

to the case networks , etc;) 

The first question the system now asks is what other information 

in relation to the predicate in the current TKB-task should 

be communicated. 

A list is made of these information tuples and then the list 

is split in two parts. One containing tasks to be scheduled 

before the present task and other tasks to be scheduled after 

it, and each sublist is internally ordered. This scheduling 

process is perfotmed on the basis of the networks (recall here 

the transduction relation defined in relation to the completion 

networks) and the rules on order. Because the respective 

tasklists (before/after) are used as pushdownstores, we obtain 

the right paths in the networks. 

-iii- sending through information 

Although the newly made tasks may be other TKB tasks,normally 

information is sent through to the new tasks in the form 

of features (For TKB-tasks in the fourth position) E.g. 

when going through a case network specification (AND BY 

OBJECTIVE) may be obtained as side effect of a transition in 

the network for a particular case (cf.government rules). This 

feature is sent to the new task introducing that object. 
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When performing the taskbuilder actions for the task 

of the object, we will introduce a functionword 'casesign' 

for the by feature, etc;. 

-iv- Lexicalization tasks 

When every job has been performed in relation to the 

TKB task under investigation by the taskbuilder, this task 

is turned into a lexicalisation task itself, i.e. all 

relevant information is grouped according to the format 

specified. Then all tasks made are placed on the main 

tasklist and the system starts investigating the first 

task on top of this list. 

(b) The dictionary specialist. 

The dictionary specialist scans the dictionary in reverse 

mode. Earlier we had a word and from this we searChed 

for the information tuples related to this word. Now we go 

the reverse way. To optimize the process, we have pointers 

from each (concrete) predicate to all relevant words and further 

to all subsets of a given function. The rest of the search 

is performed by the match processes of the feature calculus 

which work in both direCtions anyway. 
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2.2.3. Example 

Let us now give a short example of a production process 

for the example phrase 11 A very urgent letter" , in other 

words we realize one piece of the semantic structure in 

particular: 

01 

PRED QUAL 

I 
RESULT WRITE PRED 

OF%WHAT PROP URGENT 

MOD 

I 
I 

OF%WHAT PROP VERY 

STEP 1 

First we make the initialization task pointing to the 

01 node itself: 

l. <TKB , !il, 01, NIL ) 

STEP 2 

The first job in the execution 0f this task consists in 

computing the function , the predicate and the viewpoint. 

The answers are straightforward function: norn.obj (because 

we have an entity introduced by a predicate), pred: write, 

viewpoint: result. 

Next we make a list of depending information items: features 

and qualifiers. For each of these itmes we investigate possible 

functions, yielding determiner for feature undef and 

att.adjunct for qualifier with predicate PROP (because it is 

in adjunct of a nom.Obj). 
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Investigating the networks and the order rules in the 

grammar we find that a tasklist of items 'before' contains 

the determiner and the qualifier with predicate urgent. 

The next step is to construct a lexicalization task for the 

nom.obj its f. All these tasks are then put on the tasklist 

and we get: 

3 o <i.EX, DETERM, NIL, NIL , NIL , ( (UNDEF) )/ 

2o <TKB, 2, QUAL, NIL> 

lo <_LEX,NOMoOBJ , WRIT, NIL, RESULT, ((SING))) 

(Notice that for functionwords the lexicalisation task 

could be made immediately) 

STEP 3 

Now we proceed by investigating the first task on the 

tasklist. This task is a lexicalisation task. So we go into 

the dictionary and we find there the word 'a'. The 

remaining tasklist now looks as follows: 

2 o (TKB o 2 o QUAL o NIL > 
l. <LEX, NOMoOBJ, WRIT, NIL, RESULT o ((SING)) > 

STEP 4 

The next task is again a taskbuilding task. We make a list 

of depending terms. This contains one modifier, for predicate PROP, 

The function of this modifier is adv.adj (modifier of an att.adj). 

We know from the grammar that an adv.adj comes before its att.adj 

Hence we put the task to realize the modifier node on the 'before' 

list. As there are no other items, we construct a lexicalisation 

task for the predicate in this task. As final result we 

get: 
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STEP 5 

3. (TKB, 4, MOD, NIL> 

2. (LEX , ATT.ADJ, PROP, URGENT, OF*WHAT , NIL) 

l.(LEX, NOM.OBJ, WRIT, NIL, RESULT, ((SING))) 

The task on top is a taskbuilder task. We look into 

the structure but we dGn•t see any depending nodes. 

Therefore the only thing necessary is to construct a 

lexicalisation task for the modifier. The function is 

adv.adj; the predicate PROP and the viewpoint OF~HAT 

Resulting tasklist: 

STEP 6 

3. <LEX, ADV.ADJ 

2. (LEX, ATT.ADJ 

l. .(LEX, NOM. OBJ 

PROP, VERY, OF;IWHAT) 

PROP, URGENT, OFJ(WHAT ) 

WRIT, NIL, RESULT ((SING))) 

We execute the remaining lexicalisation task which 

yields as output•A VERY URGENT LETTER 1
• 
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3.l•INTRODUCTION TO TRE IMPLEMENTATION 

The programming language FORTRAN IV will be used here as the formal 

language for the representation of the algorithms. To computational 

linguists this may come as a surprise . It is well known that 

FORTRAN IV is a very 't.ough' langupge for linguistic applications: 

no list processing, no easy s}~bol manipulation, no recursive 

programming. The reason for taking FORTRAN wasSimply that at 

the time the investigations started, no other language was 

available on the PDP 11/45 we are using in our laboratory. Although 

we later on managed to implement a LISP interpreter system, 

the working space of this interpreter soon proved to small for 

the kind of programs we will be dl.scussing. 

This restrictedness of memory {32 K)was a second major decision 

factor in favour of FORTRAN. It is necessary to write 

highly efficient programs , especially as regards memory 

requirements, on such a small machine as a PDP 11/45. 

The choice {or rather necessity) for using FORTRAN has the 

advantage that the programs will be understandable by a large 

group because FORTRAN IV is the most widespread programming language. 

Also, the p~ograrns can be implemented all over the world because 

FORTRAN is available in practically every cornputer centre. 

The first thing necessary however to be able to use FORTRAN 

suc<:::essfully. for linguistic applications is the i,ro.plementation 

of a number of functions and subroutines 'V'lhich complement FORTRAN 

with list processing capacity. The discussion of these functions 

and subroutines is the purpose of this introduction 

(l) List processing in FORTRAN IV. 

List processing involves a way of representing internally 

in the machine all the information about lists and about the 

atoms contained in them. Also we need ways to input and output 

lists and atoms and to perform operations on lists. The first 

question we deal with is the representation preble~ 
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Representation 

A list is a number of cells linked on each other by means of 

pointers. It follows that we need a way to represent the 

cells and to represent the pointers. A cell contains three 

parts the atomflag (AF) ,a place to store the car of the cell 

(CAR) , and a place for the cdr of a cell (CDR) . 

If We now organize three vectors, respectively called AF, CAR, CDR 

and let the parameters of the vectors be the address of the eel~ 

then we have ' not only a way to represent a cell I (by a 

triple AF(I), CAR(I), and CDR(I)) but also a way to point at 

cells, namely by the parameter: I. In addition we can address 

each part of the cell seperately. 

Example: 

The list (A B ( C ) is graphically: 

then the FORTRAN representation will be 

AF CAR CDR 

l. f'J A 2 

2. f'J B 3 

3. f'J 4 f'J 
4. f'J c f'J 

Note that the representation of NIL (the null list) is ¢. 
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Now for ~ we need (i) a dictionary in which the atoms are 

stored, (ii) a base register, i.e. a unique cell that will be 

used as unique address of the atom and (iii) a property list 

on which at least the printname is stored. 

For the dictionary we will also use a· list structure, based 

on the principle that equal front parts are stored only once. 

E.g. the atoms AA, ABA, ABAS, ABAD are stored in a structure 

with in the cars single characters: 

base register 

of AA 

"' base 

register of ABA 

of ABAS 

base register of ABAO 

Notice that on each end of a path there hangs the base register 

of the atom made up by the chai;.acters of that path. The calls 

in the dictionary structure and all base registers have 1 in the 

atomflag (AF) of the cell. All the others have ~. This is 

needed to keep both types strictly apart. 

The property list is a special list of pairs (property, value) 

~hich is stored in a condensed form. The property list hangs on 

the CDR of the base register of the atom. The first item is always 

a pointer to the printname of the atom. After that comes a special list 

of cells where the CAR contains the property and the CDR t.he value. 
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So a complete FORTRAN representation (except for the 

dictionary) for the list (A B ( c ) ) would be 

AF CAR CDR 

1. ~ 5 2 

2. ~ 6 3 

3. ~ 4 ~ 

4. ~ 7 ~ 
5. 1 ~ 8 base register 

6. 1 ~ 1!11 base register 

7. 1 ~ 12 base register 

8. ~ 9 ~ property list of 

9. A ~ ~ printname of A 

10. ~ 11 ~ property list of 

11. B ~ ~ printname of B 

12. ~ 13 ~ property list of 

13. c ~ ~ printname of C 

of A 

of B 

of c 
A 

B 

c 

In the current implementation we have 3000 cells available. The 

AF is declared LOGICAL.U ·data type and the CAR. and CDR as 

INTEGERlt2 All three vectors are placed in a comrnonzone. 

Note that as a consequence of these options all pointers either 

to lists or to atoms are of INTEGER!i<2 data type 

With this representation in mind, we can now turn to the routines 

which perform the input/output and processing. 

Processing 

In a list processing system there is normally a so called freelist 

created at the stBrt. When in need of a piece of list structured 

memory, one takes 'cells' from this freelist and when these cells are 

no longer needed, they are returned to the freelist. The creation of 

this freelist is the task of a special suhroutine !NIT. After this 

subroutine is called, the system is ready to start. 
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The pointer to the freelist is called !FREE and available in 

a comrnonzone called /IFREE/~ 

Next we need a routine for input (RLIST) and one for output 

(PRLIST) . In addition we have a program to plot automatically 

tree structures on the plotter. PLOTLI is the preparation of 

this program. 

For doing list processing, we have a routine for taking cells 

from the freelist (NEW) and one for returning them (BACK) 

Lists are copied by COPY and erased by ERASE. 

A pushdownstore can be simulated by using the routines PUSH 

and POPUP. 

Work on the property list is performed by PROP and GET. 

Routines which hang new list structures on already existing ones 

are ADD, APPEND, and ATTACH~ 

To check whether we are dealing with a list or an atom, we use 

the predicate ATOM and LIST. 

All rout.ines are grouped together in a library called the 

FORLI.OLB library. 

Before we start a discussion of the routines in detail, we give 

a detailed example_of the operation of one single subroutine. 

This may help the reader in reading and understanding the other 

ones. Let us consider the subroutine APPEND (see first its 

definition on one of the following pages) . We consider APPEND 

in connection with the following main program: 

l. IMPLICIT INTEGER (A-W) 

2. LOGICALxl AF 

3. COMMON CAR(3~~~) ,CDR(3~~01 ,AF(3~~~) 
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4. Il RLIST (l,I,l) 

5. I2 = RLIST (I,I,1) 

6. CALL APPEND (I1,I2,J) 

7. CALL APPEND (J,I2,J) 

8. CALL PRLIS" (!1, 1, 6) 

9. END 

What happens in this little program is this. First we 

read a list from a device with logical unit number 1 (e.g. 

the card reader) starting with the first character on the card. 

The list is pointed at by Il. 

Then the system reads another list (or an atom) on the same line 

and sets a poirter !2 to it. By calling two times APPEND we 

then add the second one two times to the first one. 

E.g. if we read 11 = (A) and 12 = B then after the first 

APPEND we get (A B) and after the second (A B B ) . The result is 

printed by PRLIST on a device with logical unit number 6 and 

from the first item on the next output line. 

Now let us trace exactly what happens in .~.PPEND. Given 

(hypothetically) the following (simplified) FORTRAN representation 

after RLIST (in line 3) of main program) : 

1. 

2. 

3. 

CAR CDR 

¢ 

3 

4 

Il 

beginning of freelist 

Notice that we leave out AF indicators for simplicity. 

Now we enter APPEND with Il 1, !2 =Band !3 undefined. !FREE = 2. 

First we take a new cell from the freelist. CDR(l) becomes 2 (line 6) 

put 12 in its car: CAR(2) becomes B (line 7), note the provision 

for exhausting the memory in line 8, I3 = 2 (line 9), !FREE 

(equal to 2) is advanced to CDR(2) = 3 in line 10 and finally 

CDR(2) = ¢. This yields: 
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L 

2. 

3. 

4. 

CAR CDR 

A 

B 

0 

0 

2 

0 

4 

5 

Il 

J, I3 

free list 

Then we enter APPEND again with Il = 2, I2 = B, I3 yet 

irrelevant and IFREE (in the commonzone) is 3. 

First we take a new cell from the freelist CDR(2) = 3 (line 6), 

put 12 in the CAR(3) = B (line 7), set 13 equal to the new 

cell 13 = 3 and advance 1FREE = CDR(3) = 4. 

Finally CDR(3) = 0. 

This yields: 

CAR CDR 

l. A 2 Il 

2. B 3 

3. B f2l 
4. f2l 5 freelist 

5. f2l 6 

From this example it should be obvious what complicated list 

processing activities are going on in the computer when we 

come to serious programs such as a parsing system for example. 

To trace the analysis of one sentence in the detail just provided 

is an almost impossible thing to do. 

Now we discuss the routines that make up- the library and thus 

forrn the groundwork for the further implementations. The routines 

are appearing in alphabetic order. 
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ADD 

parameters: I2, Il. 

Il is a list and I2 is an atom or a l~near list 

of atoms. 

operation: After execution of ADD, each atom of I2 ~s added to 

Il if and only if it is not present yet. 

example: Let I2 = (C B A ) and Il be 

Il will be (A B C ) . 

Let Il = ( A B C ) and I2 

A B C then after CALL ADD(I2,Il) 

D E F then after 

CALL ADD (I2, Il) Il will be ( A B C D E F 

code: 

0001 
0002 
0001 
0004 
0005 
000b 
0007 
0008 
000~ 
0010 
0011 
0012 
0013 
0014 
0015 
001b 
0017 
0018 
001~ 
0020 
0021 
0022 
0023 
0024 
0025 
002b 
0021 
0028 

5 
2 

3 

4 

SUBROUTINE ADD (12,!1) 
IMP~ICIT INTEGER (A•W) 
~OG!CA~•I AF 
COMMON CAR(l000),CDR(l000),AF[30~0) 
NIL • 0 
lF!l2 !Q,0) RETURN 
FLiG : 0 
IF(lF(l2),NE,Il GOTO 
L • 12 
J • It 
!F(CAR(J),EQ,L) GOTO 4 
!FICOR(J),EQ,0l GOTO 3 
J • COR(JJ 
GOTO 2 
CALL NEW(!) 
COR(J) • 1 
CAR[!) • L 
GOTO a 
FLAG • 
~ • 12 
L • CAR[Ml 
GOTO 5 
!F[FLAG,EQ,0) RFTURN 
IF!COR(MJ,EG,0l RETURN 
K • COR(KJ 
L o CAR[K) 
GOTO S 
ENO 
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ATOM 

parameters: Il an atom or a list 

operation: ATOM checks whether Il is a list or an atom and 

returns a truthvalue indicating that. 

code: 

(1~)~ 1. 
~oW2 

lilme3 
'/li~~4 

~V.l05 
(~:('r016 

~nv-,8 

ATOM should be declared LOGICAL in the program calling it. 

NIL is considered to be a list. 

l rn:tCCI\. FII~JCfJl11'·l J\f!'JII'l (!J) 
T~--PL,..j(li i.•'IT~r~E~ (A~W) 

1_1lGlC~L•i Af:. 
f:'cJ,-.;~1;_-,.,. 1 ,...'lj;o{ .:;1~ ''./') ,rri~(~tM"'O':) ,t.F'(~~ ·;-:n) 

t.ff'it: = .PAL;::.t. 
1FfAI="(t1l.f7:',.1) Al!l~':. .TI-:UE. 

E IJ(, 
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A~ PEND 

parameters: Il, !2, I3 with Il a pointer to a cell in a list 

!2 an atom or a list, !3 a pointer to another cell 

in a list. 

operation: APP.END creates a new cell pointed at by I3, hangs it 

on the CDR of Il and puts !2 in the CAR of the new 

cell. 

example: Given 

then 

code: 

0~~1 

00~2 
~VJI!13 

V; \'I lil .:.1 

~~~~ 
Pi;?) 016 

~~~1 
f-101i'lt~ 

001 'j 
001~ 
~e. 1 . 
!":~ 1 3 

~~'" 
0~15 

, 
1th-Hb 
~017 

~ I2 = B and Il 

after APPEND ( Il' I2, I3) 

!ll (i:) 

I A I ~1 \) kl 

5l.!8PntJTlti~· !\I-'1-'U~n(tt ,{~,I3·1 

t~PLJCT'f INT~~ER r&-~] 

LnGJCto.L•l M' 

with I3 

C (''l!~H1 :J ".! (A '.l ( 3 ll C' f>l ) , t I) t,> ( 1; 01'~) ~) 1 6. f. ( 3 (11 :·H~ l 

~0M~0i~ /lFkEf/ l~RFf 

Cr"~fJl): tFPr1:-
CAPtlF0~t:t1 : 1~ 
TF lTF<Jt-f.~i~.y,:'~:!1 r;nTtl l 
T .1; :: , J !-= !-' t: ":_ 
lFRlt :: C:'1;.; ( l f Rt~.l 

C.l'P ( 1 ~ l : ·li 
·~tTqr.;.·-~ 

w~'!'Tr:'('-,, ~l 

l 

2 

F"t!1-< :fiT (tl., '~Tn~t~r;~ f:):I--!AlJSTH• JN AI-'PI,-:N11") 

C ill. L e.): J T 

l PJC 
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1·1st processing 

ATTACH 

parameters: I2, Il with I2 a list and Il a list 

operation: After the execution of ATTACH, a copy of all elements 

of I2 is added to Il. I2 remains available for further 

processing afterwards. 

code: 

~0~1 

~~·2 
~?-!i'13 
IJ~~-4 

e~0S 
~0~b 

00~~ 

!..~0!'1!9 

-~II 
·~12 
~r!l13 

0~1~ 

'~Qitb 

00!8 
f,/)(!1~~ 

0~21 
~~?~ 
!/IQ'1?3 

~02~ 
1~025 

vl~~b 
~~~21 

0121~8 
~0?q 

~~~~ 

~031 

~~~? 

5\I~ROUTrr~F ATibCH {!2.,!11 

Ti-lfJLICrl lr\1 H(.;f=!-/ (A••'!J 
L0h1Clll'*1 6F 
r:('li>.1:"1i)N (:fll~~·",t~~·Hi'),(:I'H.((~;J;"~[11) 1 A~()':Wrt1 

~n t = 1,., 
IF fli?.Ul.C'!1 ~ETI.J~~ 

J : lt 
c Gor~ f.~o (IF L.T~T 
~ r•cr~RUI.tO.''li.l onrn 

J • cn•o1 
r;arn 2 
• = r? 
TF(AF.(l!I),.~L.:.!) f~I1TO ~ 

C ATTAC" t.JST 
3 J~(K.~~.rlJL} ~010 Q 

1F'(CA!.t(K1.,:-(J.~J!!.,_1 .;QT(' ~-

CAll '-IH, ( Ll 
r:nRrJl c L 
J : l-
tA~(J) : (';:Ji.,~(~.) 

b K = co~ri(J 
s rn o :~ 

Q CDR(J) : r"\1 Il 
RF."TUR~-l 

C ATTA.r;rl AHH 
5 tALL NE~(kl 

r~•cn '' 
CAR(.._) :c !? 
PF; TIII:!H 
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list processing 

BACK 

parameters: I, a list 

operation: BACK returns one cell pointed at by I to the 

freelist. It is not allowed to use NIL as a parameter 

of BACK (this is usually the sign of a severe error 

in list processing). If so, the error message 

code: 

~~~~ 

~~P·? 
~~·! 
~001/,j. 

~0.05 

t:'!IZII?Ib 
0~~R 
~00q 

~el1 (1 

•J 0! 1 
~01? 
~~!3 
21;;,1u 
0~1~ 

@~lb 

"NIL IN BACK" is issued and processing continues. 

c THF 

u~-

1 I 

~llf~;.U)!Ill'.J~~ l:<.o\r,l\ (1} 

TMPLlCTT 1' 1 T~!:f~ (A~~, 
L;1GIC·'L•l t.f· 
r:n~·,·,1 n 1 cr,.~r~·~rl?;),(nr.("Z:'~;\!i".),AF'(.3•.~>;r•_, 

co~~~~' II~~F~I JFP~f 
O::,I)HkOI.JlJ~-l": H4CK Wf_TliRNS. I"!N~ Cf.LL TrJ THF- F-REE"lt.ST 

tFC[.fQ,01 ~Oln 1~ 
C()R(ll = TF~tf 
CAO(Jl • ,, 
AF'(IJ = V· 
IF'Rr;; F :: 
T = ·~ 
~ETV'• 
wwnr.c~.lll 
FO~~~T (lW, •NJL l~• ~&~~·) 

F N~'\ 
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list processing 

COPY 

parameters: I,a list 

operation: COPY creates a new list structure equivalent to I 

and returns it as a value of COPY. 

code: 

f'.J!tiW1 

~~~~ 
~~~~ 

0~~· 

~~·~ 
000b 
0~~8 

0~1~ 

0~11 
Q! ~! ,_ i? 
0Vl3 
0014 
0••s 
0~17 
00\q 
~0?0 

~0~1 

0~?< 
~~?3 
0~;>· 

~r?5 
t:?IC~j;Jh " • 0 ;:>7 
0MP 
·~1~ 
0'Lil 
0032 ~ 
0~:t3 

0~'" 
0~'!> 
00H 
0~'q 

0~·· 
0~41 

HH(ra.~ f'"tltiCTHHJ r:OPV(Il 

J;t.,~PLtCli [N1fGHi: (4.•\>J) 
LU~Ir.AL~t1 6~ 
ra~'<~Mc~) r ~~~ CJ~~~r1 J. Cl'l-! r ~Vov.'Q':), ll,l' t3V~flj~1 ' 

r.npv : ' 
fF(I,!Q,o) hFTU~N 
IF(AF(l),F~,!l RUIIP~i 

J ' 1 
r HI, tiE. td PnS. l OLL ,.,fqPO;>l 
CALl "n·rcorn 
1Ct1 = Cr·Pv 
)f tAF(r./.R(J)l,ErJ,Il GQTD ? 
TF(CAJ-U1.~·Q.rq GOTO;. 
CAll HEo'l(K) 

CAR(T(.D) s: I< 

C~LL PLIS~flrO,PD2] 
CAlL PUf;H(,T,PPSl 
Ttn = C.AP tlCIJ) 
J ;; [APfJ~ 

GrT~ I 
CAR(jCnJ • CA~(J) 
J : t:'f~f"(.ll 

l.F fJ.F:t:.\'1 r;tl'O ' 
0LL bPPc'··r t!CO,~,!C(l) 
G(IT(] t 
CALL P!lplJP(lFO,P~?l 

CAt. L POPIJ~ ( J, PDf>) 
TF(J~fQ.VJ ~~f!JWN 

,I = rGk{J) 
TF(J.fQ.~) ~010 ~ 
CAL~ APrfNI' [JCn,0,JCn) 
r..oTO 
f: t-J 11 
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list processing 

ELEM 

parameters: Il I I2 an atom and a list respectively 

operation: 

ELEM checks whether the atom addressed by Il is in the 

list addressed by I2, if so the result is set to 1, else to 0. 

~l?l~l 

·~~2 
~~~~ 

f!.CiHHI 
u~~s 
{.r100t'l 
0~~7 

n~~q 
~~ 0 t ~ ? 
"~ I 1 
'~0! 2 I 
(-101 a <; 
0Q!1h 

00J6 
~~~q 
(:10?~ 4 
;)~22 ~ 

~023 
il10?4 

t•JTE_r,i::·\oil F'J~Jr:lfQ!J ELEr1(11.J?) 
plPL!C!T pJTHFR l'"f!J 
L~G!C•L•I AF 
cn~Nnr 1 CAP(3~~r),COR(~~~~).Af(300~1 

E'LfM = p 
n • 12 
l~(AF{Tl_l.~_"j•~l !';()Tfl 1 

W~JTE(~,?l · 
FOQMAT (i'!., 'F!j./ST A;;.>t;Utv;F~JT' l"'f F:l.f.M SHOUL:l.l HE A.TCl~') 

PFTIJ~t-J 

!F(AF(!~),E(~.\) r;rHP lJ 
JFrT3.t0,0) ~tTli~N 
JFICII(f!).EQ.Jil AOTO J 
T3: C:.!jP(T~~J 
r,oro ~ 

JFrl3.•<c.IIJ ~P"" 
f: L E"·' = 1 
!ollTU~N 
Fl--Irt 
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list processinQ: 

ERASE 

parameters: Il a list 

operation: ERASE removes all cells used to represent a list 

structure and returns them to the freelist; 

code: 

0f~l 

~~0-
0~~:1 
0~-4 
00~5 

~@06 

00e1 
Q!ttl C': 9 
~~11 

0•\i' 
ii'V11_ .1.1 

~Vol• 

"'~~ 1 1 
~~!8 
Q'l~)l q 

0\?!?t' 
0021 
0~?2 

e~n 

00>~ 
00?~ 

0~>6 
0 til, 7 
00?q 
0~1~['1 

atoms appearing in the list structure are not removed. 

$li~PQcJTJ>Cf f:kASt (1\l 
JMPL!CIT JNTf~~~ lA•W) 
LllGICAI.o\ AF 
COf1.1MQN C:AP(30ll'V) ,CI1R("5t~[?,r;,) ,td' (3VH~~, 
COMMON IJfRff/ lFREE 
~H. L :: r,~ 

C "t::RASt:" REMOVF-S ALL LH l3 IJ~Eb TO j.O't_Pi-(ESF:r-Jt A I. IS1 STI-"'UCTURE Q,NI) RETll~d·..:S 
C THFM TO THE fR~rLlSl • ~O~EOVER ~lOMS APP~A~tN~ J~t TH~ LIST ~T~IJrTLI~~ A~~ 
C: NCJT J::lf MQV~,fJ 

lF(Af(l!J,.~f~.Jl 1-?f.TUPfo., 
1 f r l 1. • E fJ • ,,, ) ~ E T lHH: 
CALL NtWIP•1Sl 

~ TF(lt.EJ.l,.~J 1~010 1 
TF (( A.t{CApfi11,.FI~.1,_.0R.(r:At-'fll1.EQ.01) r.on1;? 
C4L~ PUS~fTl,PO~l 
1\ • CAP(!)) 
!':.11TC, ~ 

;o T : ll 

T1 • CO>:(f\l 
COP(]): !fHf~ 

CAR(!) • ~ 
AF(l): l<1 

TF"H : I 
r;nro ~ 

CII.LL P0Pl1P(.!1 1 FI['1S) 
yr(l1.t:u.I-ITI.) i(llli~H! 

r::cno 2 
t' rJ n 
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list processing 

GET 

parameters: Il, I2, I3, with Il an atom, I2 an atom, I3 an at·orn or 

a list. 

operation: GET returns the value I3 of -the property _I2 on the 

property list of the atom Il. 

code: 

If Il is not an atom, an error message is ProduCed: 

"FIRST ARGUMENT OF GET SHOULD BE ATOH". If the 

property I2 is not on the propertylist of I3, 13 is 

set to NIL. 

910rn1 f'!.J~R,JIJT'p,p G~T (t1,1;;'1,t~1 

e'ild~2 f1·1Pl.i(~l 'fNTF·~F..: (4 .. ~·1) 
~~(.1!3 t0GTC'-I~*l Af-
~1k(10f..i (>J!ul~r);, C.A~(~O"(II),CI"I-'{3:-~CV'd,Af-(~~"li1~i) 

· c CHEr.'( w~lF:'fYF~' T1ti=-. P~t'JPttJTV 1r.; AL'-'f'AnV Tt-:t-h'l': 
~0~5 ~JL = 0 
0C'I06 tF(AFfYI1.Er.'.1l t~I1TO t:)[r'l 

),f.1Q~8 

~~'l·JI~ 25 
?'l:zJI~ 

~)l~\1 Stil 
~?' ~ 1 ;;. 
·ij ?l , 3 

~(711:, 

l'h·ll t-

•·1 1'1 8 
:':':', q 

"G:1.? 0 1 i, 
'1 ·~? 1 
·: ~'\.::-() 

,J>-'TiF:r..,,,~c;;1 

;::_;,.l:~Ai (\J;, f'FTJ:.'"'T ,\R(~U~-1p·r r1F r~~T SHOi.JLf) '1f t..TUri•) 
r ttL t. r: ~ t i 
J 1 = 1 , 
T1 = rJ~•"'(.ll 1 
fF(CO.:>fJli.,E.IJ.~ilL) r~OTI1 F 
Jt•r,.(.IIJ 
l.F(r:fl. .. - rr .:.~,( .. 1\1 l.'jt. J?) r,,,,.r-; t~~-~. 

rs fq'.~'"t 
f _-,. :: C I)~ ( r:: A;~ ( J J ) 1 

>< ~~ f 'J :0.' r .. 

r ~,: r, 
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list processing 

INIT 

parameters: none 

operation: INIT is called at the start of any program using 

code: 

00~1 

~0~-

0~~~ 
~0~4 

00~5 

00~b 
0007 
~0•e 
00~9 

0010 
0011 
001? 
~0'3 
001• 
~015 

001b 
0017 
~0i8 

the FORLI library. It creates the freelist by linking 

the CDR cells to the next cell. 

~U~"O'JT!'if !~IT 
t THE SUBRDUTJN! JNIT C~!AlES T"E F•F•LIST 

T"1PLlCll PiTF(;'E~ (A.•lrll' 
LCr;lCil.L•I t.f 
c:o~~"<~"~fW rAQ c1~~v~~~l I C:f"!R.C~N'·~l 1 AF C:SQ!r~~n 

COMM(Jti jlfkEFI !FJ.'~F: 

C tpfATE Fo~!Ll5l 
DC 1 J : ' , 1 'i ~IQI 
At-:'{!1 = ~~ 
oouJ • 0 
rootll • t•t 
J z: I +1~1{1~ 

.6.F' ( ,]) •!?' 

CA•(Jl • r• 
l Cf"R(JI !!ii ,T+l 

DO:? 1:1,4 
~ r.oo(!l = " 

TFoeF. = 5 
'?E.T\.IM'(I 
E "~I" 
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list processing 

INPUT 

parameters: IBUF, JZ, DEV 

operation: INPUT is an auxiliary subroutine for the read-routines. 

It consumes one piece of ihput for the inputdevice (DEV) 

starting from the IBUF-th cha~acter on the input line. 

A new inputline is read when necessary. INPUT returns 

in JZ a special code if the piece of input.is a 

punctuation mark, else JZ is the base register of an 

atom. INPUT constructs the necessary bookkeeping cells 

for atoms if the atom is a new one. INPUT calls SCAN 

to decode the characters and LOOKUP to consult the atom 

dictionary. 

code: 

0£'.t" 1 
(i!~r~? 

01(,~01~ 

1"01!1ll 
00fi5 
0~•e 
~0•7 

~!?11718 
~~.Hi~ tl 

01!11 t-1 

~011 

P! !{) t 2 
~~14 

0~1& 
e (il t B 
QIQ11q 

~0;> l 
~022 
~0P4 

~~2~ 
et0?b 

r. 

SUBRntiTftJF J>HJT(!~U~,.Jl,OEVJ 

TI~PUC!T !>IH Gf.R (A-Wl 
LQC.1CAL,t H 
!NTEG~q lsTQ(~~),~CAN 
LnGit:"ht•l ~l~l~·J 

lOC:lcH.•l ot,'fS'l 
C' C ~ ~1 C1 ~; c p.]:.: { ·5-l~ (!: 0 ) , C (l H ( 3 t:'J ~ ~ ) , b F ( ~~ r1 V1 ~ .. , l 
cr~Mr1N /~RT~ITPWJN,RLA~~~,F!PST 
CDM~n~ /STWl~/ 5TR]N(~~] 
('IAlA J.LENJ';c-·/ 

NIL = ~~ 

c 1l corJTPnL 
C READ ;J~~~ RllfFF'"' JF rJl{J ONE IS E~HAL)STFI) 
1 H(!BLtF,Lr,!LE>J) r,CTO 2 
28 TF(DfV~Nf,0) PFAnCn~V,3,FN0:?0) (STRTN(ll,T=·t,lL~N) 

I'CDFv,FI~.~) CALL 1~' 
~ FORMAT (8~A1) 

lff)PPIN ,E~.11 WR!T!(h,hl (SIRIN(!J,I•I,!LENJ 
6 F(i!O'"ltT (1(, fl.0A11 

tFt~TR!IH\I,F 1i,ALF(4?)) r.Ofrl <" 
!BIJF • ~ 
!~UF : lf,,:IF +1 
JF(STPli'jil,I~IIFl.E.~J.AlF(i)) t;OTC 
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li!:!t ·:p.rocessing 

00?~ 

~0?~ 

~0~1 
00~? 

00n 
Ql0~5 

•037 
003G 
0000 

~~·-00A3 
0004 

~~oS 

0~"b 

~~07 

00ae 

·~·Q 
0~t=:~ 

0~~1 

005? 
00~3 

00~5 

0057 
~0~~. 
00~1 
0~b3 

0~~~ 
00H 

f."!r,;lil-1 

01"U 
0 (t, 7 ~~ 
0P7) 
l"l"n 
0e1" 

0075 
~e1.; 
111~71 

·~·" q'l i2l !:llf~ 

~~-~ 
~083 
0085 
0~R7 

0~'"" 
00PO 
00q! 
00°' 
0~C)il. 

c 

c 

c 

c 

n!conE c••w•r•F• 
J • SLAIHJ•UFl 

SENn TO VoP!OUS •U~P6RTS 
!F(J,GT,.I) t;OTO 4 

PUNCTUIT IO'· 
.Jl • •J 
~EH.l~N 

c 21 ATnMs 
C [A) [HtC~ FO": Nil 
4 !F(J.'E,\41 '-''TOP 

TF(STO!"CIRU~ttl,N~,AlF(~l)GDTO !? 
JF(STRJN(!BUF•~l,NE,AlFI\7llGGTn \~ 
JJ • Bco•fteuP•3J 
tFI!J,G~.Il n~TO I? 
.JZ = 171 

!BUF • l b\iF +e 
Rnu""' 

C (B) Al'OMS ANI! hUt-·~F.~~ 

C P!~EPAF<E" FO~ Sfrp.:.p>!f: P 11";;' Cnf)F!'l t:.Tn~· ·11'1-di CI<'E/J.lF I. ~1F1~i r.F·LL (tZ1 Fr~ C·ir·,.':tJLTlr<r:"· 
C THE nT(fTON,~Y ALS£1 rUMPUTE THE ~~Gl~POJ~T OF Tf~f OltTJrlNA~Y 

1 2 ~ s 1 
!STR(W) o ! 

CALL NE.~r(Jl1 
TI."'J = (J/tri1+\. 

C LOOKUP ~y ~TG~lrJ~ THf CG~~ I~! 12 ANrl CALll~IG TH~· LnOKL!P SUARO!.ITl~t 
cr)R(TIJ = t:~ 

A o•OZ1 • J 
AF(llJ o \ 
CALL l(l(1K\lPtfr·~lZ.~IZ) 
l F r J l • F·r~ • l"' 1 r; l.1 T 0 1 A. 

C TF NfCESS~Qy ~FAn ~~~~ RIJFFl~ f"QR ~~Wl [f1AkACTt~ 
TF (!<luF,lt ,IU"l r.nrn o 

tF (nfo ,J .~:E • ,.,,.. ~.;·FAT) (D~ V, ~, f ~~!1=io'~~l (51 ~d t·, t l) .1 = t, H.~ Tl.l-) 

TF(fJE"V FQ.t•"l ~ALL ttl 
TF(lP,dl' ,.f\J,I) wR!TH~ 1 el (S1P1N[l),l•I;JLEtJ) 
yFCSTRPJ!\l,FfC,ALHUPll r.nT~ ~0 

tf3UF :: r.;1 
q l~Uf = lfl.rlF-' +1 
C IF fli;.~IET<.!T Jh p,Pl•1 J.c; Al\.H·1 rltt.H11TFR (;.f~TO E~!f') !"JF .a.TOM. El...&F Gr'"l 0~• WllH Cfl!'...: 
C SULTAlTON 0~ Thf rtCTJn~~A~Y 

J :. ~f::fH·i(l~IJF) 

rFrJ.LT.~~, r;oto p~ 
!(!Ill it .,q 

.JFt~.~T~~~l GGTU 21 
I~TP(n = ( 
GOTO il 

C END QF ;tn,·, 
I~ !BiiF • )PIJF •I 

CALL 8ArKtlZ) 
!FrC~P(JZ).EO,,,lll GOTn \20 

C CHECK w~ET~fk PA~F CELl or ~TnM W~S ALRf~OV I~ nJCTTO~AHY EIT~E~ 
C !MMEQPT!:I.V ;s Cl)k OF l.HT CELL OR AS P:REI,U.~~ ~··~I' CELL 
C l·F N~T ~A~[ ~~-~ rtt.L F~~ fMqE~OJNG FOR 8A~~ CtLL A~O FOR P~JNTNAM~ 

121 J!=JI 
Jl • n'' Llll 
TFfCAR{J7).Fq.NlL) RE1U~N 
IF(AF(Jl).~~f.i·Tt.) GrJTO 1?e. 
tF(CAk(CAF(Tl.l.1.~"<1 1-::.~~ll.) r,;rJlt'l 1.0?1 

jl • CHI,J)l 
'!FTWP.! 

t~7 !F"(AF"(Cr'I.((Jzll.E:Q.~~) r;QTn ti!t 
!FiCAo(rl;wrJ11J,N~,•IL1 GCTO 12! 
J< • cr;,ld 11 l 
PETI~IrHJ 
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list processing 

C E.L~f ~AI<E ttr" r.FI.L6 
00QS 12~ [ALL NEwill 
00•• J • cnP(J\1 
~rno1 CDR(JII • T 
~eos CD~Cll • .J 
00oq CILL Nf•IJl 
01~~ CAR(!) • J 
01~1 r,oTO 13 
0\12 12~ CALL NfW(Jl 
~1~3 CD~IHl • j 
0!04 !3 AFCJJ • I 
01~5 CAR(J) • '' 
~~~· JJ • J 
01~1 rALL :<E1tfLl 
01~·8 CDO(Jl • L 
~too CALL New[J) 
~~~~ CARfLI o J 

C CODING fO~ PRJNTN~rF 

0111 15 
0112 .14 
0113 
~II• B 
~~~~ 3'! 
01\b . ll 
01!1 

0118 3~ 

~w 
0122 
0123 
01?• 
0!25 

L II 1 
AF(JJ • ISTHLl 
L . • L +t 
TF(K•L) ~~~~"1,32 

RETlHn' 
CAOCJ) • !STO(I ). 
~ETLH~~1 

L • l +~ 
JFf (!<•C+1 j .F'·~,V'J 
CILL ">~(Cl 
CnRfJl • C 
J • c 
GOTO tO 

E (3) P.ATOMS 
c 

!"IE TURN 

C (41 ERROFS ANt) f'd!l OF <H.o 

011' !8 CALL ••c•clZl 
0127 RETUR~I 
~12~ 2~ J! • -1 
0120 OETURN 
01~• >1 W0ITF(6,25J 
01~i ~5 FORMaT (1(, ·~rn~L~~~TH FtCEEVS ]0 C~A~ArTE~s~.) 
01~~ CALL EtlT 

- 3.20. -



list processing 

LIST 

parameters: I a list or an atom. 

operation: LIST checks whether I is a list or an atom, and 

returns a truthvalue indicating that. 

code: 

0CiJ!"1 
0~1C'I2 
~0~3 

0004 
•o~s 

~~·7 

LIST should be declared LOGICAL in the program calling 

it. NIL is considered to be a list. 

t,nt::J,rAL Fi.lhlrTfnN LTST (11) 

1.JlG!CAL'*1 b.~ 
rtiM~O~~ CA~(~~~~J,coRC3~~~),AF(300~l 

tlS.T ~ f"'ALSF. 
iF· r ,, r d l ,,,,.~, lt n•. '~"f. 
0Nr 
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list processing 

LOOKUP 

parameters: ID, IZ, JY 

operation: LOOKUP cohsults a dictionary (ID) to see whether 

information in a cell (IZ) is present. If so, 

the point in the dictionary is returned as JY, 

else the dictionary is extended to deal with the 

new information. 

code: 

00•1 
9'~H:>2 

00(1 3 
lj!l-e':Jo!l 
QIJiilS 

('}1 til fJl h 

e0o7 
C'lfil:f\~ 
t'llf) 1 ~, 
~01 J 
<;'~~ill 2 

~) rq 1.1 

rn l'l 1 E:l 

0'' 17 
NIB 

\11[,2:::1 
~0~1 

082?. 
~~~3 
00~4 

·"':fl?~ 

0'll?7 
~~?8 

~0?9 
°F,~0 

~;·~~ 
vqrq, 
... .,~ni.l 
.;hnS 

'fb~7!~7 
~Hn8 

~0lq 
1il01J~ 

In addition there is a check whether the space 

for list cells is not exhausted. If so an error 

message is issued: 'jSTORAGE EXHAUSTED DURING LOOKUP". 

S•.l"iRI:lUTJ•·!F L.rtrH(IJP(Jr,tZ,Jif, 
T~1DLIC'IT friTI-':r~f,~ (A•I'J) 
Lnl::,ICAL+1 AF 
COM~O!·! CA~[~P~~],rnH(~~~~),AF(j000l 
(,O'H,It)q ;H4FEI TYR~E 

r·JI L : V· 
c (1) 1. no• .JP 

1 Jj.-:1Cf)t<1 (l!il~!:i),.N1L) f,C•Ttr 7 
~ JS:TI'l 

1!1 = cn~;(l'il 
J II : t I) 
r~rAFfTr.l.FiJ.~l JY = tAR(l~' 

~ 1FrCAk!JTl.''"·c•Rri7ll r•nrn :1 
r" • r v 

3 TF(JY.•'.!~ .. Tr!) (,!)1'0 ~ 

C (~) r~~~Af,.: Nf.:;.: t:~.-,Efl~l!'.-r. 
q r~G(TS1 ~ JFR~E 

_O.F( fF'RFfl : ~ 

CAI:O'llf!"f-"FE,: 1~"'~ 

tr1 : (Fr;€~ 
IFrtF~~·~r.F.f.!.3('•i~ .. ,l r.t'~TO t::'l 
TF~Ff: ('fl~({FW~!~} 

C {~) t"'PP-Ht (·!C" C~"ll-- rH= f1TC1II"Ji'.q~oRY 
1 ~DQ[I~l ~ lZ 

T I I ~ I z 
C:)l·dTill = ,rJ: 

Tl: lFl-'~1--~ 

TFfTFi·'~.::·f ,~·l.~l~~~~k') t~l'ITC' t~ 
I"'c>EE_ ::i .!';(lfRt~"\ 

crll<' {!i") : ;_> 

.] y :: 1 i) 

C (4) F~RCi,;-S 

\ol i-~ J.1' 1": {. 6 , 1 1 I 

FCI'-li·1AT (lv 1 

C'LL ft!T 
F: 'll) 

'SlCJIJAGt: pt~a~l~TFU flU~tN~ t.fl[IKUP') 
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NEW 

parameters: I 

o~ration: NEW takes one cell from the freelist and sets I equal 

to this cell. In addition it checks whether the memory 

space is exhausted and if so an error message 

code: 

~i?J~l 

00~2 
~0~3 
~004 

C'IC'I~5 

00~~ 

'-'\ZIQIA 
~(1!11Q 

Ill~!' til 
001! 
il'81.2 
CHll 1 3 

~0!4 
lltrzl \ 5 

"STORAGE -EXHAUSTED IN NEW" is issued. 

.l;t.1 ~qnurr~:~ Nfi·Jfl1 
Ti-I"LICl'T f_t>lTF~E~ (A•.i•J) 
L!1G1CIIl«1 H 
cr~;.o~~1C1N ca~c:H1.f'L\l ,f.IH\ t.'~lilV~) ,AF(_-H10Vll 
rD~~(IN /TF~~f/ ~~~Ff 

C THE SUr~k(1liTJr·JF 1'-<E:.~·· Tdkf':"i 11Nf rFLI. F~lJ~ THI:. ,.:R'F~I.,J.'-,1' 
TF (!FRE.f.'.fi'J• ~·~~~~-·) r;crli 1 
l : 1F'f:i~E 

lFRt:F: Clll.ff!l"~f:F) 

C:J)Pft) ; (1\ 

~~~ T t...HP·J 
1 ~~~tT!=_(b,~) 

~ F\l~iHT Ct), •sTORAGf;: F.-~f~AI_)cql:l) TN Np-W•) 

c•cL on 
r:~~i) 

- 3.23.-



list processing 

PLOTLI 

parameters: Il, I~ K, L 

operation: PLOTLI writes a· list Il on a file on disk: FOR004 .. Dl\.T 

in a format which can be· consumed by the PLOT program 

It denotes a value for the. size of the charac"ters of 

horizontal lines and the space between the leaves. 

This value is equal tO I x 0.25 ern. So, if I is set 

code: 

0001 
0002 
0003 
0004 
0005 
000~ 
0007 
0008 
00!/Jq 

to 1, the size of the characters will be"0.25 ern which 

is more or less the normal size. K denotes either 0 or 1. 

If K is 0 then the tree is n·ot centered, if K = 1 the tree 

is centered, i.e. the lines from dominating nodes will 

end at t.he middle of the bar .connecting the dominated 

nodes. L denotes either 0 or 1. I·f L is 0 then the 

leaves will 1 hang• right under their dominating nodes, 

if L = 1 then the leaves are plotted on one line. 

SUBROUTINE ~~OT~ICI!,I,K,~) 
tMPLlCtT INTEGER (A•Wl 
LOGICAL•! Af 
CO~MON CARI3000),CORt300~l,AF(3000) 
CALL PRLtST(!I,!,4) 
WR!TEC4,1) l,K,L · 
FORMAT 1312) 
RETURN 
ENO 
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REMARKS: 

1. Files from PLOTLI are written on FOR004.DAT so do not confuse 

this with other output on this file by PRLIST. 

2. When all structur~s to be plotte~ are proces~e~ by,PLOTLI, 

one should call the CLOSE subroutine in the FORTRAN program, 

in particular CALL CLOSE (4) ~ This is needed- to 'close 1 the 

files, i.e .. add an 'end of file symbol' to it. 
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POPUP 

parameters: I, Il with I an atom or a list and Il' a list. 

operation: POPUP sets I equal to the contents of the top cell 

code: 

Ql~~l 

e0ri'l~ 

?.0?13 
el0~4 

>0~5 
e:!l'~& 

~0~7 

IZ)IiJVI9 
0 17; 1 !71 
!71 f:"' t 1 
V1e11_ 2 

c 
~~13 
;<[;14 

<015 
00!6 
~V11 
ere, 1 e 
~~ ('! t 9 
!1 tl i' 0 

of a list Il and then removes thiS cell from the top. 

This is done by transferring all information from the 

second to the first cell such that· the value of Il 

remains the same. 

-~\li,;:·,LI'Tt!~F- P11~UPfi,l1.J 

r~PI.lt!T !~T~~f~ {A·'~] 

ln!~lC4L11.1 Aj:.-
cu:-ILIIJ', C I~P f ·a.~~~~) ,l;l).,._ {3t·H('i'1 J, tt.F (~i10Vr) 
C1"1i"'ltl! J{f.R~EI tft?r:F 

T : Co<l((!l 
TF ( r:11r~ fT 11 • ~~~ ,0) r.nft': 
I?= \;,~.~rJ1J 
i0>(1)) < [Oi<[!,>) 

CAO!lil • U01!"1 
4FT111 : .\HPl 

RfM(!Vf- _;q._(.Jl.:: r:f:'LL 
CI'IR(Tt?) = JFk~E 
01'(12) • -
.. ll?J • J 

TF"~ft .= 1' 
QF:' fiJRc.j 

Ct. Lt.. '"C"- f:111 
t 1 = ·:'1 

fr,!f'l 
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PROP 

parameters: Il, I2, I3 with Il an atom, I2 an atom and I3 a list 

or an atom. 

operation) PROP appends the property I2 and the associated 

value !3 which may be an atom or a list to the 

property list of atom Il if and only if the 

property is not yet on the list, else the old value 

is replaced by I3 without warning. 

code: 

~'2111'1 
\l,QI(i'l? 

~ 1;~(..13 

17 .~ ~" 

''HJ 115 
[-1/.)~b 

00~8 

0f.H11Q 
i.,i.'11 0 

;~t'!, 1 
·~,1112 

-~!5 
1?. (-\ 1 c; 
0~1~ 

~018 
~,01 q 

If Il is not an atom, an error message is produced: 

'FIRST ARGUMENT OF PROP SHOULD BE ATOM.' 

.!;UAR(lUTPH=: P~i;~(lt,I?,t:q 

[~PI_(rTf I~JT~G~R (~~~) 

LOt:tr:c.Lid .c.F' 
(' [J~'1lJ-"J C 1.1¢ r 30-.1111 , C I'H1 ('3~ c'H·~) , .\F C ~t~V1P l 

C CHE(~ ~~~t~~~ T~~ P~tlPF~lY 1~ &LRE~DY fHF·~~ 

~~rL = ~ 
T F ( 6 F ( T t 1 • "It " .n f, :1 T (1 1 
";":JfF.If>.,~) 

'i Ffi~r~Af (1)', '~iR~'!' AfJ!~U~~F 1 .;T I'JF PROP SriUULC H~ ATOM') 
I":' AU_ t: 1::11 
J 1 : 1 I 
Jt • c::-.1(/ll 

t~li'l lF(Ci);...:(T11.f:(~._I'-JlL) f,(.)"f(", fiA 

Y 1 ::i C: f\ ~ r .I t 1 
IF(Cf1~·(1"':AP(Jl}).~Jf;.J?.1 r,n'!"f' fLd~ 

C !T 1~ T~o~f_l..(f' 

tnQ(r,~cJ,l) = 11 
!;1-f: T ·!" \ 

C lT 15 ~.~·r T ..-tl='r 
~~Jii20 t~ 

<>·~?\ 

r: A I, i ! f;" 'to ( l l 
r Au_ ~pnf'!.!') r .J l. l, 111 

cqo::'2 
r.~ :;.1?, 3 
;i:·~ ?t.l 
!~\·)25 

tAi<t:T) = To? 

C'.Jf:.''(l J = tt 
IJ F" r :,1 L> ••· 

E :>.J (J 
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PRLIST 

parameters: INP, BUF, DEV 

operation: PRLIST prints a list or an atom. 

INP is a pointer to a list (i.e. to the first 

element of a list) or the base register of an atom 

BUF is an integer value denoting the position on the 

outputline from where the system should start printing; 

if I2 is ~ a line is left open and the system starts 

from the first character on the next outputline. 

DEV is the device on which the output must appear, 

if DEV = ¢ the outputline is constructed but not printed 

out. This is of use in extracting the printname 

of atoms via comrnonzones. 

The result 6f PRLIST is that the whole list structure 

pointed at by INP is receded in alphanumeric characters 

and transferred to the device. 

remarks: l.If list notation is impossible, dot notation is used 

but only at the point where it is necessary: 

E.g. given (A ( B (C. D))) , this will be 

printed as (A B C . D) . 

2. When the value of BUF is greater than one, all characters 

on the outputline are blanks. One can use this feature for editing. 

E.g. suppose you want the following as output: 

THE NAME IS : JOHN, where "the name is:"is in the program 

and John an atom referred to by the variable name,then the 

output can be obtained by the following lines of.rFORTRAN: 

code 

CALL PRLIST (NAME, 14, 6) 

WRITE (6,1) 

1 FORMAT (1H+, 'THE NAME IS :') 
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code: 

~001 

@0~.? 
00~3 

00~4 
00~5 

00~·· 
0~~7 

00~8 

~~~9 

0e1~ 
0011 
0013 
0014 
0015 
0011 
0~18 

001• 
0020 
00?2 

00?~ 

0025 

0027 
0028 
0029 
00J~ 

0031 
0032 

~ e, 3.~ 
0f130 

00~b 
~~3~ 

0040 
00a1 
0042 
0043 
0044 
004h 
004~ 

0~·· 
0~'<'1 
005! 
~0~? 

00S3 
00S5 
~05~ 

SU8ROUT!Nf PRL T&Tfi•P,HLIF 0 DEV) 
tMPllt".:JT pJf£6ER {4·~) 
lDGIC•L•! AF 
lOGICAL•! sr"JN 
LOC.JCAt.•l Atf (So) 
CO~MON ISTRJN/SfRJN{ij~) 
C0~1·10N CAF·(~I'Jili:I]J) ,CI"'R('I;~(~~c;,) ,AF(:!t~~~l0) 

QATA lLEt'/7(111 
C THIS SU8Rf11JT!f\1E P~lr~TS A \..1ST Pr'lJNTf;D AT MY INP tlh.l f- l';flllL~ l'AI~L•:11 ['\-'.~ 
C FROM THE PQ$1TION rr~lllCATfM BV BU~ 

NIL • f 
Tfi.LIF ~ ~L1F 
IF(~UF,LE,IJ bUTO 40~ 
D(t ~~1 r : 1,l3UF" 

401 STRJN(j) • 4LF (\l 
L.lr?112' lf((OEV.En,l:,l,OR,(!HUF",~IE,~llGOTO ~,~~,? 

wR!TEt1J~V,4~<1 
4~3 FORMAT (lXI!') 

4~2 !! • r''P 
IF (!RtiF,FrJ,,l) !Rt,1F· = 1 

rouT • 1 
C TOP CUNT~OL : SE~ WHETHER !~PUT IS oTOM,N!L, OW L!&T 

!FfAF(!tl,E~.I) GOlD~~~ 

tF"(ll.£:-Q.~n r.nro 21ih1 
C IF LIST CPEATf PfG CELL ON TQ~ OF L!51 

c 

IOU I • ~ 
I = 1! 
CAl-L ';U(!l) 
CARfltJ : I 
CAll NEe< (POSJ 
GOTO ? 

C "--ORJ-1A~. C()~JTHOL 

---------··-----c 
3 
2 I I • ~n'()IJ 

ffl1.~t~.i'ITL) !..OTI'J 11!1 
tF(AFfJ!),fo,l"l GUTil 1 
!F(CA!i()l),r;E,~) <;OTil" 

c 
C St.C'T,IOI\i 1 PRp:r_n,(, lHt. AT(H'lS 

c----------------~--------·-----C GOTO ~~INT~AME CELL nF ATOM, UECOnE T~l~ P~lNlNA~E A~ln ~~llE IT D~ T~~ OtJT• 
C PUT8UFFEA (!TWJ•l 

~~~ It • re•tltJ 
!.'Rf\1 = 11 

1~ 11 • CAR[P,NI 
lAEG = !81_1F" •1 

II !f(!AUF+l,LT.!LENl GOTn II 
IF(DEV,Ne:,r•J ~~~lTt(t'IEV,b, [!~H"'·PJ(ll,I~l,tl~f:_r;) 

b Ftd~~H.T flX, 1C,L.~Al1 
I BUF = I 
(;Q!Ll I 5 

\4 ST~l•Ct~~Fl = ALF(Af(JIIl 
1? = C' 0 ltll 
tF(Ii?.~C.J.V') t"r1r0 1~ 

!8UF : lPliF + t 
JFfl?.Lr • .t:,;~1 r;ort! 10 
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~0SQ 1RUF ~ l~UF •1 
00~0 !2 • !2 • ((l<'lll'<•) • ''"'") 
00bl 16 ST•JN(18UF] : A~F(l?l 
0~b2 !F(CO~(!l),fO.•l "QTO I? 
00~~ II • COR(ll) 
00&5 l8UF = I~0F +l 
~0h8 GOT" ta 

C END OF ~fpM OH P-AtOM I ~L~O R!.ANK 
00b7 12 !BUF • l~IIF +1. 
00h8 STR\~(lRllO\ • AlF(l l 
0 •• , !F(l~UF,GT,JL••J GOTO II 
0071 TRUF • 18UF +I 
0072 IFI!OUT.E~.Il GOTO IIR 
001• GOTU 110 

c 
C LEFT P•RENT"fll& 

c ------------------c PUSH POINTER Tn rURRfNT CFLL INQ SfT CURR!NT CELL ~&UAl TO LAR • IOl LEFT 
C PARENTHESiS IF fMH!UDIN& N01 OUE TO IN ATn" 

0075 I !F(CIR(IIl.tO,NI~) GOTO 2BP 

0017 
007" 
0~80 
0082 
0083 
0085 
0086 I q 
~087 

CALL PUSH(lt,~OSl 
!FIAF(c4~(!1l),f.Q,\) (;r)IO !!7 
!Fll61JF,li,TLE'J) r.DTO IQ 
!8UF • li'IJF •I 
!FID!V,NE •• ) •~!Tt(Q!V,.) (STR!N(I),l•lt!RUF) 
!BUr = 1 
STRl"(l~UFJ : ALF(2) 
11:3UF = l~t!F +t 

~~BA I!T 11 • C•"rT\) 
00A9 GOTO 2 

c 
C RIGHT PIRt•THf9J5 
C-····-··-·-·~···--~ 
C POPUP POJ~If_O Tll CUkRENT CELL ANO AllD ~!Gt'T PARf.NTHr5!5 If E•;1tDLl!NG IS 
C NOT nU~ ro M' AtOP.1 • TF THE PUSHi'l!,H-Hi ~TfiFit 15 EMPTY GOTO fNn 

~0·1 llq CALL POP~P(l!,PDSJ 
00QI JF(cAR(PDil,EA,NIL) GOTn 3~0 
0~03 !F((AF'(CARI!l)l,f;:t;,\l,OR,(CA~(Jtl,f.l,,tJ!ll) GOT0 \!l 
0~QS lf(l~UF,LT,ILt• I GOfC i? 
@~4' rsu• • tR,_,F -1 
~~91 IFfDeV,NE,rl ••lTE(DEV,.l (ST~IN(Il.I•I,I~UFJ 
~~~~ 18UF = 1 
01•1 ?2 ITRIN(IBUF) • ILF[11 
t:l1P'I2 TR(.JF = ll':\i.IF +1 
01~3 18 H(CDR(II],fll,'!Ll [;tJTO 110 

C DOT 
r !F I~ T~E CDR THERF I~ A PntNTF~ TO IN 1TOM •E Ann • Cnr 

0!~~ If[AF(C!Ci<(!l)),efl,NlLJ G~TO' 
01~7 IF (!OUF.~T,!LE~l GOTO ?' 
01~9 !AUF • IA'JO •I 
~!H\ tF([JEV,Nc,0) "'"lH(rEV,b) (STi<!'li),l•ldBI!F) 
0112 1RUF : ! 
01!3 21 STRlN(IfiiJF1 • Alf(<;5) 
01!~ STRJ"!rAWF+ll • •LI'(I) 
0115 !BIIF - I8CP ·~ 
011~ GOTO 3 
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C NIL 
0117 2~·0 lF (lBIJF+?,LT ,Ill;>!) r;OTO 21~ 

~11 q revF = liluF -1 
01?~ lFCOEV.~E.~) ~~JT£(DEV,b) (5TRJN(JJ,l=1rf~UF) 

~~~~ l\0 ~~WfNri~UFJ • ALFl\9) 
0\?U STRJN(JRUF+ll • •LFib) 
~125 STR!NOi<lJF+~l • Al.F (I 7) 

~m 
0128 
~130 

01~1 
013?. 
et33 
01!~ 
0!3b 
0!38 
0139 

STR!N(IRVF+<l • ALF(!J 
reuF- = r~Hlf- "+il 

JF(l~UT8~Q.11 ~[1TQ lt~ 

GOT 0 .l 
C END 
3~0 STRI'(l~VFJ • ALF(J) 

!PLIF • l~l'F +1 
110 1F(FL•GJI0,!1 RtTU"'' 
5M 1~VF • ji;IIF •I 

!F(OEV,III;,rl ••TT~(O!Vo~l tSTRJN(!J,l•lol~UF) 
!8UF • !BIJF +1 
RoTUR" 

C ERROR 
~ Wkllt(b,Re1 
'18 FO~rH.T (ll, 'lRI-!E:'Gl!L.ll; PH'UT f'UR"fRLIST(POS$1FILY P.H?T r:F 1'1 fCT!lHHtR¥ 

•l , ' 
RETURN 
F t-lfl 
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PUSH 

parameters: I, Il, with I a list or an atom and Il a list. 

operation: PUSH creates a n·ew cell on top of a list pointed at 

by Il and sets I in the CAR of this cell. 

code: 

~~~~ 

0~~2 
~~~3 

Ql ~ \?1 IJ 

0er-<; 
c 
c 

01!0b 
0~08 7 

r. 
I?J~VIQ 

•0,) 
l?(,q,., 
CHY 1 f. 
0014 
P~H 5 

c 
00H 
(tli?' t 7 
~@H 

0~10 
~0;>0 

0e?1 
00~2 > 
0~23 

00'!a ~ 
0025 
~V"2t1 

the value of the pointer itself does not change 

during PUSH, because actually the second cell becomes 

the nev1 cell and all information on the former first 

cell is transferred to this cell. 

SU~~'l'1UT1Nf F"l.JSH(t,T1l 
tMP~TCJT T~TFG~~ (A•W) 
t_!"!Gl(·\1.,*1 AF 
CQMr1nf! CAp f'_li0\1'\'A) r ('D~ (3t~Hii), AtF (31!H'r1111 

C0Mh0~ lrr~FF/ 1FREF . - . 
THlS ~l!RROUTI~·f- CRE::ATt:S l Nf-W CELLO"! TOP t:F A Lt~T Tl AN[) STr!.lt--::, T Jr-.' 
T"E oO- IJF T.<TS CfLL 

JFri1.~(~,~, G010 3 
!2 = 11 

T~ANSf~~ lNFO~MAl!UN OF ~JhST [~L~ lU NFW C~Ll 
rFfJFRH.,f.r·,,,3t'.t'Jif'\1 r.nTn t 

11 = IFRt> 
!F"~E:E ;:: C!~'<'rlf~EF) 
~Frrtl = n.rT~, 
r••<£J11 = u'tl21 
C:OI.f(ll): CDR(t(') 

STCIR~ NEtJ p.:fOi!j.,'rt4lHH! HI TOP CFLL 

AF(J~) :a p 
CAP(!<') : 

co•tt2l • n 
It • !? 
RETU~ 1 J 

WRl'Tf:(b,?l 
FOf''"-1t'T (t)_, •srr.~->r.nr:. tV~!AU . .::OTF[; 1N P 11$H•) 

CAL.!, f-')1 
C"'tl ~~Fl .• , r T,) 

t;r"r-TCl 7 
ENO 
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RLIST 

parameters: BUF, IBUF, .DEV 

operation: RLIST is an integer function for reading lists and 

atoms. 

BUF is a pointer to the position where the reading 

should start. 

IBUF is a pointer which results in the final position 

after executing the function. 

DEV is a code for the device from which the system should 

read. 

The result of RLIST is that all decoding and storing is 

performed and that a pointer to a list (or atom) 

is returned as result. 

The following conventions hold for the arguments: 

1. If BUF is equal to~, then a new line of input 

is consumed but the line is NOT printed out during 

reading. 

If BUF is equal to l,a new line of input is consumed 

and the line is printed on the output device (LUN: 6) . 

If BUF is greater than 1, the system starts 

reading on the latest consumed line. 

Whenever a line is completely processed, but more characters 

are needed, the system keeps reading new lines from the 

input device until a complete list (or atom) is found. 

2. IBUF is set to the final character used in the RLIST 

process. So, with IBUF we can keep on reading on the same 

line if we take this as starting point for the next call 

to RLIST. 
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3. DEV indicates the device from which the 

input line must be taken. 

if DEV =~ a special subroutine called IN is used 

to fill the characters of the intputline in the 

comrnonzone STRIN. The user can himself define 

the way in which this filling in is performed. 

If DEV is greater than 0 the relevant device should 

during taskbuilding be connected to the logical 

unit number specified in DEV. 

Remarks: 1. Blanks are ignored if not meaningful 

2. Superfluous right brackets on the last inputline are 

ignored but if you keep reading on the same line, an error 

message will follow: 'TOO MANY RIGHT PARENTHESES'. 

3. A lack of right brackets will make the system look 

for further brackets and therefore consume the rest of input 

lines. Then a message will be issued: 'TOO MANY LEFT PARENTHESES'. 

So, a lack of right brackets is a fatal error, in that it is 

noticed only when all cards have been read. 

4. The null string can be representedin the input by NIL 

and (). NIL is the only atom that is present as soon as the 

program starts. (The integer value of NIL is ¢). 
5. Each character that is given as input is coded directly 

into an integer. Characters which are not in the ALF vector are 

not accepted, a message 'UNRECOGNIZED CHARACTER' is issued. 

6. An important (but difficult) question is the fact 

that there is a fundamental distinction between the FORTRAN 

program and the variables for lists and atoms used therein and 

the users' specification for the atoms and lists, a distinction 

which is not so stringent in LISP e.g., due to the QUOTE-feature. 

Clearly the bridge between the two is the RLIST function. Therefore 

any atom that is used as an entity in the program should be read 

in by RLIST. 

E.G. suppose 'NOUN' is an entity which is being referred to in 

the program, then we can write 

NOUN = RLIST (l,I,l) where NOUN is on the card. 

From then on the variable 'NOUN' (in the FORTRAN program) will 

refer to the same object as the atom NOUN in input/output. 
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code: 

~~~2 
~~~3 
00~4 

0~05 

~~~b 
~0~7 

~~·8 

'~0~q 

~01~ 

0~11 

001<' 
0014 
~~lb 

·~!B 

~et9 

17102(1 
0~U 

•024 
0~25 

~~-· 110"" 
~~20 
0'10~0 

0031 

l~llEf.f~ FU~!ClTr:JN RLJST (HUfrlntiF,n[-V) 

c 
c (IJ qAor 
c --------

JMPL!CJT INIFGER (A•W) 
I.DG!C4L•I AF 
L8G!CAL•I 'lF(;bl ,ST~JN 
CO~M(IN 1 ST~tN/ ST~TN(A~J 

C(l~"''l"'".i { Ap("'l?::.~lfl) ,COR {30~1-?1) 1 Af 017!~P;) 
COMMON /P~]NIJPRTN,RLANK,FT~~T 

nATA 1\Lf/ • •, •c•, '' •,•A•, 'E', •x•, •n•, •u•, ·~··· •c•, •o•. •r•_. ·r~· 
•• , H • f , J , , , K I I , L , , , ~1 I , , t-J, I • p ' I • (~ , , , j:;' , I , s ' I , T • I , v I I , \'; , • , )" , , , y , ' 'l • ' 
.. 1 7) I 1 1 ] I 1 1 ft 1 1 I ~ 1 I 1 iJ 1 1 I I; I 1 I f., 1 1 I 7 I 1 I 8 1 1 1 9 I I I !I 1 1 I 1 1 1 I :f. I I I / I I 1 • I I 

*'+', •"'•, 'J •,'>', '<',': •,•;•, '?', , .. ,, '='• '•'• '•'I 
C FQ~ CONT~~LIN~ THF I~PlJT A ~UFFERPO!NTE~ (IALJf) ~~ LJ~tD ~HlCH POI~T~ TrJ l~E 
C FIRST CHPACT,~ TO 61' PHil, lBUF lNIHAllV ALSn ~EC.IJLATE., THE PHINTFUG 
C (JPRyN1 WHJCH IS ~!T TO 1 IF THE !NPUTLt~t IS TO RE PijJNTEU OUT,ELSt TO ~ 

~I IL • ('(' 
!8Uf = HU< 
~LIST = ~ 
!Frt~u•,GT,ll GOTO ~~~ 
JF(JAUF,fG,0l JPRIN=0 
!F(IHUF,!D,Il IP~!N•I 

18L)f = ~· 
C DECOOE THE FIAST !•PUT ELFMENT , IF IT l~ A LEFT nR R!GMT PA•FNTHFS!R 
C WE ST 4 PT PRncE~SI~G FlJ~TH~R, ~LSE A~ ATG~ IS GTSCOVfRE~ ANn WF JMME 
C: O!AlTELY R~l!l~~~ \.-.ilTH Rll~T A~ PrJJrHf..~ T(l THE. HAS!": CtLL OF Ttl~. AlUM 
1~~ coLL J~PtJf(!~IJF,JZ,nEv) 

!Fr!l,ED,-IJ r.orn'" 
Jf(Jl,LT,Ol GCTQ I 
OUST:JZ 
RE.T1JRt~ 

C WHEN THE F!AST FLfOENT !S I I.FFT PA~ENTHES!S ccnnt • •3) AN tR"OR OCCil~PtiJ 
C ELSE ~IE CRE.tTF /!-_ ~-E:I-< TIJPCELL AI'-!('! t;r)ff' THF_ C0"-4HiTL. P(ITNT 

l IFCJ7.E~.·3l t:nt~ ?? 
~ALL Nf>'(RL!S!l 
r4LL >~b tiLl 
!R = r•L.ISt 
GOTQ 11 

c 
c CZ) r--1ATN P.~O(~RAtvo 

c ·-----------c A NElli ~-LFt1ftd t:"; TA~~N FRfJ,.. T 1 ~t" lNPIJT 
?~~? 7 CALL 1NDIJl(J~UF,JZ 1 0EVJ 

0~B 

·~15 
0~3o 

C CONTRrlt P[1]\IT 
c ••••••••••••••••• 
C SEND 1[1 ~i'Cf!Cl'l Fi'R AH'"o OR LCFT 0~ RJG"TPA~ ~FPFNIJ!NG n" TH~. RESULT 
C OF •p~F'Ulf' • JF P,'P!Jl f"'I:SlJL_TS IN •1 ( : FJJO ClF' FlLF) .H1 Fh'QnR nrCll~f<Et) 

JF(Jl.r;T,.:,l) f,f;Tf': 11i'l 
1.1 J • J?+4 

G!'"JTrj ( 1J,5,-?•n,J 
c 
C SECTION 1 ATD•S 
c 
C WHEN THE ITOM IS ''II , FIRST STOO> ·I 

~017 ~ Jl • •I 
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C. IF T-..E CAI.f UF THE C1JI'.,Jr..!E"JT CF.l (1'-o:) IS f~:F-lTV \<Jf:: r:b."- HH·Fnlt.Tr:L~- ST('I-!E ~·~~, t.T 
C ELSE: A N~~ Cfll MLJ5f Rf ~1Af':F.: , At~!i T!.-lf:N THE f.fol'-l !"; ~T[!J.;lr:[l 
r: U-!OTE T~E Ph!I)VysJnri F()R !<jiLl 

00~• 1" IF rCA" CI'J .f~.'l'. l r.nTQ ' 
~~JlH' rF'(CAq(JR) .~L.i,.-J l rA~(7P ) : ~· 

~0a2 raLL ·~Ew{Il 
~0a! cnR(lR1 = r 
r1~a~ IR ~ t 
"G•S 5 CA~(IR) • Iz 
0~4b GnTO 7 

c 
C SFCTJO~ ? LFFT PA"f'l"~SI~ 
C WHEN THE C~~ 0F THF ~l!P~F~T Cfl TS ~i0T FMPTV ~~ ~lRST CkEATt ~ N~~ l~l_l ~ ·G 

CHANG tT O~i Ttlf Al.t-.~ADV ORT~Jt-,Fn LIST 
0.J47 3 tF(CDR(IO).fQ•''lll GnTO ~ 
C'I!Zitll1 'rFrCil<:;>(lf-').F.n,..t, CAR(IF', = 01 

0051 CA~L t•!•CIJ 
eie+S? ~OP(TRl = T 
0~53 I~ • I 

C THFN/ELSE WF F-U,r,f• _THr-- CUF<'t.'E:t-T Cf:-:LL ON !l (THf P>J.5~f"ltli<JN~T(rl"~-l__., C~F.tllt /1 Nf:'~ 

C CELL A~n H6'~G TT IN Tt~F CAR ~F T~~ CUPR~~T CFLI. -• 1H!S LA~T CFLl IS 
C T~E ~~W CURf'~NT CfL 

-~~· & CALl PU5~(JN,JL) 
~8~~ CALL NEW(I) 
n~st:- CP.~(tln = r 
0~57 TO • I 
005H GOTO 1 

Vl05q 
~Q!br'! 

{,~~6-2 

00b4 
~0~5 

~?1~7 
PIQi6~ 

Qit11~9 

0~7VJ 

0fJ71 

!'1~1~ 

~~73 
911/17" 
~1~":75 

l?!"l77 
~1~:,7P, 

~079 

~~A~" 
~~.JIA t 
e0a2 
~~)A 3 

~1<8• 
•08~ 
0~8b 
1 ~1218 7 
,,~86 

0089 
r:'j(llql"' 

c 
c 
c 
c 
t; 
lj 

c 
r. 
c 

c 
r. 
c 
Q 

c 

SF.crroN ~ •r••r ~•ktNTHcsrs 
tlDSE THE l PiT rlOi,i,"-J ( = ~.Ill !N CPR OF' CURRFNT r:F.Ll .. ) A~r:" PO'"'IJP. FJ.l()t-1 ll, 
THE FHifNT~r( Tn :,IHf~f fi~E JN~}f1)11!1\iG START~I1• hl(}T~ TI-lE P~(IVIS!OI\.i 

FU~ NIL 

END 

CiJR(TP) : '~1 
rrrr~(~(lloi'~.~r,.~.:rt~l rwro 9 
TFrCA!~(lR).En,-tl ~ARCI~l a ~ 

C~ll PfJPIIP(I~, !l) 
JFCCAR(JLJ .NF..N!L) G0TO 1 

JF THF PIJSHnn~~ 15 E~PTV WE RFACHrll TH! FNn OF A t_TST •Nn GQ RAC~ TU 
THF: !";6Ll Tf.JG f.'t~nr~1Hd1 

K • "LIST 
Q(llf • CAo[ALIST) 
cAll 'lA(K(K) 
CAll.. AAC"llll 
~f'IIJ'-'t~ 

!N TI-IF.: C68f Or; ~,!TL Af; (} THI.-: LfLL DUE' T'C: {::!"i~Ft;11l~Jr~ 1~ '\fTURr-Jfl' TO THr: 
FR!fL!IT o•n •1 15 51UR!n IN THt tAR nF THE NEW rUWRf~T C~Ll nHTAI•ED R¥ 
POPPT~-JG liP Fi~flo·1 TH~· PiJSHDO~N 

"-ALL R'C~ CTRl 
t:All Pr)PUP(tl-i,T.!-) 

CAP(!RJ • •l 
TF(lW,.I)F~Q[.T!;fl GPTC 7 
CALl BAO lll.l 
CALL B•CI(QLJSTl 
~FTU'i't-, 

C(3) EOO~RS 

c --------
?r'J WhJH (0,~1) 
~ 1 ~J~~A.T C1..-,•r-qs.Sp-Jr; r:qr;Hf PAr.jF;NTHF:~t'<•) 

ChLI. F'<fl 
WfiiH 1o,n1 
F()Priii.T (t~. "I~T5foi!N(i t.f~T Pll~fNTHF.S!-S•l 

Pt.L cqr 
WRJlE(~,~c;l 
t="U'.'!··liT ( t:r:, 'r-~-H::,. f!F FTLF I!URIN(';_ INPl1T•1 

RL!ST • ·' 
RfT1J!;I!-1 
f~IO 
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The library of list processing routines contains also 

a number of routines necessary to plot tree structures 

on the plotter. These routines, although very interesting 

in themselves, will not be discussed here, partly because 

it is a superfluous feature, partly because they make 

extensive use of the special UIA library containing routines 

for using the plotter. 
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3.2. THE IMPLEMENTATION OF THE PARSER 

We now start with an explicit documentation of the implementation 

of the parser. As every programmer knows it is always possible 

to make other implementations for the same problem or to construct 

programs in other programming languages. One of the things we 

want to do in the near future is to implement the parser in 

another programming language. This is to say that we do not 

insist on the present implementation nor on the programming 

language being used, although it must be said that the system 

works now very efficiently. and very fast. 

The presentation contains three parts. First v1e discuss some 

auxiliary (but task oriented) routines such as the 

consultation of the dictionary, the implementation of the feature 

complex calculus and the implementation of the completion automata. 

These routines have a general character because they are called 

at several places during the program. 

In a second part we discuss the programs which constitute the 

parsing system itself. In a final part we provide all details 

on the routines for computing functional structures, case 

structures and semantic structures. 

3.2.1. Auxiliary routines 

3.2.1.1. Storing and retrieving linguistic information 

Because we are experimenting with a rather small computer, 

we need to store the lexicon and other kinds of linguistic 

information on an external storage device (a disk) although 

this slows the whole process down considerably. 

We will solve this (largely mere technical) problem as follows. 

We assume that linguistic information is always related to a 

particular atom. E.g. in the lexicon the information sequence is 

associated with a particular word form, a syntactic network is 

associated with a particular keyword, a case frame -is associated 

with a predicate, etc. 
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As a consequence we organize the file on disk in such a way 

that via an atom we can retrieve the information relevant for 

that atom. Note however that we assume there to be only one 

sequence of information for one atom . 

The list atoms is stored and retrieved on the basis of 

a hashcode which guarantees fast lookup. Because we want 

more then one language as 'working language', the language 

is a factor in the retrieval. 

The routines for creating dictionaries and for retrieving 

information from them will now be discussed in some detail. 

The implementation is largely due to L. Bamps. 

INI 

operation: 

This main program initializes two files on disk. One for 

the information in the dictionary (INFO.DAT) and one for the 

words themselves (WORD.DAT). Then the files are filled with 

blanks. Space is provided for 5000 information items. 

code: 

0001 
@002 
0003 
0004 
0005 
0006 
0001 
0008 
0009 

0010 
0011 
0012 
0013 
0014 
00!5 

LOGICAL•! ~L 
DATA BLI' 'I 
CALL ASStGN(4 1 '!NFO,DAT',0l 
CALL fDBSET(4,'UNKNOWN'l 
DEFINE FILf. 4 !5001,4!,U,IRECJ 
CALL ASSIG~(3,'W0RO,OAT',0l 
CALL FOBS~T(!r'U~KNDWN'l 
oEF!NE FILE 3(7qqJ,I7,U,IRECJ 
!0•~ 

DO 100 1•1•7993 
100 wRITE(JoJ) (BL,J•1,31l ,!0 

no 1~1 1•1•5001 
101 WRtTE(4'tli0,(8L,J•!,80) 

CALL EXIT 
EflD 
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CRE 

operation: 

This main program creates a dictionary by reading the 

atoms and storing the information about the atoms. 

code: 

~~~\ 

~~--
~~~3 
0rll04 
~~H~5 0,,.b 
~0•7 
V10~f; 

VJQ)rl!9 
~ti)' t'l 

··~ ll [~12 2q~ 

~013 qq 

etrnta 
~~'" q~ 

'-~Ott> 

~l[/.1 t 1 
~~':1P. 

~·~ 19 2~· 

~c2'l 
;1022 
~0?3 

~025 

0~2~ 
~e28 1f'l~ 
~l?I?Q 

VI\IJ '3 1 
,_,0~i? 97 
~033 

0~~· ?0? 
171(:)~5 

003b q-; 
0~37 
00~A 

17i040 
0~·1 
Vl0a? 21. 
(71\)'1/J.IJ 

00ns 
':·~IJb 
~1C'-'7 
Q.\ij~P. ?20 

I_Or,t(Al.il ~DF-'0(31/'i),TA,W(IRI)I-I(j~'),TAH,HW(?.),I3L 

UJG!CAL•, lfAAI":t(P,i':':) 

!= !H_j l V il. U' f._ r-1 ( 1 A , H W ( 1 ) ) 
nATA. rH ,~ 'I 
I)AT6 N!ll_ J,;>l 
CALL A$.',],~~N(~,•wo~n,!jA1'',[:'n 

CALL FUt\S~T(!,~U~KNOWN'l 

nfFJN¥ flL~ 3(JQq],17,U,I~fCl 

CA~l A~Jtr.~,(U,•l~JFn,I1 AT',0) 
LALL ~-n .. :-5!-:T(..a, •:_n.:\(f\,1 0 1•-'~-1') 

DF..F!r·!f: FJI.E 4(1::iV10'1,1Jl,U,T~EC1 

~EAM(1,qq,~Nn=~00)W(JPO,T6 
FD~HATC~,-1,~1) 

~R!lEl~,q~lTA,\~U~n 
~OR~A1'['~~.~~.A1,5~,30A1] 
rl ·~' ( 11 = t•r ~~ R !) (.:! 1 
HW(2l=,UR<.'U1 
JAO=MQIJ(lA,74~~] 

Tlln:Ta.n-+' 
IF (!Afr~r;1,7qq·_~ll~D•t 
QtAD(]•tAnJWOkiJH,TAH,lNDH 
JF(WQQIJf~(lJ,E~,HL)~O TO?~~ 

fJU 112!~ I=t,3?1 
Tr(•·!nRI:"'H{!·I.Nt.\.•!!1Rn(JJ)Gl\ Trl ~~it~~ 

Ci1NTTNUf 
Tf'fTA.~F.tlH)t.Q T~ ~~~ 

WPTT~ (,.,,q"7) 

FOI-1~-1A1 ('+•~J 

TNn,: r~trl~ 
q(A!'J(t,t:~q)KAAf~T 

~f.' I T E (to, , q ~) {" A. APT f J ) , 1 = t , P. ~' J 
FiJ~f1al (~0·,~~A1) 
~fAD( ••Tt>~rlt) Ir-II)H 
lF'p;AI\Rl ~B-?1) .~r-~,qL~r~O Tn .-Ji?.!·l 

1 ;,lr"~xi.l: ... yAI) 

l.rtq ff (IJ' lt-t!)X)lNI"J0-1 1 (i(AHiT(J) 1 !:1,81')) 
TF (!NliH.L1.(·1li~O Tl: ?.9,;1 
t::IEA!l (1.pJt-!(JH) trTI)I.'~ 
"J~'11J.: (l!'l;,,r)H)~-IlJL 

Jl.ii)rl::!oJ[iJ.H 

1':-t; TO ?tt~ 
,r(t1~11H.~T.~)GO TO ?~Cl 
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~:+lj)~~ 

00Sl 
~~~? 

""53 
''il5 Q 
1i>055 2~~ 
{110151'1 
,,~, 7 
r~o.:; s 25~ 
r~05q 

V!~bll 

Mb) 251 
~M2 

00b3 
0mb" 

0~~5 

iil~h 1 

0~~~ 
1]1~-, 7 ~) 

V'Hi71 

i~J/17 2 '0rl 
r,lli'1J3 

R E-_ AD l ~ • o:; ~: ~ 1 ) I t 'I) L 

TNDv= l~H'L+1 
l•l"' I T E l ~ ' l "' il): 1 1 ;>.J D l , ( ~t: A A J.! T (! ) t 1 ~ 1 , B ~ ) 
rr~r:·»;:JtJnL•1 

r;rJ T!J ~~1 

W P I I ~- ( 1.1 • 1 Nfl l l l N () H , (!>..A ART ( 1 l , 1 = 1 , e, t'l) 

Jr-l["rX::lNf!H 
Gf! TC 2k-~ 

R t. /1, u ( .;.j "5 ~!~I 1 ) I ]\1 [j ); 

p.>();tU::]tiJ.:l.l•l 

1•!1·1' T T E (3 • 1 A 1 1 ) W i J R! l, T (1 , T r,J !_l X 1-i 
y;-,1r,'l.:lttP_X.+1 

J.;!tf!(J(1 ,q'l)!(b.AFT 

-.>l~·lfE(b,Q5J (K:A.Af1l(l),l:t,An) 
I~.if':I!H:-Tbn 

f~ rKAAAt-'Tf~·'),.FfJ.i=\L)l~JP'I(H•INJJX•1 

r,oJ ,.,. T T F (.:.: • 1 ;-l t") v 1 l N D ~ ~~, ( K A.\ R T ( ll , 1 :: 1 , ~~ 0) 
tFrlo".~:~c.~n,,..,v. 1 .t(.l.l""iL) r~nrc1 ~51 

iJ.Hil!f"(LJt~C,OJ(I\l)lNUX 

Grl rr, 2'40 
C:lli"·JT t_r.JU~ 

E ,·~ f+ 
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SEARCH 

parameters: Il an atom 

operation: 

The integer function SEARCH consults the dictionary on 

the external storage device to find the information associated 

with a particular atom (Il) for a particular language (TA). 

If no information is in the dictionary an error message 

will be issued: 'LINGUISTIC INFORMATION MISSING FOR :' . 

This is a fatal error. 

code: 

00~1 

00~2 
001~3 

0~0" 

~~~5 
0~0F, 
e~~7 
0~r,B 
~~~9 

0~~' Vr 
001? 
00!3 
~~l<l 

00\b 
0~!7 
0<.l! 8 
00!9 

002~ 
0~21 
~0?2 

0~~3 
0~?~ 
002o 
1(1(~;1'8 

0e~9 

003" 
0~31 

00l? 
0~33 
0~30 
00~~ 
0~ns 
M~O 

0k~f.l{;j 

0~41 

0~42 

INTeGER Fll•cT!O~ SFIRC" ll!) 
!KPLTCII TNIE~Eh (A•W) 
L L1 G I c Al11 1 s T ~ _t N ( 8 0) , \i.J (Jio11) ( ~" ~ 1 , H w ( 2) f \N f) R ~ H (:~ill' I T e. I~ , T A I ~ L 
~~IJJYAl_~NC~ (JA,H~(t)) 
COMMON Jl•D/ IND~ 

C0t-1M('!t,1 /TAl T.A 
co~MON 1 sr~t'JISTRJN 
!JAr• Rt.I)H J 
CALl GFT(JI,•I,HIRCHJ 
IF(SE~HCH9~E•~) RETURtl 
CAI._L p:;oi,.TST(lt,t,,-!1 
f'lrJ 1 U·_H: 1, ·5((1 
!F"(~fRPifi.EI•l,F(l,RLJ r,nTn 2 

t WO~D(L~~l) ~ ~TRtN(LEN1 

~ Do l J = L.f~J.~0 
1 'IQ~D {J) : BL 

HWfll="OR!lf?l 
HW(,?):\<r!Jt.l!i(3) 
.JAO~:MOD(!A,7ql.}~) 

f.l.f.d0 I/dr::=fAI1+1 
TF ftAo.r:T,rqq3)1~0=1 
QEAP(!•IAn 1 wn~o~,TAH,JN1lH 
TF (l•JORNd11.Nf 111 tH,.)Gr'l Ttl IHJl 
CALL P0LJoTrl!,~1,,) 
L<l~ITE("',"') 

l.i ~fliJMAT (lH+, ~L-T~rr.UtSTtC Jl-lf:'(JRhAliON l"llSS!NG FO•~ : 1 ) 

CHL ExiT 
4~1 rJo ~V'I2 r=t,,£:;, 

lFr.'!Qiil!)~(ll,hlt.wnRI)(l11G(l T[) 47h~ 

402 rm1r1r-.1UF 
lFrTA,Nf,TAH)G[I f(J a~~ 

_T~,IrX:}NnH 

5EA~CH = Rt!Sfr0,1,r:1) 
CALL. Ph-'LIP(Jt, .. \,SF,_Af.?Cri) 

R[H.lr-:ti 
E. >JO 
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IN 

parameters: none 

operation: 

This subroutine fills the STRIN-vector in the comrnonzone 

for consumation by RLIST by reading items from disk. 

This is an auxiliary subroutine for the SEARCH operation. 

0001 
0002 
0003 
000~ 
0005 
000b 
0007 
0008 
0009 
0010 

SU~ROUTINE lN 
LOGICAL•! STR!N(~0),8L,TE~T(80) 

COMMON J!NDIINDX 
COMMON 1 ST~IN/ STR!N 
OHA 6L/!H I 
REA0(4'tNDX) INDX,TEXT 
0Pti•t•80 
STRlN(ll • TEXT(!) 
RETURN 
END 
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3·.2...1. 2. The implementa:tion of the feature complex calculus 

To implement the comparing and combination of feature 

complexes as defined in chapter I, we need routines for 

computing set interpretations, doing truthlogical interpretations 

and combinations of features. For this purpose we introduce 

the following programs: 

EXT 

parameters: GOAL (a feature complex) 

opera·tion: 

The integer function EXT takes a feature complex GOAL and 

returns the set interpretation as value of EXT. 

explanations: 

Due to the recursive nature of the set-interpretation, we 

will need pushdownstores to stimulate the recursivity not 

present in FORTRAN. 

The first phase of the program consists in decomposing the 

whole feature complex into minimal units, where a minimal unit 

is an atom or an operator. Two pushdown stores are used for this 

PDl to push the minimal units upon and PD2 to run through the 

list structure of the feature complex. E.g. 

after phase 1 the feature complex (AND (OR A B ) ( NOT A ) ) 

becomes: 

A 

NOT 

B 

PDl A 

OR 

AND 

The second phase of the program takes each of these minimal units 

from PDl and evaluates them. The result of evaluatiOn is stored 

on PD2 and if results of previous evaluation is needed, it 

is taken from this pushdownstore PD2. 

E.G.: 
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( 1) A 

NOT 

B 

A 

OR 

AND 

PDl PD2 

I 
( 3) 

B 

A 

OR 

AND NIL 

PDl PD2 

r: (5) 
((B)) 

((A)) D 

NIL 

PDl PD2: 

(7) u 
PDl PD2 

(2) NOT 

B 

A 

OR 

AND ((A)) 

PDl 

(4) 

A 

OR 

XOR 

PDl 

(6) 

PDl 
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-----

end 

((A)) 

NIL 

PD2 

w 
~ 

PD2 
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code: 

-~i-~~ l 

~l"lli112 

e OJ en 
-t IH'Il~ 
~- (., ~ '5 
til0f)!b 

J~07 

~0~e 

(~ :]l ' :;; 

~,~I 2 
0011 
~V; 1 " 
(H'. 15 
l;'l~, b 

·~ "j 1 1 

~0~~ 1e q 
~·-~~? 1 
zr,~?2 
,,~23 

~1]21.4 

(·~- J? ') 
::tl'?':J 

'!0'' 
;~·?l?q 

-,: .. :~31 
?ern?. 
(~(;j ~ 3 

;):?!~ ., 

~~'3q 

~~UI 
0~"11 (J ~ 

:)',045 

;3~tl7 

.I!~JIJ ~ 
·,hHiq 
~~'lsv 

-'-H'51 
,.,~~t' 

t:IITEt,!~~oj r-u-~r:lliH·,; E•l(q'lt..L 

H',~l!Cl r l\lTE.GE:w lA•X:) 
l~)GlCt.Lj~;\ AF 
Cni>'!A!_l'-' CAW~(_!·~:l!'),C:""Jf.<(3'}_"~1,AF(3r'_;{lrq 

li"l!.lf"~r'" /1 iir:,/ i.I';J 1 tjP 1 'l 1D 1 f;f1T 

F- iT = ~~ 

r ::::: ~,..,:.1. 

fF(r;i'JAL.~·J.o•J RtT\,q-~ 
C FEA.i lr'€ r.lMi->1 __ 1=.:. T5 4TO:--I. 

JF(~~='(l).~t:.1_1 i,tlftl IH., 
C/lll. JE •(t_'(n 
Chi~L Jf:•i(;.;) 
r.~~.,c~-.r,.: ~ 

r:t.wn-) ::: r 
pi-' TIJR'·~ 

C FtAl,_IQE C0~~-~f~ f~ LIST 
C P'H~" t 
r. (•I::'C!l""' 0 rl·)~ F~ATI_I~r Cllf'I~;LEJ. A~ .• , PL:S;; n·" P~·1 

\11?! I'.:All- '·'~e'(F'n\l 

fALL ··f··cR:l?1 . 
2 !F((t,FICAI-fl)'·t.·-~.1).r•"-!.(r_rrr.J(!1.t:·q.;)J C1!1T,, t 

CliU F~J.;;;~,r 1, Fl-,?) 
!:Cb~fl1 

r;n 1 · 1 -~ 
r:t:.ll.- Dl __ ~t•(C~·o.J(l),PI'Jl) 

;??. 1: (J .. '-(!) 
rF(t.~.~.·'-1 r,rnn _t. 

G r-·liJ ? 
~ ]~rr;:.-~r:.--~~;.J.f-'· .• ~'1 t;eTr:; ~ 

CALL P0r'l 1 P(f,~112) 

r.:i,:J ~~ 
11 r:au .. ;.l,_~-,,.,rr,Pnt) 

C P~:ASf ;. 
5 r~·rcnf.-(i'IJl),t'.:,c~, r,nTiJ ~:?~ 

CALL ~(1Pt~~(J,P~11 

C SENQ 1( PtLfV~~T Pl~T 
yF(J.j:i-!,J:) r;UH· q 
1F~J.t~,:.':r'Tl (illlf_l p~ 

C ,o. T 0~-'-

r. NIL 

T F ( I • ';'_ -J • r_. ~~ ) (,: 1 i ~ 1 1 
J~=' r,;.,::::'·~f,' .. ~J r_~L·, , t 
n= ( J .i7~~.-·:~-q 1-rP1 1'~ 

L!otL ',,f=' .. i{ 11 
C lt l_l '-'F'k (I_) 

\ i.:;, C T l -:: I 
(~~P(I __ ) o; ) 

C4LL P 1J~-~,r1,~r-~l 

Gf'T- 's. 

!?.0':i3 q C~lL ~'~.l!=l~f?,Pt•-'l 

~~ ,, , s 
,,~ v' ~;. b 

C NOT 
t q 

t. I] i-1 

1 t 

r. ~· l ; 1 • .., 

(" t."' ( !;I.--_,; ~ 
r.r'l · c.. 

I /1 r·'-, 

: 

Cll. L 'f d l T l 
f'. : I_ 
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L"Q1'59 
~:716~ 

0~62 
f,~Zl~3 

1liQ'!b5 
~~b~ 

0~67 
00b~ 

,~~~9 

(?ii~7P' 

~~71 
·~7? 
r,~73 

0075 
o0H 
~~1~ 

~~79 

~!'18VJ 
,~~81 

T~82 

1(1~·8 _'3 

~084 
fJi;il85 
,!1;1P.b 
.-:,~PH 

~089 
~[oq 1 

~~92 
M93 
~l}lq£1 

''095 
iJ'~97 

~~9· 

~0qq 

2'1(}1~~ 

~101 
~I~? 

~1~3 

l? 

123 

rall DQ~LiP(J,P~2, 
Tl-' rJ.t-:c.J.!~) r;01') ~ 
f :::; (O.io?(P;J?1 

T~(_t.~::~:.:,.i71 r.cnu ''-~ 
J I : 1 
LJ : CAF.(J! l 
I 1 ~: -1 
Fl: Ct<~~(T11 

-~ ;: r;:_·,p '( ( r; _,) 
Cb.l-L r,PPfrlU cr.,~,~) 

C.AlL L\l"~1"J(f"T ,S) 
11 = (.[,~(]1) 
JF(Il.~,t-.'l') r;(_ITQ t? 
J1: Cll>'(Jt) 
IF(Jt.Nf.v.l r~i r<: 1r~ 
CAR(r-Ht,?) a: (11~(1.,.1) 

CA-LL i::t;A(_.iC_(Ll) 
r;OTIJ ~ 
r'h~(Pf11?) :I 

(~OTO 5 

CA~ (PI)~) = J 
r~nrn c., 
CALl POP\,p(L.,Pf'?J 
lf- (L.t~, .• l•) bi;Tr· o;, 

1 .: c;,,~{Pr;~) 

Tf(~.trl ~-,) ~;!'Tr '?.' 
(Al.L PU~I'!(r:;l!fi(U,L) 
V.::~C-1!..-rJ) 

!'>~Ll4 >..o.CK(l) 
T : il:. 

TF f].['lf.:.-J t~<lfn -;11~ 
Cll.,..(PI:?) = L 
r:;rqr_! r;: 

CAl.L ~OF<I.I~ (fXf,Pr:?l 
rALL AC'I'. (1-1!_,1) 
C<~LL H..;rPr~~) 

j:;Jf: T U"" 
'E:>Jr, 
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MATCH 

parameters: SOURCE, GOAL two feature complexes where GOAL 

is a set-interpretation; 

INFTR an inference tree 

operation: The integer function MATCH computes the subsets 

of the domain (given by GOAL) which evaluate to true for the 

feature complex source and returns the set of these subsets 

as the value of match. 

explanations: 

MATCH works on the same principles as EXT except as regards 

the evaluation procedure itself. 

In a first phase the feature complex is decomposed in minimal 

units and stored on the pushdownstore PDl. The other pushdown­

store PD2 is used to assist in scanning through the structure. 

The second part is the evaluation itself. Here we make use of 

a special subroutine MAT.CH2 that checks whether an atom is in 

a subset which is itself a part of the feature complex GOAL. 

The whole process is repeated for as many subsets as there are 

in the domain, and the subsets which result in true are 

accumulated and returned as final result. 

The code for the truthvalues is 1 for true and -1 for false. 

code: 

~!21~1 

~k,~2 

:.qQ!~ 

0[;-)~t.j 

:110~'5 

~'lill~b 

t'/lz:l/'7 
liHi:t~ij 

0k10'1q '.1?1 

'MHl 
c 
c 

~·~I 3 
~014 
0015 
~1316 
~01€1 

~020 < 
~022 
010?.'3 
oilft.l?LI 

PHEGF:R F!.~NtTJCH. MATC'I1 (SrJIJRCE,G04.l, 

J~P~!C!T p.<TFI;Ew [A-n 
LOGICAL.-.t eF" 
t:nM~'•10i~ l ~R (~-'":'~rt~), tl"lR ('30~!i'l), AF (_,(·~~·)) 

cn~Mil'w /.LnGfbNQ,Q~,-OR,Nnl 
CALl. '·'f'dJM) 
.•1 = j !cl 
ot : G~J~L 

TF r~o: .F·<,1:·.l r~- ~ , .... 
tFrw:,,!E.'') 1 11 : r:~P(!o:) 

PHAH (11 
OECrJ!APrJsF~ ~FATiJkF. r:OfvlPU:i f>.r-,n PUSH fiN Pn1 

T : ~·1 1 JkCf 

C.Alt.. 'l.!t.:_·.•l I Pf!t) 
CALl.. ~..,17/J (on.:!:l 
IF (1 EQ ,,;) ct!Tl' II 
TF!AFlJ).F!I.J) r_~Olfl i.l. 
!F((H(r6RTJl),EQ,!),(,Ii,(!,o",~)) GOTll 1 
f:t~.LL Du:-:,brJ,PII?.J 
1 ~ r:t..~(t) 

Gfl!J ;> 
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"""5 OLL PI I~~· f (. A"" ~ I J 1 ~·I) J I 

~rli?b '.;l l • cr• c 1 1 
0Q!?7 l F (I , ~IE • .[c) (~ 0 1 (1 ? 
~~?q ·.~ t F" { CAp ( ~" u' J • t r~. /: 1 r:: I)T r,l <; 

0~31 CALL P n P u ~ f I• f' rJ ~) 
~~ 32 f!.IJ r u ?? 
~0B 4 PLL PUS!'"', (1, ~(, t J 

c PH .aS~(?) 
~~34 ~ TF rent.· fr:'r!,) .~c,l.V:) r.; r·, 1 r; IV 
~~~· C:AL.L ,PliP!ip(,J 1 ~[1) 

c S E ""r; TO ~ELf V t~.~.il ~· /lt.fT~ 

Ql!tJ37 yF lJ.E.•'::.V.) GOTO q 

0•H tF (J.E~.I,'rl l ic ll T rJ 1 ~l 
~~•I tFr,J.f(~.o.--1 (,err. 1' 
0~43 r F- r J .. E. Q • p ,, r;) .~, r.11 I") 1" 
f!','il45 Tf fJ.F:r~.•:!PJ !'"-,rJT{' 1 3 

c ATOMS 
&II~~ 47 CALL f'· \J ~_, ~· ( ;~ t.. T C H 2 ( J , I "') , Pi , 
91QllJA GOlO <; 

c NJL 
(.,(~4q q CALL P'JbHr] ,Pi'2) 
~~5~ h 11T I'J "· 

c !\iOT 
M51 1 ,, tf"'(Clq~(Pf• ~ l • .,: ,'_,. }) } I~ 11 T r' tl:l 

~053 CAR(Pf.l;l) = t l).r· (j.jr-~r:> 1 •• , 
0~54 r.[f(' <; 

C OR 
~~55 \1 
0057 

lF((J,k(l-'i~•?J.,f:·,,r~i f'-1:T~1 ~:-·• 

CALL pr,~iJPrl.~ni) 
005f 
Qlt::!bfi.'. 

~~1;1 

00H 
~0b4 

~'iJbb 

\fl~h7 

1M1~q 

007V\ 
~07? 

00H 
0075 
~~n 

0078 
00H 
!l.VJA~ 

(71 ~18 1 
~082 

~M3 
rt!I{JA4 

f>:l~fH: 

~rJ87 

~'08q 
C711C qk• 
00Q1 
0(!1Q3 

Qle!GI'J 
009b 
0Q'Iq7 
00GO 
0t!?!0 
~~~~ 
17' lr;>? 

c b."! f) 
! ? 

,IF {L.o.:•::•.,l 1 r-.t,!-· (Pr·;;l : l 
r;r,Tr"l S 

T F ( C P ~ l ~ rr ;J 1 • f- (,J • 1,~) f1 n. T n {_j ~ .. 

!"ALL 11 ih'UF (L, f'l.'(') 
lF (L .• fi:•, .. l) CAP(Pf:•-'J : •t 
r,r-• T'J '; 

tF cc~~·rr·u~) .f-u, .. ~) r:r:-rn lli~ 

CALL P(~r·tjPIL,Pfl2} 

TF(L,fr.•.l1 r;OHi 33 
l F rCA. I-I I F; !' 2) • ~ ( , t ) G (; T Ci '; 
L4R(P~l?) a .. j 
r;rnn s 
JF{C!rt(f.'.'?),tr~;.t1 r:;ptn ~~IJ 

ill~(PO.'J: 1 

(~r~ro 5 
4r, .. h-rTE.r!:'!,ll1) 
a 1 j::(~~-.~lt-.T fh, "lJ~J\"F~-LLr:rrpt«l~f! Fr;ATl.!~E cr:r•Hq~JAT!\J~J p1 r-1~.TCH TE~T") 

~o~TCi-! : -1 
G-"l T( 31 

:!In 1r: rChf. (f-' 1 .r;t).f.~~.r-:,) r;r-ro f-i;?~ 

(L.ll Pm'dP('HlCH,Piie'1 
IFrCtY(~I·?).H~r/') r.r~Tti 4-(~ 

C ACC:ii·~L·Lt.Tf- rE:Sl't T~ ANI! Er.rn 
·~1 ibLL Ht.r K fPt1?1 

CALl~ cq.(:~ 1_Pr·l J 

1Ff'·:~!._TCH.t.-:J~tl l/JLL !I.DP~_·t·lf' (l~'l,jK,lM) 

~" = r:: ~-j ~ r ~'" 1 
Tf ( !< ''P_ ·~1 VllrJ ?r., 

2'5 ! .. lr:.,c~: = ·.:1 
JF ((';l-.l (r) 1 ft'•'q ~~T!I~'r,l 

"'\AT C: H : V} h- ( t-·,) 

c 11 t L. rt or"- r t,•l 
-~f Tt!t;-"-1 

J: ! J f) 
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MATCH2 

parameters: J; IK with J an atom and IK a linear list 

INFTR an inference tree. 

operation: 

The integer function MATCH2 checks whether the atom J is 

in the list IK. If so, MATCH2 is set to 1, else to -1. 

code: 

2!!2!~1 

!i:0~? 
0~1713 

0~M 

~n~~ 

0J~~ 

~"' ~J, 1 
.J00Q 

0011 
~~13 

I}! rAtS ~ 

i/l!'ilb 
I?' Qi 1 7 \ ·~ 
eote 
(ilL) t 9 II 
~0?! 

~~?2 

INfE~E~ ~lJNCTJC~ ~ATC~?(J,IK.I~~T, 

r•PLfriT J•TtG~O (1-•) 
LC:;t['Al*' t.~ 

COIH1Ur~ C.~'-i(~,>.IJ(lll,r::llR(3W"lq,<\FLH~I'II0) 
MhTC.CJ2z.,.t 
K = r~r. 
lFfK.~~.?) ~Gl0 t1 
tFCCAO("J.f~.J! G,Tb !<' 

TFrlt.JFT .fi."'•'"'1 fW"Tr:t 2 
IF(C!{n$S(J~CA~{kJ,l"">JF"T).r· .. ~.i7') r.OT(l tY'I 

K = C:""l!..:(k.} 

r.;nrn 1 
rHfC'12 = 1 
PFTUR'\! 

TFCJ.··;f.:.~J 1-H:.lur.<~· 
r;r)rll 1r,.. 
~ 'Ji! 
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C,ROSS 

parameters: SOU and GOAL both atoms, 

INFTR an inference tree. 

operation: 

The integer function CROSS is an auxiliary subroutine for 

MATCH2, it computes whether two atoms can be related to 

each other on the basis of an inference tree. This is done 

by running through the inference tree (with a pointer LI) 

using a pushdownstore (PDS) and by setting flags 

at relevant points during scanning. 

code: 

0001 
0002 
00~~ 

0004 
0005 
000b 
0007 
0008 
00,09 
00U 
1'1011 
0~12 
~013 
0014 
0015 
00\b 
~017 
001.8 
0019 
0~20 

~021 
0022 
~0?3 
~~24 

0025 
0026 
00?7 
00?8 
1'1029 

3 

4 

1 

INTEGER FUNCTION CROSS ISOU,GOAL 1 1N'TRJ 
IMPLICIT !NT~GER(I·~l 

LOGICAL•! AF 
COM~ION CAR(30~~),CD~f3~~0) ,AF(3~~~~ 

CROSS ·~ 
c•LL NE~< tPDol 
CALL NEW (Lil 

s • L l 
t,!.R(Lll •!NFTR 
!FCAHCAR(Llll,NE,ll GllTO I 

!F(CAR(Ll),EQ,SOU)GOTO 2 
Ll •CDR !Lll 
IF(Ll,NE,~lGOTO 3 
CALL POPUP(L!,PQS) 
IFIL!,NF,~JGOTO 4 
CALL ~ACk(Sl 
RE TUR~I 

CALL PUSHIL!,POSJ 
Ll•ORIUJ 
GOTO 3 

CALL POPUP(! 1 POS) 
JF[J,EQ,~l GOTO & 
!F(CAR(CAR(!Jl,fQ, GOAL) GOTO 5 
GUTO 2 
CALL ERASf.CPOSl 
CA~L ~ACK (~l 
CROSS •I 
RETURN 
ENO 
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COMB 

parameters: Il and J whexe Il and J are both set interpretations 

of feature complexes 

operation: 

The integer function COMB computes the extensional combination 

of two feature complexes and returns it as the value of 

COMB. 

This is done by using the ADD subroutine which adds all 

atoms of a list to ano~her list, if and only if the 

atoms are not already there. 

code: 

~00\ 

r0~2 
~0~3 

~~04 

~0~5 
~~0b 

~~08 
N~9 
~~II 
~~12 
r~n 
0~\4 

0~ I 5 
~017 
~0!8 ' 
~0~0 
~~21 

~022 

0~2 3 
0020 
0025 3 
0~,26 

~0n 2 
~~28 
~0?9 

0030 

T~Tf~E~ FlJNCT!ON COMB (11,J1l 
tMPLIClT INTfr,F.R p .• w) 

L'HilC~L"t AF 
roMMO~ CARr3~~0),rDR(~~~0),AF[300~) 
C(JMH : [J 
IF (J),fQ,"J •ETlJRN 

Cf>>i'l = J\ 
!F tlt,Hl,0l R~TlJ~I~ 

oLL "'"' tco""l 
C = Cot-~R 
tr = c 
.I : J t 
IF fJ.fr1.,Jl) GfJTiJ ? 
T • 1 I 
IF (l.E~.0) ~rJrQ 3 
F • C"Pr (CAQ(!Jl 
CALL 1\!)r; (CA~(Jl_,Fl 
CALL 1\pp.::.r.irl (r..~,C1 
I : C:IP(f) 

Gi'J1 •) !1. 
.J:CU!o\(Jl 
GOT[) 1 
C0"8 o CI:·~I!Cl 
CALL '1.hCKrTCl 
n ~ Td~''ri 
END 
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3.3.1.3. The implementation of the completion automata. 

We use transition networks at various places in the 

whole system to control order restrictions. Let us now 

discuss the procedures that are able to consult the 

transition networks. These procedures are located in a 

subroutine called NETW. 

(i) input: 

Recall our conventions for representing transition networks 

in the form of list representations. A transition network is 

a list of quadruples: (al,a2,a3,a4)where al is the start 

state of a transition, a2 is the resulting state, a3 is the 

condition for the transition to take place and a4 is the 

symbol associated with the transition. 

al may be one state or a feature complex of states 

a2 may be one state or a list of states 

a3 is a feature complex containing features 

a4 is one single element or a list of elements. 

A transition network under the given conventions is the 

first main piece of input information (called NET). 

The second main piece is a triple (CON, STAT,RES/ where 

CON denotes the condition for a transition to take 

place (CON is the extension of a feature complex) 

STAT denotes a state (or a set of states) 

RES denotes possibly a symbol associated with the transition. 

The idea is that if CON is NIL, RE:S is the condi·tion for 

a transition to take place, so we can perform transitions 

both on the basis of the condition itself and on the associated 

symbol. 

(ii) output: 

The output consists of two things: 

(a) A value for NETW, the call name of the proceduie with 0 or 

1, denoting that no transition or at least one transition took 

place respectively, thus we can immediately check whether there 

was any result. 
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(b) A list of triples (called OUTP) ( bl,b2 ,b3) with 

bl the resulting domain of the conditional feature complex 

b2 a new state (or a set of new states) 

b3 the symbol associated with the transition. 

So we come to the follow,ing program: 

NETW 

parameters: CON, STAT, RES, OUTP, NET 

operation: 

The procedure is a Straight forward list processing actiOn 

computing the states and the features according to the 

specifications given. We introduce a flag (FL ) to indicate 

whether the condition or the associated symbol will determine 

the transition. A pointer (INET) runs through the network. 

First a match is tried for the state, next a match for the 

condition of transitions. 

If successful a new list (L) is created and attached to the 

OUTP(ut) list via an APPEND operation on the S-pointer. 

coC.e: 
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00~1 

(11.,1?1.? 
!JI·~Hil3 

0rJ~a 

~~~5 

~Y'"'tl 
~~~1 
00~9 

0~ l. I 
~~12 

~~\3 
~~14 

~~15 

~01b 

0~18 
~019 

~0~1 

~-?2 

~~24 
~0?5 

00?7 
00?6 
0029 
~030 

~032 

00B 
0~H 

~0J5 
\111{!3() 

c 
I 

n 
ll 

I~!1E.GEP. ~~JNCfiOI'J ~~~TI~tr.n~J,ST.o.l ,i:?E",r)IITP,~·~·r, r~J1 ,f'IJNT~tl 

l"Pl-!CIT !"TfG"R (o•\•IJ 
U'~GICAL1111 AF 
CO~M(H•.i CAP(~(~\1·~1,C8~(31-'1?1')) 1 A.Ff3W.1~) 
l\l F 't i-1 z 1A 

F'Lc llJ 
IF(CON f~ 0 1 ~~•1 
l~(FL.~~.r.A~n.~ES.Er3.~l~FTlJ~N 
lNE::T : 1\lt_T 

r>LL ''F • rnuTPJ 
5 : f_)IJTP 
r•LL NOI!Sl 
OO(!SJ = .<;TAT 

CHEC< wHeTH~R CJJND!I!DN !5 SATISFIED 
TF (lf\!ET .~CJ.!-~, i';OTr'J l\11 

IRES •0 
tFCFL,'''.n r.orn, 
!RES= <14Tr;h (CA"I(OR(r[JR(CAR(JNI;T)))l.CON,Fl'NTH.) 

r4Ll POLIS! (!RES, 1 1 6) 
CALl. PIO!t_ T ·"T (CON, 1, Ed 
!F(lRF~.r.:n.121) G!"JTI') 15 

r.nro ~"· 
5 IF(OE$,NE,C4A(CDRI(nR[~OP(CAR(!~ETllll)l ~OTG 1• 
C C"EC• •H~T~cO oT4T< IS SATJSF!~O 
2!71 ~IST&T;: MATr_:H((:_AP.(CAJ.i(PlF.T)),IS,I~lT) 

CALL P~Lt$T (N5TAT,1,~) 

rAl.L P~llST rtS,l,h) 
1F(N5TAl.F~.~l G0TO t5 

C A~D NEw T~IPLE TO OUTPUT 
CALL Ni'''lLl 
tALL APPE.ND (S,L,Sl 
'-AR(I-l = IllES 
CALL A.PPf~lr) {L,r:AR(~il~(CA~(lfJE"T))),!) 

!F[CDO!C~~(CDR(CAO(I•ETJIJl,NE,~J 

* CAl-L APPPHl (I, CAR (C~R (COR lrno [CAQ (!NU 1) l l J ,J) 
15 !NET •CGO(!NtT) 

GOTi1 1 
C ENO 

Vl~iJ fl1 1 PI IFtCnf.f(OIJTP,,t-~f.('A) r,aTn 1\ 
r4LL ~ACK [OUTPl 1104?. 

004-S 

~~·· 11 
~045 

~04b 

r!r,:'!rJ7 
0008 
~0·9 

I>ETURN 
t • CIJ~ (llUTP) 

CALL BAfK(nulP) 
1'-IE'TWI:l 
OUTP • 
RETt!PN 
F.NIJ 
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3.2.2. The main program 

Let us now consider the main program of the parser. 

It performs the following tasks: 

(i) Initialization 

This includes 

(a) Internal initialization of the list structure memory 

and of the files on disk on which the dictionary is stored. 

(b) Initialization of the variables which are needed in the 

parser. In particular we input all terms which will be common 

to the programming system and the user. 

(c) As soon as the reader has given the language in which 

he wants to work, we also read the grammar, the syntactic 

networks and the relevant inference trees. After that the 

system is ready to consume an input sentence. 

(ii) Preparation 

Then a request is issued to the user for an input sentence. 

For each word in this sentence the system consults the 

dictionary and creates the initial particles according to the 

conventions we discussed in the previous chapter. The particles 

are organized as described earlier 

(iii) Send to parser 

When the initial particles have been made for a given input 

word, the program control shifts to the subroutine who actually 

controls the pars~ng· process, namely the subroutine CONTR. 

(iv) Send to semantic structurer 

When all input words have been consumed in this way the 

program control shifts to the routines which extract functional 

structures, case structures and semantic structures from the 

particles which cover the complete input sentence. 

code: 
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~~~~ 

~~!'\~ 
~~~~ 

~~~· 
~0~S 
~~~b 
~~~7 

000E 

OIPI~q 

001~ 
0•11 
0~1~ 
~~n 
~11'1(.1 

0!015 
0~1~ 

0~17 
001B 

c 
~etq 

~0~~ 

~0?1 
0022 
Ill~?~ 

0~~4 

0e.2<; 

0~-b 
·~?1 
002b 
0f·~q 

0~3!i"o 

·0~1 

0r•2 
0~,, 

pl(ll~t.J 

0@'<5 
e'f'll3b 

0~37 
~fl'R 
~0·q 

Q!0t.lt'1 
~~at 

~~"2 
O'r;1t.l'3 
~0"4 

00a~ 
[l!~llb 

00H 
0fJitJH 
~~(-1/,P~ 

00~~, 

~0~1 

~0<;? 

~0~3 
0~r;;l.( 

~0<;~ 

JMPLJCJT INTEGEP (A•I) 
LOf.ICAl•l TA 
LOf.!CAL•1 AF 
C~M~~N ;JF~FF/IFRfE 
r(l~MnN /V~(T/ VFCTC3~),~"RnS 
c:n~\~1nt~ /l~iFTRF./S:VNT~F, SE~1lRE, F Ut-. T~E 
cnM~ON/~DntSVNAfl,VF~AAL,tASEl 

r:0"'1r><~C'IN /C:OQ[ 1 L Orjo:;, h'IJLE, .~E"FDPF:, AFTFR, THUF, F ALfiE, tlrJf"'lr;. T, FUt-,,r, H,, 
..- SVr-1N~i,FPAt;f 1 D~JfC 1 Lit-l~A,Pj:(E.f)JC 

C~~~Qtl tcnn~/ MI1~ 1 Ql,AL,A~JU 
C[lMM\n~ /l!''VF.:~; INVF~,t-!STfiTS,L.I' 
cr:f-IT-~CJI• ll.CC.I At-,•n, OF 1 l[)R 1 r.,;nT 

r n r-> ~~ n r.J I C r·1 ~ F I CDr>~~ C 3 r,, l. r.~) 
[QMMCN tFf~l Ft~,TR 
CCJt~MO!~ /TA,/ ,A 
C.tH-'IMON/F'[lS I Pf.•:',, PitS? 
C('~"-H.)t,l /I.' 1 vU?R 

C'C~l'-t('1"1 rAR(~t'l[!~(l'l ,C.nR(~~IlQ\) ,AF(30Q!(?!l 
CHl. !>'IT 

RFAfl ~Y'~RDLS 

C~LL ASSl~N f~,'WO~O~OAT' 1 0) 
tALL FDHsErc~,·wN~NDw~,., 

nfF!NE rl[~ '(7093,17,U.!R~Cl 
C6.LL AS~q~~;(4,'"H-'FO.nAT',t1) 
!':All FDf)~F'l (fJ, 'UNKNOW~J'' 
f"of,Fl~·!E FJLF 11("5~~.ifll 1 1l1,,(!,T~'EC) 

TR 1: 0 
"ll • ~ 
CALL r.j(l•!(PI)t') 

CALL tJf\o'i(pt'lf,?) 
conF.s = ~LJ:iT UJ, r,?.) 

T[:f'J!JE' ~: rnnFS 
'~DPF = CAP(ICt1n~l 
L<lc• • cARr~n•rrc~nEJJ 
~lll.E = Cti,!<;(Crlj.;((NJ(frO(lfl)1 
R~FnRE = t•Prtn•rrnMr~n~crcrr!J!ll 
AFT<P • r.Ao ((DO (CfiP (CDR (Cn• (!COne)))]) 
tronF • rn•rcc"rro•rcnR(rooc!cDn!lllll 
T~liE : tAR(tCn~f) 
lltll)f:T a CA~(tl'lf-:lTl':NJF1) 

ADJII • CA"rcr~(CnR(1C[11Jf'lJl 
FIINC'" = c••rcn•rcnorcnertcnnFJ)ll 
08J~C • r•R(tn•rrnRttnR(CQR(TLDrElllll 
trnnf = tnP rr:i1P (CCW (CC"1Fo' (r:t'H~ OCOnf) 1))) 

FNA'1E = r4P(ICI.lilE) 
SVN'.Iff : CA~(CI'IRftr::_tiLJE)) 

.61'.!11 : COh' fCI~P f(!_l~ ('[Cnfl~)]) 

(11";; CH'((r'IP(CI."'~U:nR(l('(l[!f_J))' 
)(f!P, = l':td' ([11~ (f.!':\P (1":1,11-' ((',nj;( ( lL[l['F),)) .) 

TCO!)f.' :;; cr,r..1 tr:I:RfC:CI-l(f':t!P(CC-R(TCOr~EJ11') 

N~T = rA~rJrnnfl 
PRFDTC : [6~((nRrtc0DE)) 

lHif-'IA = ('1\l;;i((I!I'!CI)R(tr.(lr'l~))) 
"oD • rA«rr,.J'tCt'"Ccrwrrcot•UJ1' 
D1. 1Al : CAPICDP{C"P{r~P[rnfl{lC!'~~)))], 

TCpOE • cno(CURIC(>OICDRICDI(JCOGE111•J 
FIN = CA~(JCO~~) 
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~0St> 

~0•7 
0~5e 

~0'9 

~M0 

~0~1 

00~< 
0~H 
~0bA 

00"' 
006~ 
~rn&7 
00f·.Pi 
~0&9 
0~7" 
0~71 

~e12 

~~7 .~ 
007" 
fi'~7t., 

007b 
~~77 

0078 
0~70 

ew1s~~ 

~QIP.l 

008? 
~~·l 

~-·· ~0R? 
00Ab 
~e·• 1 
~0R8 

~0·~ 
M91 
~r-102 
~~·,q -:J 

(li~Qr.., 

@~)Qt, 

0~0il 

Ql t?l ~)(~ 
t'11 ~ Vl 

01~4 

TRACE • CAO{CDP(!COOEll 
IJNOO o CIR([G•(tn•(lCOn!])) 
GPAMMA : tA~(C~R(CnR((nH(lCODF)))) 

~'••fl• caRctnnccn•ccnR(~I·•rrroneJJlJJ 
tCnDE ~ tnR(f~ij(rD~(rn~(r~R(ICnO~)),)] 

~VNT~ ~ tA~(lCOD~) 

SEMT~: r~~(C!,RfTCOnF)l 
Fu"CT•• CAR cU•R (CilP (IC<'DE) J) 
VEPBAL : coN{rOR((!J~(COO(lCO~llll) 
FEAt • CA.([ilW(tnR(CDOfCD•flCCDElll)l 
!CODE: rn• 1 c•R(C[A(CCW{CO•CIC0n~)Jlll 
A~G : [fl.J:". cirL•J EJ 
PP5 = CA~fc~Q(tCODfl) 
~~~ST~=tAP{rJ·lh(CO~(ICOliF))l 

HV~L = PLr~rr~.r,21 
HyPP 11 HvPt. 
VER8 : f.;~ J5T(V', [,21 
nl r .s r = f: L r _, r t ll, r, n 
WPTTE (f,, 1:7•'~~) 

l0P~ Fnk~At (1~/1¥,•w~LCOh~ TO T~~E PARSt~n ~¥RTf~ 'l 
WRlTElf., 11/l(illl 

1r"~~Ql1 ~(1!-lt--IAT (1-t/1'!, 'Sf'FCHV THE LAN(;U.A~F') 

!1? OEA0(\,\11 TA 
11 FO~~~Al (Atl 

0 ~~ITF (~,11~1 TA 
0113 F(!PMAT (1-r:, 'INPiJT LAr.'!';IJAGf-.' :',At) 
~ READ T~tE G~Ar~~~ 

.J = ~ 
~~AM ~ ~fARC~(~~A~IMb) 

tr; : GRAM 
t z CA~[GP~~-·-) 

L ~~e rn 
J • J+l 
CALL Pk[JP(rAPtl),RIJL[,J] 

13 l•L•l 
~<=Ch"'~cn 
If'(AF(Kl.:--if:-',1) 1\: cr_lPV(K) 

COMfrJ,I_} : r 
1 F ( ( n b' r 11 F.(~. L·' l r.Ln n 1 ~ 
' = nJ, nl 
r.o r o 1 :3 

1t; JF"(Cf_)h fG~<'>lr"'l,trJ.V•) t:;uTCl ~h'l 
I';RA!'1 ;; (f:";;;.f~'·h't.M) 

r,OTQ l? 
ll fiLL EAo~F<!~I 
C R~A~ THF ~!fTW~~~~ 

~lET~ : ~PA~rHfHfFOREl 
T~ CNF.'lS.~f:! .. ~ll l~OTO ?~ 

li'IP- = AF-Fr.1~f 
~I ~5 ?3 
01•~> ?\ 
~I~' 7 

I~-~ : Nr:rs 
(ALL Pi-ilr_lP(C!i~(CAP(H-:1),Lt,H,Cr"<Fr(CA~-(lfo.!))) 

Tr.J 111 Cf)i-:(H.J1 

~~·~ 
~I HI 
0!!? ?b 
•11 ~ 
011 11 

TF flN.t.1f. .r.>~ GPTLI ~1 
TF (LA~.f.;J.AF n-.Rl r_;r1TrJ ~7 

~IEfS : sE~RC~(AFT~~] 
l.b~ !: AFTF~ 

tF (~ET~~Nf~0l GOTO ~~ 
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~II b 
0117 
~II~ 

01!9 
01?•' 
01?1 
0122 
01?! 
VI?" 

0125 
0\?e 
~1?8 
01?9 
0131 
01~~ 

01 "" en" 
011~ 
~1'9 

A lUI 
~I•< 
01•! 
0\.U 
0145 
01•• 
01•7 
!l!1tlq 

At•<; 

~~·~ 
01~.'7 
~!<;6 

~!<;Q 

01H1 
~I hi 
0,)~2 
~~~:1 

~ )f"4 
C!J1f-.5 

parser implementation 

C PfAQ INFfQ(NCE T"tfS 
~7 SYNTRe • SEA"rH lSV~THl 

SEMTRE • REARrH (SfMTR) 
FliNTRE • SFIOCW lFLINCTR) 
CAL~ Nf.(NSTATS) 
CALL, toE> (L Ol 
CAL~ >JEl·J ('1STATS1 
ioJRlTF (~, 1 t~0.:?1 
FO~MAT [lY, •GIV~. tNPUT SE~T~~CE•1 
~I[!RDS = t"': 

C SENTENCE c~•Es TN 
JNP o R~JST(~,lrll 
lF!lNP,PA,,J Gnra ~50 
! c JNP 
TF!INP,fN,TRAC~) TR o 
tF- c lNP,E-r~.u~mrn .,.~ ~ r 
lf( (Jr.JP',Er2,,TRACE) ,1"1R, (!NP,EQ,\Jt-11)0)1 GOT!1 .!·il 
ItJ~P = tNP 
TF(JNPP,f<l,~l GOT~ 55' 
J o 5EARr"(CA~(1Jl 
!F(CDP(JI,fq,e) GOTO a0 

r • ro•lll 
r.rro ~' 
CONTINUE 
I'R! TE (h, I ~~'31 

10~3 F~OMAT (\Xt!1 1 '1N:') 
CALL PRLl&Til~P,\ 1 hl 
lf(T~,E~,(l WOJTE(~ 1 !1"041 

~~~4 FO~MAT (1~, 'C(INFlGURATlf1NS P• THE SHTE'\P•c~:'l 

045 TR • I 
C TAKE. !'JE"W Wt)kO 
~· WORD • CAPIJ~PPl 

WtJROS 111 wowf'IS +1 
wRln C6,1MJ 
Fl)RMAT cntt'l 

0 
f1!~? 

0 
D 
ntr7~~5 

CALL PRLlST (wn~n.th,~, 

WRJ1El6 1 1~~~1 Wfl~D5 
FtHH-1A, fP~+, "I<IIJR() t·l~ :",!~) 

CALL GFT(WO~~n,-t,JMn~F1 

lF(IMnPF,f0,~1 GOTO 55~ 

c 
C cONSTRUCT T"lHAl HRIJCTURE 
c 
I) HRllF(b,f~i"lll 
J")tli\(,1. 

I 

c 

FORMAT (1._, '.I. n .. ·JTTAL. P,t,RTlCL~-'5 I') 
CALL Nfh!K) 
I~LJST ll l'l., 

CAP (K) :r;:: t1,1\1Pf1 

r.ALL 'EW(L l 
CALL ~••t•n (~,L.•l 
CAR(Ll • f.ARI~VPI) 

ON : l 
HYF' -: C:b"'(J.iVPil 
CALL PRnPf~(l~rl,~YP,L) 

HYPL : cn~f.IYPI.) 

FLAG = l·' 

FIIR FAC" L~'lCAL I•Ff1RMAT!f1N LINE CONSTRUCT P•PT!CL! 
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~l'h 
O(b7 

0!~f 
OI7V 
et71 2 
0172 
~ 17 3 32 

017' 
e 17" 
0177 ~ 

0PA 
0179 
~~e~ 

~~~~ 
~!A2 
•t•3 
0!Rn Q 
0!8~ 

0!Rh 
0!87 
0j~Q 
01°~'! '5 
~191 
rto;> 
eto3 
0194 
01o~ 

~!07 

0198 
~199 
~2~~) 

FIJ~·'C = (:At.·rct.h(l~t":~F)) 
TFUN = I? 

!F(AFtFLI~!Cl.f(J.1, G[)TO 'I 

1FU~I = f-U"''C 
Fli\IC a CHHJFUN) 

!fUN c COR(IFUN) 
!F (FLAf; ,FQ,I) GOTO 3 

FLAG : ! 
GO T(l IJ-
tAll f-)F l·l (L1 
C'AtlL 4P~fi·ir:, (~~',l.,K'I 

rA~(Ll : rAP(WYPL) 
Cl t~ = L 
~VP c CARfHVPL) 
CALL p~nF' Wf_1h'U,H'(P 1 l) 

H•PL = r~oCHYPLl 
rAll APP!;NO (( ,CAR(!MO~F) ,L) 
CALL N~W(Fl 
r:ALL APF'E~>Jn (L,F,L, 
!f(WOROS,FQ,Il GDTD 5 
CALl~ ~Uf,H(~, TIJVf~) 
CALL rJFCi(J) 

CIO(F) : l 
CALL ~PPe:Yfl (F ,l-;(l~nS•1 ,f-·1 
rr·• !Fl = n' 
CAll GET(~lJ~IC,RLILF,l~) 
TF (!~,f.w,•J [,t1TQ 'i5CI 
~~1\ET : ~~ 

t."-i!:T =~ 
CAL~ GtT (FUNC,HEFONE,NNETJ 
C~LL GET (FU~It,AFT~~,ANfTl 

c (A) wnpO 

0213 

~215 

02!~ 

02!7 
~21P 

02?<' 
0?:'1 
~2~3 

If(~ORnS~~Jf,t,AN~,NNFT,Nf,~) C4R(J) s CA~(N~FTl 

CAlL A,PF'f:~ll' (J I lfi0RO, ,) ) 
C 18) ll·iFOOMATIQIJ SF.rlll"rcrf 

CALL ~.IF,i'(!) 

CALL 4PPEt,O (J, !, J l 
C (ll HV•OTHf~JS 

CAq(!l : HVo 
C (?) FUNCT!Of,i ~.JAI'<'F 

CALL APPENn (!,fiJNC,t) 
C(3) STATe OF fUNCTir• Fno AFTFO TAANSIT)~NS 

CALL APFEND (!,0,Jl 
If (ANfr.,t.JE,r-~) CAP(,n : CAH(Ar'F;i) 

J : J 
C (a} STATE 1~ CASf ~~ETwrJP~ (UN~NDW~~ ~FTl 

CALL APPEN~ (T,0,J1 
C ADJUNCTS 

TFrtOMFf1R,?),f 1l,n~JECl ~OTO ~ 
C('5) ~·ltTfF!NAL ff;,qlihF cnMPLFX * rJIJA.L-non-uNor.r CHAhlACff1-.;J~TTC 

1 '' • co•· ICQR rro• r c11o rn•· r Ji'lrr"F 1 'J 111 
CALL fl..PrE~1 n (J,tr,n 
CAll APPFNn Ct,CQ~F[!R,q),J] 
IF 04.~-u.:~>~l r.oro Q 

I-" = CA~'{tl~l 
IF" £11.1 EG,0) r~nlo q 
TF (AF!!Ol,FD,\,n~.CAP(!IJ,tn,NDT,nR,CAR(!I),fQ, 
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~2~9 
~2~~ 

•231 
~2B 
~n4 

~<'~b 
0237 
02V 
02J9 

e~4~ 

~2•1 
02l.l~ 

~~·~ 
~20b 

~2•8 

~2·· 

~2'51 

IND,C'R,CAf'(J4l,EQ,OO,OR,CAR(I41,E.rJ,,OPl GnTO ~ 

CA~(J) : E<l(CAf<(CQR(lO)l) 
r.oro q 

C ORJECTS 
c rsl ~YNT FE ,T creno 
b J o <XlCCAR(C0f'(C0R(CDR(rCo(CAR(!MORFlllllll 

CALL APpf,r, (!,J,!l 
C (b) SE" FE.AT co"•LEX 

C•SE • CAR(CM~CCDOf(DRfCAR(JMOkFlllll 
J • SEARCW(CA•(CD•(CAR(!MCOF)lll 

7 !F(CAR(CAO[.ll),f~,CA~El r,OTn R 
J • CI'P(Jl 
1F(J,NE,~1 GOTO 7 
WR!H(~,p~~l 

~~~· FoRMAT (IX, 'MISSING CASf IN F~AME 'l 
GOTO 90 

~ CALL •PF~Nn (!,EH[OR(CDRCC.F(Jl)ll,!) 
C(7) CASE (UN~Nn•• VET fiCEPT FOR ADJ[JNCTJVE ryHJFCTSl 

C~LL APPE~n (1,~,11 

c 
9 

11 
n5~7 

c 

lfrTR.EW,!1 CALL PRLI!T(CIR(CA~CLl),!,~) 
TF(!FuN.~F.~l GOTO? 
JMDRF • CCR(TMOAF) 
TH!MQ~f,r<F,N!Ll GOTO 
VECT(OORDSI • COR(WLIST) 
IFIWOR05,E~,1) GOTn It! 
WR!Tf(b 0 S57l 
F(HHHT (1X,".lT. M~RGJNG") 

C START PARSH"G 

c 
CALL cm1H 

~?52 II! 
~2~· 
~2~~ 

TF (CD~ rl'JPFj,EG,•l (,OTO !~ 

TNPP • roAIJ•PP) 
r,n rn 5~ 

~21:ib 

0?07 
~2'8 
~259 
02" r-
0?f-\ 
12l2~? 
~2b~ 

~?~• 
02b'5 
~2~7 
0?~~ 

~2~9 
~?71 
~27? 

~273 
0270 
~no 

~?71 
~?78 

~2P~ 

~m 

02~" 
0285 
02Rb 

~2e1 
M~s 
e?F.9 
029~ 

0201 

~~·-

c 
C COMFllTf 5[MA•Tit ITRUCTUES 
I~ FlNL • VtC1 (WI)RI)S) 

HyP(, • eypp 
T : ~ 

WRlTE ((ql(~(~) 
at~(fl F'(!j:(t-1AT (IX/1'< 1 "Fli~I('Tt(1NAI .. A,~l[1 rASE-: !;T~LICTUkfS :'} 

CHL CLIJHI~l 
q:l ~YF • C:Ai'(F!'Jll 

F!AT • CAorrn•(HVPl) 
CDNF • Cl>l< (COli leVPl) 

9~ IF(CAN(COO(CAO(CONF)l),H!,Ol GOTO ·~ 

r • cOolr•orr•RccnNFJll 

91 

r.ALL fUI,(T] 
IFr!,Fl,0J r,mn qr 
T = T+1 
CALl. U';(l I 
Cf."iNF : (t!Pfr(H-JF) 

TF'fCO~JF .f.or~.f!·) f~OlO <11 

r.nro ·~ 
Fl~1 l : ('J~·~'(F1~ 1 L) 

TFfF!Nl.~f.~} ~!JTO q3 
IF (T,EIJ,~l Wfi!1F (o,,S!-.J 
FORMAT r .. l' ,•r• ST~UCTliRP FOR 
r:o~1l PJUF ' 
TR = 0 
WRTTE(b,5~51 3~00•TFPEF 

(~!Vf:N INPllf') 

Fr)PMAT (1¥/1• 'l'-1 fMt1R\' C:f.ll~ LFF"T~'II.I) 

CALL (LIJSF("I 
CALL aSS1~N{4,•J~Fn.~AT',C, 
CAll Ff)f!SFT(t.I,'Ufo,.II(NO~~~') 
OE'l~E FJlE U[50~1,41,U,TR~C) 
r,nrn 3~ 
ro~tTI~~uE 
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3.2.3 The general control structure 

CONTR 

parameters: none 

operation: 

The subroutine CONTR is the actual control program of the 

parser. It takes two configurations and sends them to 

the subroutine LR which performs the linguistic processes 

(computation of parsing predicates and creation of new 

particles). 

The subroutine operates on the basis of a tasklist and a task 

is a configuration in a particle that is to be investigated. 

The main program places the initial tasks on this tasklist 

{called INVES) and whenever new particles have been made 

(by LR) they are placed on the tasklist to see whether new 

combinations are possible. 

CONTR takes one configuration from the tasklist. According 

to the principle that a particle can only merge with particles 

bordering on its domain, CONTR scans all particles depending on 

each hypothesis node of the word immediately before the domain 

of a given particle. When these particles are not locked, they 

are made subject tothe linguistic processor. Moreover a pointer 

is provided to which part of the particle the other particle is 

supposed to be rr.elated. If the particle has been processed, we go back 

to the tasklist to seeff there are still other particles. 

The final part of CONTR contains the procedure to attach 

configurations to the relevant hypothesis node and to 'lock' 

a particle if told so by the linguistic processor. 

code: 
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0~~1 

~M2 
0003 
00•a 
0~0; 
000& 
00~7 

0006 
0~~9 

001~ 
0011 
~012 
0~1 3 
'·01 ~ 

00!5 
00!7 
001e 
00!9 

t?l0?2 
0~?3 
0~?11 

~0?~ 
0~?7 

0028 

~U8RaUTJNE CONTR 
lMFL!CJT !NT~GEk (l•O) 
cOG!CAL•! lLF(10l 
LOGICAL•! lF 

. COMMON CA~r 3 00~l,COR(J•o•J,AF(30~II 
COMMON ICO~fl COMF(3~ol"l 
coMMON 1coot:l LOCK,RULE,BtFOR~,AFTER,TRliF,r-'ALSE', 1 1H)fT,FUI\!ctl~, 

* S¥NNET,FRAME,~8JfC,UNMA,PRE~JC 
rnMMQN/JNVES' !NYES,NSTAT.S,LO 
tDMHON /V!CTI VECT(30),wnRDS 
(nMMQ;'-J fill VERF;I 
co•MONIFOS/ PnS,POS? 
COMMON /!F<E€1 !FRfE 
ntJ.T/1 ALF/ 1 6'• 'R','C', 'D', 'E', 'F','~', 'H', 'I', 'J'I 
S • NSTATS 

n A • Iii 
C TAKE TASK FR0t1 TASKL!ST 
I !F (CAR(!NV~Sl ,EQ,0l GDTO IO 

CALL POPuP [(ONF 1 INVES) 
~TPLICT 0 CAR(CONFl 

0 
D 
01~1 
I) 

0 
Ol~? 

D 
C GET 
2 
0 
~ 
n 
01~7 

0 

n 
0 

n•nR • CAO([DR(CDNF)I 
A. : A+t 
""TTE(b,Pil Alf(A) 
F£'l~MAT (tx, '(",A1,')'1 
WRITE(~, I"~) 
FOPMAT [1X,'*•** T~Y TO EXPAND cn~lFl~U~ATION :•] 
CAll PRL!~T(STOUCT,S,bl 
O~YCL = vFCrfn~O~l 
WRJTE(~,\~ll OWOR 
FOP~AT r'•• ~V CnMBINING IT WITH CCNFI~ nF ~ORO ~R.',I3l 

T I • r. 
P~P11CLE5 ~ORDERING ON !NV~STIGATED CONfiG 
DHV• • CAR(OHVPL) 
T 1 = T t + 1 
fALL P~LISTtC~R([JHVP),~?,~1 
>JP!TF(o, 1011 Tl 
Ft"l~M6_T (11~•, 12, '• FOR HYP(JTHESl.S : ') 
T2 :r: VI 
ncaNFs • co~rcn~rnHvPll 
nCONF = C~P(O[ON~S, 
JFrc•~rcA~r8tO~F11.Ft~.LorKJ ~nro 1qq 
I o CAR[COO(CAP[CDP(CDO(CAQ(nCnNF)))))) 
J • CAP(COR(CIP(COP(COAfCIA(CONFJ)lll 
IF[!,~Q,VE•B.AND,J,!~,~fRMJ GOTD lo9 
T?:T?+-1 
"OJTE(b 0 103) T1 1T2 
Fi!pfHi.T (3'11: ,t-2, .',l~,•.•,• CO~.JF"lh.U~ATI(_JN :'") 

rALL PRLliT(rAR(OCONF),a,b) 
T 3 = 0 
l~(CAP[CARrnrONFil.EA.PR~DIC) ~nTD ?II 

C CALL LJNGU1STJC PRCltf.%0R Ft•R U:Ff TO RJC,HT raMR!'!ATJO~ 

t) wQTT~(f.,H'I41 

01~1 f80MAT (~X '•> FROM lEFT TO O!;HT') 
tALL LP((tlNF,nCONf,M,rMR(C~R(CnNF111 

.;!~U C:ON-Tp;u~ 

C CALL L!NGIIJ~TJC PROCtS~fll'i FOR R)I;HT TO LHT cOMp)tHTtr•N 
C FOR F:ACH "~lGHT•~rJST ND£"1€ '' l~J THF STHliCTUf.-E:. 
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~03Q 

~035 
003b 
~037 

~0H 

~~·0 
~~"2 
c;,~a~ 

0044 
A04b 
0047 
0049 
0~'i~ 

~~51 

0~'i2 

~0'i! 

~~'i4 

~~'55 
~0'i7 

0~58 

~V)59 

~~·~ 
~e.~2 

00~] 

~0~4 
~01,5 
00b7 
~0H 

0069 
~0H 

~071 
~ru 

0074 
0075 
007b 
0078 
00H 
0080 
0~RI 

D 
0!~5 

!07 

"~lTftb,!V.5) 
FOR-AT ('i~,'c• F~OM RIGHT TC LEFT'l 
I • CD~(CAP(O(ONF)) 

POT f\1 111 J. 
1 : Cl1~(1) 
rF (COR (Jl,,E.~l r,QT~ 19• 
tALL PPLISI(CAR(PO!Nl,?9,•l 
n • n +! 
WRITE(b,lr~l Tl~f~,T! 
FrJQt-1AT ~1H+,7)',!2,'.',I?,'•"•J?.,•. FDR Wr"lRt"' :'1 
CAll LR(O[n~!F,Cn~·F,t,POJN) 

IF(CAR(PDS1,.g,l) ~oTn 199 
CALL POPUP(t,•nSJ 
CALL POPUPfPOIN,POSil 
TF!T,tW,0} GOTQ 1q~ 

r.nro 2~~ 
196 iF(CAR!C~or!1),tO,O] GOTO !97 

T • CDR(!) 
CALL PUSH(J,PnS) 
CALL PU,H{POIN,Pn~~) 
T : CAR(l) 

PO!N ~; 1 
r.orn 2~1 
!F!CDR{CCnNF5l,E11,0) GCTn 1~2 
OC0NF~ : Cf·RfntO~FS] 

r.oro <tH 
rn"TI•·IUf 
TFICnR(OHYPLl,FY,ml GOTO I 
oHyPL • CORfMrlYPL) 
r.nrQ ? 

C HTor" ><ESLII, T )'Jr. PA'<T!rLF.~ H'n LOCK 
1~ NSTAT& ~ S 
I? tFrCARt'·'ST'JS).c.rJ,•l GOT~ 13 

tALL POPlJPrJ,~15l~T8] 

co~.1F = J 
~~yP • CDR((OFfCONF)1 
T • CDR (NHYPJ 

11 1 • en!'(! 1 
TFCCOPfl),Nf,(;} r;oro II 
CAL.L APPE>111 (!,J,JJ 
r.nTo t?. 

13 IFICAR(LMJ.FQ.~) PfTU~N 
CAll PIIPUO(!,lOl 
CAO(CI~(J)) • LOCK 
GflTO ~~ 
cNn 
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3.2.4. The linguistic processor. 

LR 

parameters none 

operation: 

This subroutine performs two main tasks: 

(i) The computation of the parsing predicates, and 

(ii) The construction of new configurations when merging 

two particles. This first task is further subdivided in two 

main areas (a) the execution of the parsing predicates for 

adjuncts and functionwords and (b) the execution of the 

parsing predicates for objects. 

After the necessary preparation (such as getting the relevant 

information pointers into the lexicon and to the syntactic 

rules) we start computing the parsing predicates. 

When considering the whole set of parsing predicates and 

in particular and in particular the domains for which they 

are defined we come to the following scheme: 

(i) predicates for adjuncts and function words: 

(p-function-of-hea~ 

p-position 

p-synt-netw 

p-concordr------------------\ 

p-sern.feat.adjuncts 
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(ii) predicates for objects: 

p-taking-obj ects 

p-objec£-position 

decision 
p-sern. feat. objects}--------!~ function. -
p-sem.netw 

For the investigation and development of the system at the 

current state of knowledge and on computers which do not 

allow parallel computation (except by sequential simulation) 

we decided to implement a sequential instead of a perceptron 

like control structure, that means: we apply each predicate 

after the other one and as soon as one predicate fails 

we abandon the idea of merging. We stress that this method 

will fail to account for the various points which were given 

in favour of a perceptron control. Nevertheless the sequential 

control structure proves to be extremely useful in research 

for the grammar, i.e. the strict contents of linguistic 

knowledge~ we want to know precisely how far the linguistic 

information goes and where it rejects. 

We found out that the following flow of control is most efficient, 

that means the fastest rejection of a possible merging by 

as little as possible of computation. 

(i) for adjuncts/functionwords: 
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f 

p-positio 

t ue 

tr e 

if 

false 

se 

p- functi on-oy-----.....':.':.:_:.:._ ____ _J 

fa e 

t ue 

tr e 
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for objects: 

~ 
positio 

tr e 

f 

-sern-net 

t ue 

lf 

p-sernfeat 

alse 

false 

false 

false 
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A deviation occurs for objective adjuncts which follow 

the flow ·of control of adjuncts except that instead of 

the p-position predicate comes the p-object-position 

predicate. 

Similarly for adjunctive objects, they follow the control 

structure of objects except that instead of the p-object-position 

predicate, the p-position predicate is used. 

Now we give some comments on the computation of the 

predicates themselves. In principle each time a predicate 

is true, a message is produced,and when it is false 

another message is produced and we return back to the 

calling routine CONTR. 

(l) Networks 

We prepare the call to NETW by (i) getting the networks 

and (ii) constructing a special list format for the function 

which acts as condition of the transition. 

Then we call the routine NETW which ,performs a transition if 

allowed by the data, and filter out the result in the main 

routine. 

(2) Function-of-head/position 

When the networks have been unsuccessful we check on the basis 

of the grammar itself whether the function-of-head/ or taking­

objects rule and the position or object-position rule respectively 

applies. If successful we proceed, else the linguistic 

processor returns control to CONTR. 

From now on the parsing predicates computation is performed 

in two separate parts: 

(A) ADJUNCTS and FUNCTIONWORDS 
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(3) Syntactic features 

If the grammar prescribes agreement we fetch the relevant 

feature complexes and send them to the MATCH routines. If the 

result is false, control shifts back to the CONTR program. 

Moreover if the grammar prescribes sending through features 

to the head, the relevant preparation is performed and the 

features ate sent-through by means of the subroutine COMB. 

(4) Semantic features 

Finally we do the semantic features test for adjuncts 

which iS mainly located in the subroutine FRAMES. A 

complication arises in getting the relevant information in 

certain verbal constructions where the semantic features 

test is performed on the subject of the verb. 

If the FRAMES test is positive we go to the second main 

part of the LR subroutine: the construction of new 

information structures. 

(B ) OBJECTS 

(1) Surface case signals 

For objects we perform after the order/relations environment 

tests the tests of surface case signals. To this purpose we 

compute the relevant surface case networks by means @f viewpoint 

andfunction . Then we call the NETW program that consults the 

semantic networks and delivers a (possibly empty) list of 

triples syntactic features/states/cases. 

(2) Semantic features 

Finally we compute the semantic features associated with the 

case slots found by the surface case processing and perform a 

match with the sernatnic features associated with that word. 

If there is at least one case for which a match is successful 

we construct new configurations. 
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II. New configurations 

The construction of new configurations is a complex book 

keeping task. 

(1) Changes in the subordinate 

First of all we make a copy of the configuration of the subordinate 

and change the information resulting as a side effect from the 

execution of the parsing predicates. 

(2) Particle superstructure 

Then we construct a copy of the configuration of the head and 

attach the old configuration to the new one. This is a quite 

complex process. Not only do we need to add information about 

the domain, e.g., but we also have to look into the structure 

of the head configuration if the subordinate is not 

attached on the topnode. This is done by a subroutine 

NPOINT {to be discussed soon). 

(3) Changes in head configuration 

Finally we make the changes in the information of the head 

configuration as specified earlier. A special procedure 

comes then into operation for verbs, in particular 

we reverse the usual head-subordinate structure. This 

turns out to lead to a more efficient semantic structuring 

process and to a more efficient representation for the rest 

of the parsing process. 

code: 
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00~1 
O,l0l"? 
ti'IQlr ~ 
00L,.,4 

00•~ 
0~N' 
0~~7 

~~~~ 

0~~· 
!ZlPIH' 
0~1 l 
0~1? 
00H 

c 
0~!~ 

~~15 
~01 r. 
e•t7 
00!M 
0~1· 
~~i'~ 
00? l. 
~0~2 
0~?3 

0~?· 

~0'~ 
~0?k 

00?7 
~~?8 

n 
c 

~02q 

0010 
~0~1 
~~~'32 

Ql(p: ~ 
c: 

~@3~ 
0~1S 

c 
~03~ 

~037 
c 

~~3F 
(IIO'I~'t 

c 
~v_"l.ll?i 

0~1: l 

c 
c 

0~42 t 
e'04Q 
~l::i~H 

c 
0040 
00~V· 

~!Jf:lROuTrr-lt LP(t-.IC:CH1F,ncn~~F,F.POit-'' 

I>'PllCIT HqEr.fR {A•n 
LOGICAL•! AF 
COM~OrJ CAR(~0 1'~J,r~~r3~0~),AF(3~0~) 
C(J~~ 1 i'J~1Jl-0~ 111 NI;. 1 L•l( 1 XO~ 1 Nr'T 

C 0 ,~~~ u~.! I~ ~-'F T ~-' F-./5 Y N TRf., ~F:~1TRE 1 'F \J~T ~ r 
COMMrN ICn~FI CO~F(3~,,~) 
cOMMON 1 cOnEI l.~CK,RULf,REFnPE,AFTFP,T~UF,'F~LSf,UNOfl,FUNCT~·, 

* SY~N~T,F~A~~,OBJFC,UN~A,PREDlC 
C~MMON/tNVF~/ JNVES,NSTATS,LO 
rO~'-~ON /F='l~i/ FJf>..l,lR 
Cl•••o• 1 JF•FF/!FREE 
C:fHWOf'.J lf::('lf12'1 "1i..H' ,QUAL, Ar"'JU 
cnMMQ~ 1 ~nn 1 S¥~AFT,VERBAL,CASE1 

jNJT!Acl7.~ rH 1Nr,1 lNQlCATCPS 
OS~M :: r, 

Gf:T 

GET 

GI'.T 

GET 

GET 

( I l 
( A l 

(61 

HlF.v.1S : 171 
PES a:: &'! 

r'!SVN : 0 
p.J = Qi 

OUTP 111 V't 

TCASE • 0 
NSF~. : ~ 

1\l~VN : ~~' 
(':~Af-1 : 01 
f..l E' [tJ s ;: ,:>: 

CASEST = 111 

SfVP = ~ 
nLI =: (7.' 

1\lPf $ 111 ti· 

~u • t 
~FLfVANT l~f8~~~liON POINTERS 
NSTAUC o cnRirAR(NCONFl) 
SIRUCT o C••r"CCNF) 
DSTRUC • CD~(CIMIDCONF)l 

CAL~ GfT ICARIDSTRUCl,CIRIC•RICUR(ORTNUr)ll,OHVPJ 
CALL G!TICAo!PniN),CIP[CAR(lDR(POIN))l,NHVP) 
LE~ICON ~~~FrJ~MATTON (0/N·~E-T) 

OFfAT o r•P([nRCDHYPll 
NF~AT = LA~(C~R[N~VP]] 
TNFGRMATlflN SE~UENCE (0/J•INF) 
nl~F: C&R(Ci)R(0STRUt)) 

NINF o fA~ICON(PD!Nll 
FU~JC:THHJ rO/N•HJNC1 
nfUNC a:: C6~rtrR(0lNF)) 
t,IFli~~C = CAR(fl"'r-:(Nl~F)) 
~VNTACTIC Rl'Lc (OII·RULFI 
[ALL GETr~'FL!Nr,~UL~ 1 NRULF) 
CALL G.T{nFu•t,kUL!,OAULEl 
Nf1'~rJO"'It 8 
GF:i NfH:O~~«' 

IF(F.Ffl.(.i,) CA~L Gf_T (NFUNC,r,EFORE,NNfT) 
lHf,Erl,J) CAll GFT (NFUNC,AFTER,N'lFTl 
TF (~JNET .~r. ') r..QHl 2 
GET SUH 
IF(f.E~.~] ~~STATe ~c~R(t4H(NCO~F)) 

!FIF,FO,IlN~TATE • C'O(CnR[CD•IN!NF))) 
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M52 
(71'?! '5 u 
~055 

c (C) 

~~~' 
0~~'7 

~0~B 

0~~9 
00b~ 

~~b t 
crol 

~0·~ 
~~b3 
0~b4 

c (E) 
~0~~ 

~01c7 

~0~-~ 
00bq I I 
0~71 

007 ~ 

~073 

~07" I~ 
~~75 

0 
0 
010~ 

n 
0 

~0H 300 
0~77 

0~7q 
00~1 

c ( ~) 
0~A2 2 
00B3 
0~~? 

~0P7 
etQlpq 
00QI 
00Q:< 
0~q· 

00QS 
~09b 
00Q7 
0096 

0 
n 101 
c [!) 

01>~ 3 
0!~2 

c [! l 
01~4 

0US 
0Ub 
~1!i'IA 

!HNST~TE.Fa.V') N~HTE • C~R(NNET) 

TNFTR o CIO[CDRlN~FTII 
NNfT • ~AR(COR(CQP(NNETill 

PoFoi•E !~OUT FQN NET• 
CAL.L Nf '·' (CQt!O,J 
OLL N!cr()1 

OR(l) • OFc";C 
CAR(CONDI • T 

L • 0 
J • N5TATE 

CON~Ui.T 
T s NfT~(tnNO,NSTATE,L,~,N~ET,lNFTR,fUNTRF] 
C'Li. fRASf lCOND) 
TF{l.E~.~~ C.OlO < 

FIL. TER 
CALL NEW(,EWSI 
L = NE-\.>JS 
I • K 
rFrt.EQ.01 ~oro 12 
c•LL •noCc••rrn•rcARtll)l,NE•sl 
I • CDR(!) 
r;OTO 11 

~e•s = rn~c.•~·~l 
CALL BACKil.l 
CALl. PRL!ST (J,.3~ 0 ~) 
WRITE !&,1·••1 
FORMAT [\Ho,7•,'SUcCf5SFUL TRANSTT!rN FRn••J 
CALl P.~UST (NFWS,~I,bl 
W R T T E ( t- , !I rt ~~ l 
FORMAT (\i~+~7~,'T0 THE tlEW STATE(S) :') 
IF (F .Ew.ll "'EV:S = NEWS 
JF (F.E"I'J,I) ~·!EWS • I? 
GOTU 3 
FU~cTIQN OF HFAO I POSITION 

PD!i J1 0 
!F!COMF(ORiJLE,~l.EQ.O~H"r.l POS • COMF(NRULE,~) 
JF!CDMF!ORt'LE,3l.NE.oBJFcl POB • cn~FC~Mt'LF,5l 
!F(POS.Ew,~) r,nTO 10~1 
TF(F.EQ,0,Atin,POS,FQ,A~TERl ~010 10r1 
IF(F.EQ.I,AND.POI.!Q.~EFO~!l OQTO IP~\ 
(ALL NF" (Clif:(ll 
CALL Nn' {!) 
CAQ(l) .a: i'~rtiNf:: 

CAR(CO~IG) • I 
loMATCH[COMF(DRULE,I),[OND,FUNTNt) 
!Fil.!O.~) GOTn ~~~~ 
wRIH[o,l~\l 
FO~MAT (8~, "SUCCESSfUL nROER AND RELATIONS ENV1RON~FN1 TF~TS') 

SYNT FF.ATLIRI'S 
!F (COMF (ORI'~E,3l.EO.O~J~C) GOTO b 
TF(COMF(0RliLf 0 7l.Nf.lRUfl GOTO 35 

Gn F<•ll'"'s 
NOD• o c••Ccrk(COAfCDP(CoP(NI•fllll) 
OFEAS = CAR(CrRtr.DR(COR(C~R(OFEAT)))l) 
TF" lH: (QF.EAS, .F.-: G. t l f,r!HJ 3t 
!F (CAR f~FfA~l .fQ.H'O.OP.CAR(OFfAS) .Ell,OR.OR 0 fAR(OFFAS) 

• .~.fJ.xrli:;:.QR.,rA~(lJFEAS, .E.Q,.NOT1 GOTQ 31 
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01 , r.~ 

011 I 

~112 
~\ 13 
0\l'i 

3! 
c (! !l 
11 
11t03 
D 
0 

n 

nFEAS : CA"(0fEA~) 

CDNT!NUf 
MATCH!Nf. 
W~!H (b,\~3) 
~nRMAT (S~,·~~TcH THE FOLLO~t~G 

c>Ll P~l TST (t'F~IS,•,&J 
CALL POUST l''~i•M,~,b) 
P.~S 111 ~.AfC~ rL1F-'EAS, Nf1fHI,SVfo.!1Rt-) 
!F IRES,tQ,>J ~OTn ~~·~ 
CONtiNuE 
~.>IRJTE (b,1C1!?) 
F('IR~~AT (E\),•Rf-SLILTHIG ll('lMA,N:•) 
CALL PRLJ~T (kES,~,~l 
fi.ISYtl = J.lf ~ ~~~~ 

~117 
~\19 
~121 

01~3 

C (I!!) sENu•yt<p[;iJGH 
35 TFI(OMF(DRULf,~),N!,TRUEI ROTC 4 

IF (OfS,'•t.~l ~!OS : r.~PY(RFS) 

n 
0!0& 
0 
c ( u) 

IF (RfS,~D.~l R~S • fAR(CnRICOP(CORICn•CNINF)Jl)l 
NSyN • COMR IE~T(CARICn"ICOR(CDR(CO~(CnR(OFtAT)))))JJ,Pl'l 

,JRTH (ool~bl 
Fr'lRt-1AT (e-:.:,•t..:F.:w FEATURE rnMP\..f.J:;•) 
CALL PRLIST (NSYN,A,Ol 
SEMANT!r F~AIURES TEST 

4 IF. (COM~·(n~Ulf.,C)) .tr.J.~' GOTCl ~ 

01?b 
~1~7 

CCI) SUn~ P•FQRMAl10~1 SE9111'~1CES 

l"''F~_A'!' z:: ~;Fr:.AT 

~~-~ 
~!?q 

0131 
01~<' 

~n• 
01~5 
013b 
0!'7 
013~ 41 
0n• 
01U\ 
~!IJ2 
~1li3 

0145 
~l4b 

~IU7 
0!U8 
~, .. 
01~~ 

01'1 

~~-~ 
~153 

0 
D\07 
0 

c 
C!Bl 
c 
c (!) 
~ 

bl 

TI'-ITNF r:. NTNF 
T ~IPULI:. o NRULc 
TF (OFIW(.,'Jf ,VEI<BAL) GOTO ~! 

SU8J • CAO(C~R(COR(COR(STRUCTll)) 
TF {CA"ICORf(~R(NtNF))I,N!,FINl GOTO I~M3 

CALL GET (CAR(SU8J),CIR{CARfC~R(SURJl)J,!NHYPl 
JNFEAT o CARI[nRf!NHYP)) 
TN!NF o CAA[CnR(SUBJll 
r:ALL GET (CAR(lNFF:ATl,RliLF,JNRULFJ 
J • 0 
!F (COMF C!NRULE,21,oG,CIBJF.CI t • 

: CAR(COF·!Cn><fCDR[COR(CDR(lNJNF))Jlll 
STyP • C0hF(0~ULF,Q) 

NRES • F~IME' (JNFEAT,OFEAT,STYP,IJ 
!F (NRES,o'l.~l GOTO ~~~3 
.:RITE fb.l~7l 
F0RMAT 18X, '$~MANTIC FFATUOES "ITCH SUCCfSSFUL, !lOMAJN I') 
CALL PRL!RTC'••!S,~,~~ 

HI • I 
GOlD 5 

SFMANT!C ~ET~ON~S FOP 5URFICE CAIE SiGNALS 
ROLES • SFAPCH [CAR(COA(NffATI)) 
NRDLE • tAR((DR(CDRICDR(NF!AT)))) 
CALL ~EW ('FU~5) 
CAI.L NEI•I Ill 
rAR(NFU,.!Sl o 1 
C 10 (!) • ''fUI'C 
!F (CAR(CAR(AOLf.S)) ,fO,NR0Lt'l ~r.Tn ~? 
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0!55 

01~6 
~ 'i~ 

0\f.~ 

~l~! 
~!b2 

0\64 
01f.o 
0!H 
0!6Q 
~17~ 

~171 

V.\72 
01n 
017'> 
0)71 

0178 

....... 

01~1 
0!~i' 

0!83 
018<1 

~\85 
0\~b 

0107 
0\AQ 
01or 
~!G2 

0\0:l 

01Q7 
0!QB 
0\QQ 
~2~0 

02fl! 

62 

6~ 

u 

0 

D!0G 
D 

D 

0 I I 1 

c 

ROLES • COR(OOLESl 
IF (R~LfS,fll,'•ROLEl GOTG b2 
IF (ROLtS,Eil,~l ~OTO ~~·· 
r;nr~ 6\ 

ASSO • rDRICDRICAR(ROLfSl)l 
!F (ASSO,EQ,~·l (;OTO !~OS 

IF (MITCH(CAR(CA<(ASSQ)),~FUN~.FUNTRE),NF,•l GOTC •• 
ASSD • CDRC•SSO) 
!F llSSO,f~,o) GOT~ H1•5 
~o•o bJ · 
N'J~T = t~P(CA~(~~SOJl 
FEATS • C•R(CI•R(COR!rnRCCQR(Ol~FJJlll 
WRTTo (b,\~Q) 

FURMAT [~t, •rn•SULT CARE FR•~E! •ITH SVNT FEATURES :•) 
CALL POLl~T (FfAT~,8o6l 
tASEST • tA~(rrRCCnRICnR(NlNF)Ill 
IF CCASFST,fQ,PJ CASfST • ChRlNN!T) 
IF (CAHST,Fil,O) r.nrr1 \0~!-
$ • N!TW(F~AT~,CASFST,~,DUTP,CAR([D~(c~•(NNfT)ll 

I ,CA~[rrP(NNFT)),SY•TREl 

!f (OUTP,;·Q,~) GOTQ !O~o 

WRITE lbo\111 
FOP~AT (8~,~SUCtE~~FUL T~AN~ITION IN SFMANT!C NET~ORK5' 

1 /J3)(,"Rf:SI.Jt .. TlNG HI'JPLE~ !FF.ATURf.S * .;;Tt.TF. * CIISE)') 

Ct..t.t PRLJ,r;;.T roUTP,B~b1 0 
c 
n 

SEMHiTTI: fEA Til~fS 

0!14 

0 

L>1RrTE. r~,,_14' 

FnoMAT ri.,•MITC~ T~E FnLLO•ING SEMANTIC FEATURtS 
SE"F • CAAICnACcn•rcnA(COR(CDR(DlNr)J)lll 
CAll.. PNLJST ISEMF,B,~l 
WRTTE 10 .!12) 
FORMAT ~~~. •WITH FFATIIPES QF RfSP, COSES 'l 
T : OUTP 
I:ALL hlf"~.<; rOuTP) 
IL • OUTP 
!CASt;: • CAf<(Cl!P(CnH(CAR(I)llJ 
~ALL PRL15T I!CAIE,B,bl 
ORDLES • SEARCH ([ARICDR(NFEIT))l 
IF (CAA(CAR(ONOLESJ),FQ,!CASFl GllTO ~~ 

OROLF.S o CDR(ORCLESl 
IF (nNOLo5,E~.v) GOTO ll'~S 
GOT(! 60 
OSfMF • CAR[CDR(CIRI0ROLFSI)I 
CALL PR[IST (05EMF 0 8o61 
J • M~TCH(nSFMF,SEMF,SEMT~E) 

lF (J.E:a.oq r;CllO h8 
D WRJlE Cb, 1 \!)) 
0! 1!> FnR'UT ~~·, 'HM FEATURES f'ATC~ SI•CCfSSFUL 'I 

Clcl APPF.~n CC~R(CnRCCA~'(ll)),J 0 L) 
cALL IPPE,iO (0UTP 1 CIHJJ ,OUTP) 
!No!N•I 
Gnrn 01 
CDf,Tl'JIJf 
it!q T fF U·, 1 1 7) 
Fl1~MAT (8'1(, ""-;!! 5FI'4 F'fATliRt-:5 M~TCH') 

T • C[IR(II 
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~203 

~·~5 
~2~7 

02•8 
0~~~ 

02!1 

~?I? 
02n 
00!1~ 
02!6 
02!7 
0218 
0~ I q 

0220 
02~1 

02?? 

0233 

02Vi 
02!'J'" 
~?4! 

0244 
~2•5 

•<·~ 
0?•7 

parser implementation 

!F" (T.Nt.r-·) r:oru ,..roo 
TF (COR(!lt.F'l.lll GQTn I"'" 
OUTP : r.~P{JLI 
CALl. ~AfK(!Ll 
TF ct.EG. 11 •• &.~fi.PJ.ff.l.Vl) r.OTD H~li'l7 

CON1'H1Uf._ 
wRITF r~. t•5J 
F(IRM~T (t>, '>>>> .Ll TfSTS ~UCC~~SFUL, ~EW CONFIGLIPATtn~ :') 
on 58 Il~ a 1 ,1N 
lf {OUTP.FQ.O) GOTC 50 
DsvNTF : CARICAR(QUTP)) 
NSEM • CAp(CDO(CDRCCDP(C~R(~UTP)llll 
!CASE • CAR(C~"lCORlCAR(QUTPJ))) 
o.SEST : r>R ([""(CAP (OIITP) 1) 
DIJTP = CDplnlJTPl 

C!!) CMA~G!R TN Su~0RDTNAT! CONflGU~AT!ON 

59 nNFW = tOPV (Ll~TRUC) 
·~~ • CDP(CA•rcn~(ONEWIII 
IF!COMF(ORUL~o?l.NF,DRJ~Cl GOTO I9J 

C (A) FnR O~Jnr<; 

13 • CO"(COR(COR(F<Sl)) 
CCI) SHIT FEAT 

IF(ClR(BJ,N~.o) CALL ERASf(CAR(l3ll 
CAR (B) : n~'~1TF 

C(!l) Sf" FEAT 
!F(CAR(Cfl"'!Pll.NE.0l CALL E.RASEl0~(COR(I3lll 
CAR(CQR(l3ll • NS~M 

C (!! ll C A~~ 
CAR{CDRlCC~(l3lll • !CAS! 
t;QTO 1 qu 

C lAl lOJUNCTS 
1q3 yf!oFuNC,~~.vFPBALlCAR !CDR(COR(CDR(FES llll• 

'Ill N!-:1'1' ~~ 

IF (OFUNC.EQ.SVNNETl CAP([DRifESl) • FIN 
TFISTYP.wf.oiCAW([~R(CDR(C~O(COR(fESl)lll• STVP 

C(il CCNSTRUCT pfpTICL! ~UPERST~UCTURE 
jQ6 CALL NtO(NSTATEl 

NSTRUC : CopV(CAR(NCONF)l 
CA~[NST61F, = ~i&TWL!C 

C R ANGF 
!f(F.EJ1 0 1) r,OTO ?1·1 

C FOR ntRECT!nN l.fFT TO RIGHT 
20~ CALL APP!ND [NSTATf,CAP((UR(OCONF)),J) 

COP(J} c CDp(COR[NCONFI) 
CA,l-L.. PU$~1(NCm!F,t tl) 

r;rnn ~~7 

C FO~ DIR~CTJOP: ·~~~T TO l!FT 
2~1 CAll APOFND (NITAT~,CAR(COR(NCONF)l,J) 

CD~(Jl • (DR(CO~(OCONF)) 

CALL PU<H(DCONF,Ln) 
C PUSH ON N~Ttl~,T~1 Vf~.LMCK 

~~7 IF(CAR(Cno(NOTAT!)l.NE.~l CALL PUSH(NS!ATE,!NVESI 
CALL Pll~H(~•~TATt,NSTA1~) 

C HHGE 
POFL • ~ 
\&.lrJR = CAH (PO!t-;) 
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~2% 

02o7 
0~~8 
~259 

02~0 
02~1 

~2~3 
0265 
~2~b 
02b1 
02b~ 
~2b9 

0?7~ 
~?7? 
~?73 
0275 
0271 

0278 
0?79 
~28!1 

0i?~2 

02p9 
~291 

0293 
0?04 

~i?Qb 

0296 
030GJ 
~:1~ I 

03~· 
~3~b 

~301 
~3~8 

03~9 
~31~ 
0~ I I 
0~12 

~313 
03\Q 
03\b 
0311 

"'PO o CAR(CA•ICDR(P~!Nil) 
TSTRUC o cr•PI><S1RIJC) 
NPntN • NP~JNT fJ~T~UC,WoR,HVPO) 
t :1 C!)~ (t...~OlioJ) 

K = cn~,Ct)~(~AR(l)l) 
!92 tFrCnR(!I,ER.~l ~OTO IQ~ 

!FCOR(CrR(t)),fQ,O) GOTn 1~1 
I • C~R(ll 

r.orn tc~ 
!91 CALL B•CK(CO~(Il l 

190 CALL APPEND (!,ONEW,Jl 
A,tHII-4 : l 

!FlF,Nf,,l ~nTn 52 
J ;: t':(1P ruP.JFW) 

53 1F(CDRC1.) ,1'•),0) r,nTO ~I 

IFccaorcr•cllJ,EP.0l GDTn 52 
I o CDR(!) 
GOTO 53 

~~ CALl. •PPF.>JD q,~,lJ 
52 IF (CO''f (ClRULf, 3) ,ED,PRED!CI PPFL : 

FfT~ • rnorcAR(CDR(NPOINJ)l 
C SYNTACTIC STATE 

CIR(fJSTRUC) • NEWS 
C(3) CHANGES JN Hf•P CONFlRURAT!DN 
21? TFIANE~5.NE,0l CAR( CDR(F!TS)) • ANEWS 
C(ll] STATE IN CASE N!TWORM 
~~~ 13 o CQR(tDA(CD~(FfTSlll 

tF(CAStST,N!oOl CA~(CDR(CDR(FET&lll • CASEST 
C HEAD II O~J~CT 
CCI!!) SYNTACTIC FFATURE COMPLH 
?~A !F(NSYN,EQ,Il ROTO o05 

TF [CAP (13) ,N!.,0) CALL E. RASE (CAR 031) 
CAR(l3] • >I~YN 

~0~ IFICOMF(N~ULE,2),NE,OFJECl GOTO i~b 

CtlV) SEM FEATURF COMPLf> 
!F(NRFS.E;,M) GOTO IQ• 
!FICAR(CDF(TI)),NE,m) CALL ERASE(CARCCDR(l3))l 

CAR(CDPI13ll • NRE8 
r,['IT(l tCJ~ 

C HEAD YR AI'JUNCT 
~·6 !F!CHAO,No.~l CIR(CnR(!3ll • CHAR 
C VER65 

jF~P:~hfloD,01 GOTO 197 

1 • CORICAR(N~TATtll 
rOP(~AR(NR1&lfll • CAR(CnR(J)) 
CAlL ~FPHIO CCOR(C~R(CIR(NSTHE)l),I,Ll 

l o CI1R(JJ 
C•LL R•CK(L) 
r:A.LL APPE~~p r~t,m,,t) 

CAI(CAPINRT&Ttl) • PREDIC 
!FITR,fO.Il (All PRL!ST(CAR(~STaTEl,~obl 
cONT!rJUE 
l:lfTUP.r.J 
M~S.;Al~~ S 
lF(nU.EG.~l ~~l.UR~; 

WRIT€l~.11',tll 
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03~0 

0322 

01011 

?·~2 
n 
DU!2 
0 
a~3 

0 
D !01! 
0 
IMO 
0 
0)0!4 
D 
1~05 
D 
0 I.~ 15 
D 
1~0h 
D 
DtO!b 
D 
I ~o7 
D 
01~17 
D 

FORMAT (8:t, •+- WRO/'IG HE.AI1 OR NO nU.N5lT.t0N tp.: SVNT NET') 

~FTIJ~N 
IFIOU,EQ,•1 RfTURN 
''Rl T~ (b,l ?\?1 
FQQMAT [~w,•• SYNTACTIC FEATURES MATCH UNSIJCCES~FL'l'J 

RflURN 
IF!OU.EQ.~l RFTURN 
WRITE(~, lr\31 

FoRMAT (8w,'+ 5!~ANT!C FEATURES MITCH UNSUCCESFUL') 
RETLlRrl 
TFfOU·fO•~) RETUR~ 
WR!TE(b,!~l4) 
FQRMIT l~x,•• H~An TA•Es NO ORJECTS OR WRONG P05JT!DN') 
RFTURI•J 
IFI~u.En.~J RETuo• 

WR1Hlh,\0151 
Fn~MAT (8X,•+MTSSING CASE OR FUNCTION IN SEM NETWOR~') 
fH. TUPN 
TF (DU,Ell,•l RETURN 
"PtTE (~,101;,) 
FOPMIT rR~,•oNO TRANSITION IN S!M NETWORK') 
RETURN 
TF lnU,EQ!O) ".'tlURri 
>IRTfE r~. •t71 
FORMAT (AM, 'o SEMA•1IC FEATUA!S MATC" UNSUCCfiSFVL') 
RtTliO" 
ENr"l 
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NPOINT 

parameters: STURC, WOR, HYPO 

Operation: 

This small auxiliary function is used to locate in 

a configuration (pointed at by STRUC) the information 

of a word (addressed by WOR) for a certain hypothesis 

(HYPO) . The result is a pointer to a cell where the 

addressed configuration started. 

code: 

tNTEGER FUNcTI .. ON NPOINT (!STRUC 1 WQR,~YPO) 
!~PL!C!T !NTEr.eR (A•wl 
CAlL NEW(PDS) 

193 IF(CAR(ISTRUCJ,NE,WOP) GOIO 190 
IFCCAR!CAR(CnH(ISTRUC))),NE,HYPDl GOTO \9~ 

NPD!NT • tSTRUC 
lf(POS,EQ,0) RETURN 
CALl POPuPCI,POsl 
GOTO I 

!9~ ISTRUC • CDR(ISTRUC) 
IF!C0R(lSTRUCl,EQ,0l GOTn 192 
lF(CAR(CDR(lSTRUC)J,EQ,0) GOTO 192 
CAll PUS~c!STRUC PDSl 
ISTRUC o CDR(!ST~UC) 
!STRUC • CAR(!STRUC) 
QOTO !93 

192 CALL POPUP(JSTRUC,PDSl 
IF!ISTRUC,NE,0J r.OTO 19~ 
WR!TE(b,\9&) 

19& FORMAT!\~, 'ERROR IN fiNDING ATTACHPO!NT !N TRF.~'l 
CALL E~IT 
END 
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FRAMES 

parameters: FEAT!, FEAT2 being two information sequences as found 

in a configuration 

STYPE the qual/mod/undet characteristic 

SEMF (optional) a semantic feature complex. 

operation: 

FRAJms computes whether the semantic features are compatible. 

Result of FRAMES is NIL if no match (neither for·qual nor 

undet) or the resulting semantic features domain if 

a match was successful. Moreover FRAMES decides which 

characteristic holds if possible on the basis of semantic 

features. 

code: 

~0~1 

~0~2 
0~03 

~~~4 

~0r11S 
N,.,t'lb 
NH/17 
r.~ ;~ f1l A 

~~·9 
~~Hl 

~~11 
~012 
0)013 

0015 
~0!~ 

~017 
17tO:Jt8 

~~~~ 

~U21 

''0<3 
IL'Pi?l.l 
00i?~ 

12'~?1 

JNTEGE~ FUNcTION F~A~FS tf~lTlrFEAT2,STYPE,SfMF) 

!MP~ICIT INTEGER (A•Wl 
LOGICA~•I AF _ .. 
cOMMQNicnne/ ~OcK 1 RULErB~fORF,AFTER,1R~E,FALSt,li~G~T,FU~CTW, 

*, SVNNET,FRAr~E,O~JfC,IJNMArPR~DlC 

roMMnNJ(UMFJrnMF(30 1 l~) 
rn~~nN/rDG~!MOD,QLI~LrA~JlJ 
cOMr.JON C.td~ c 3lilil'f"), cnR C30(.'1iAJ, AF (~0'10~·) 
C0'•P10N 1lt·1FTR~ /SV~iTQE, ~EMTRE 1 FI,1NfRf 

C GET CASE F~AMtS 
FPA~~ES :::1 ~ 

T FR II 171 

!~ONA~ o tAAICOR(FEAT2ll 
J~~~AM :::1 (AR(CnR(FEATlll 
JF iTF~NA~.F;.a.nR.JFRNIM.EQ.O) GnTD R 
JAOLE& • REIRCH (JFPNA~) 
!R : Jt:!Qlf ~ 
T'Hli.F.S o SEARcH (JFPNAM) 
TF (1QPL,c::S.~.:r~.Ol,OR.JRnLF~.tQ,V) r;o·ro 8 

C SORrH FUTliRE'; ro 6F RAT!~Fif~ 
IC•IE • CA~(r~RfCOPICr~IFF•T2llJ1 

~ IF (0'< (CAP (!ROLF' I 1 .E~.lCHEJ \-OTO 3 
!PO~F~ • rnA(I~OLfll 
TF (T~OLf .. "';,.!~~ ... ~) !JOTt'l ~ 

~OTO 10 
3 ~fOFp o CAA(CCP(CAR(!iOL~I))I 
0 •·lRTTE (f>,ll 
D\ FOR~l~T (6X 'INVFSTT~ATE TH~ F0LLOW1NG SF~,FEATUQFS:•) 
D CALL PRLlS~ (RF'•1F2,~.~~ 
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~~3~ 

0•~2 
~~B 

·~!S 
~~3& 

~~38 

~0!q 

t"\~HiLI 

m0•& 
~~!.&8 

~~·q 
0~~~ 

00<;0' 
00;Q 
Mso 

0(1':''T 

0~58 

!~059 
?1(71~[71 

~"06 J 
~0~2 
~~b3 

C 5EA~C" FEA TIIRf.~ tlF SLOT F!U.E~ 
IF (~TVPE,Fq,MQI>l GOTn 7 

C t•l QUAI.HVII>C. 
lF{SfMF.NE.01 GOTO ~ 

JCA5E a CAO[CDR(CDR[COR(ff.AT\)1)) 
" TF (0R(CAR[JROLF.51l,FJJ,JtASE) r,OTO 'i 

JPOLES • COR(JRULERJ 
J F [ JRDLFS, N~, Ol r:nT~ C 
GOTO tt~ 

5 SfMF c [XT(CAR(COR!CAR[JRDLoSllll 
C COMPARE 
& FRAMfS : MATCH (SEMF~, lif.MF,~I:t"TRE') 

0 01.1. PPLL~f (5FeF, A, f.) 
IF (F~AMES,ErJ,r~) r.nTO 1 
tFR = FHAM~S 

C (AJ MDO!FV!NG 
IF [STfP!,fQ,QUAL) ~iTUR• 

tF !STVP~ .Eq.UNDET) STYPE = IJtlAL 
1 !~EMF : F(Tr[AP(rr1R(~AP(J~])11 

C COMPAOF 
0 CALL P~LlSf ftSE~F,8,b) 

F~AMES = M4TCH csEMF~,tsFMF,stMTRe) 
tr (FPA~1~o;.E"I.J,Q'I) G,ln t? 
Tf (5TYRF,fCJ,QUAL) .STYPf = UtiOET 

!? IF (1F-~,t~~::,l;,, C:~AMf.S = IF~ 
P E' TUJ.nJ 

C E>ROR~ 
R \.>.t~TTt'_ r,:,,Q) 

I~ 

! I 

F(HH·lAT (1X, "'h!SS!NG FRAM!:."') 
RF:TURt~ 
wPIH (.,,111 
r011'MAT (1)(, 't-1IS~Iht_.; CASF IN Ft-«J\t1f ") 
RE ru~"~ 
E:.~IO 
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structuring 

3.3. The computation of the structures 

We present now three subroutines which extract the 

linguistic informationstructures defined earlier from 

the particles. The implementation of this subroutines is 

mainly due to K. De Smedt~ 

(i) Functional structures 

FUN 

parameters: CONF (a configuration) 

operation: 

FUN computes the functional structure and prints it on 

an output device 

00~1 
0002 

code: ~(1~ 3 
~00A 

00(15 
000,b 
0!ii~l7 

0~~8 

0VJC19 
0010 

0011 
~01i? 
0013 
00\A 
0015 3 
~~~, 

~~17 
0018 ' O!VJ1 q 

0020 
0~21 
~[122 
til.;·,.? 3 
Ql (J ;:t ll 
~~?~ 

~0?0 
0,, 2 r 
0~?8 
0e?G 
0030 
00,1 

S!J~~OUTTNE FU~ ([ONF) 
I"PL!C!T JNlfGcR (A-Wl 
LllGlCI\l •t ~F 

COM~DNIFIN/FJN,TR 

CUr"!FOt~ CA~f3~00) •Cf1R{.3"H"\?!) ,s\F(3V!OV) 
IF(CQNf.EA.~l OETtiON 
CALL NE•'rPDS) 
rALL IJF,t,.;(_~l·t~K) 

P 1~'TF'tn~:cFU\ll< 
T r-;wO>.i=C'"JI'"F 

l' 1FLIN:CnR (CAR (CDR ( HtWOR))) 
J:cnNrcnocc•~cco•rrN•GoJJll 

l~ (CA~(J),EJJ,r~,OR,CAR(J,.f!~,FPo~) (-OT(l ~ 
IF (F:I.E~l(FJN,CAR(J))~E!'J,!Il) G!JfD 50 
J: C•"rCGN(Jll 
J~ (J,En,0,nR~J.FQ,fJN) GnTQ ~ 
H (t'lf~·1(fTN,J),E•'J,t'l) GQT!l Sll; 
C.6P (f1llfF(ir-:) =CAR (lfi.JF'iJI\J) 

T~I4:C~P(~O~[lNWQR)) 

TFf(!N~.~r .• ~).O~,(CA~(JN~).tQ.0)) GOTO ~ 
Call ~-~E~(OIJTWORl 
C A.P (fq_J 1 ~·i(1f'<!) lll'(AR ( l ~'!AirHI") 
['ALL tPPf~ln(OUTFU~:,nlJT~OR,I]J 

~ l~wnQ=CAQ(JN~) 

CAl, I,_ f!E1•1 (r"li.JTFIH-.1) 

CALL o'\PP!;rdl{I:HJTWOk,r1UTFl•"J,lX) 
P.Jw:coj.;(Jt·Jl..,) 

J F ( (I ~J"'" • E r~. ii) • n R • C C A~ ( T ~J ~) • f 1:.1 • 11_1) J G 0 T 0 l 
CAL~ PUS~(J~,PnSl 
CA.ll PUS~(fN~ 1 POi) 
GLHD 1 
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0032 
0033 
~~3~ 

~~35 
~0l~ 
00~7 
0eJB 
00~9 

000~ 
0041 
0002 

;:. CALL APPf.Nr;(OUTf'~LI~J,CANttN~:QR) ,C'lliT~o·DR) 

CfiLL 1"01''JPflN\PJ,P[;~) 

lF n~, .Fr:"J.0l r..orn t~ 

CAll p.)~IH'(f•Uf•"~rw,PI):(!.) 

r.orn ~ 

L! r.Al.L f-'~l !Sl(~IJN~, t,b") 
CALL F1LOH.1 (Fllfl.i~"o,, t, 1 I 1) 
FETU~~·l 

,vi co~ .. F = ~ 
P.f_ TU~r~ 
E OJQ 

(ii) Case structures 

CAS 

parameters: CONF , a configuration 

operation: 

CAS computes the case structure and prints 1't on an outputdevice. 

code: 

Q1f<H~1 

~';~? 

0''"3 
0004 
0~"5 
0k,i71b 
rtl0(1,7 

0•~& 
~~~\VjQ 

Ql01 V1 

0~ 1 \ 
~0\2 
00!3 

0~1· 
0015 
~0lo 
~~17 

0018 
0~19 
0~2'·~, 

0~<'1 
~0;>2 

0023 
~~?4 
0~;>? 2 
~0;>b 

VI f.'i ;11 

SUBROUTINE CASCCON~) 
).'IPL!ClT tflE(;E'RC•·•l 
l-Or.!CAL•l AF 
(;OMfi',0!\1 CA'9(3t:i!~0) ,CQj;l(30H'il71) ,AF l3~1iWJ 
CO~~ON 1cnD2/ Mno,QUAL,~DJU 
Cfl~~ON /c~MP/ CU~Ft3~,l~] 
tUMtlO!~ /CO~~/ LOC~,~UlE,8EfORE,AFTEP,TRUE,FALb~,Ur4VET,FUNCl~, 

* ~'frJ~JFT 1 F'"'~~1E,Of.\,lF:C,IJNMA,P~E.DlC 
CAST :::: FpAf-lf'_ 
IF' (("ONF .E0, 1il) 'R(TIIRN 

CALL '~'<(CASE) 
CS:C.a$E 
CAQcr-~1•rt~sr 

CltL PIJsHrCn~F,PDSPl 

tALL PU~Hr0,~DST1 
f."L 1!1 t~ 

rALL oa~u•r•,•ospJ 
r~LL P[l~UP(T,Pn9Tl 

IF(P,fW,0) GDTn 90 
FLAG=(1 
PFU • COO(tARICDRtP)ll 
CILL GET(C,M!Pf\!),kULEol~l 
PJN',:rflf' CP) 
TF(FL,ci1,·.1J GtlTQ 2 
jF(COMF(IR,?),NE,DRJFCl GOTO II 
JFCCO"FflR,2),FQ,OBJHl GnTO \? 
OLL GET(OR(P),CAR(CAP{COR(PlJ),HYP) 
SURJ • CfO([ORCCDRCrDR(CAA(CnR(~YPJJ))l) 
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0028 
~0?• 
0030 
~0~1 
0~32 

~en 

0~3· 
~C3'l 
~~3h 

0~~7 

~0~8 
00'q 
~'l!HICJI 

M<il 
0042 
~~·3 
QH/1 tl Q 

~~·5 
00t.ll!l 
00•7 
0048 
00Q9 
0~50 

00';) 
0~52 

0055 
0054 
~055 

00'ih 
C/IIZ15 7 
~058 

00S9 
Ql~b(~ 

0~~~ 

0~~2 
0063 
00&4 
00&5 
0~bb 

00~7 

0068 
00&9 
0070 
0071 
~07;,> 

00.73 
0074 

0~75 
0m1o 
~011 
0078 
~m1q 

008~ 
0~8! 

(i)(,!~? 

~08~ 

p FL•\ 
~ PtN~crllP(Pl~W) 

JF(tF'IJ\I,_·.trJ.r:).Cd~.(CUi(PT~ 1 w1.f:'.tJ.R)l t.n'fn 1 
P~=CAR fPJNI.,.) 

1'1 P2F"l,lc(,!li~ (f';.A.R (CIH~ (P2)1) 
CAll..- GtT(CAP(P?FI_I) ,t;~LILJ.:, TR) 

!FfC:O~F(1~,2).Nf-.(1KJf.Cl GfllO f") 

P?(A:r '" (C!'R (COO !cOO (Cn>' (CnR (P;>FUll l 1 l) 
lF(P?CA.tQ.0) P?CA c ~LJ~J 

lF(FLA{~,H~.l) G01n 1.1 

CAlL "">! !< l 
CALL ~PP~N~(CS,TV,CSl 
r,AO(TXl•cH<(P) 

1.1 CALL i!fv;(!·IX) 

('bL-l. f,P~~!'J['1(TX,r-1X,Tll) 

('A~(~~i:1cP('rA 

C4LL A~'~t~iO(~~.rA~CP~,,r,~) 

FLAG=t 
P?Nw=rri4(Cn~(P?J l 
1 F r ( P 2 tH • F r:). vn • n Q • ' c b. F.! c P ;;n: 1JJ) .. F" rJ .IZI 1 ) ~orr: 1 s 
CALL PU5H!P2,PrSP} 
(ALL Pll~i<lnA,P!;ST1 

1~ !F{P0SP~.NE.~l ~·JTO \5 
GUlO '1 

~ TF.(C0f"'•f(TP,~).,_!~.,jl.[I~11J) r'iOTI1 ltJ. 
tALl PU~H(Pi,PnSPl 
CALL PUSH[P,PIISTI 
tF (Pf'ISP?,NF.~) GOT\ 1 1~ 

GOHl 15 
lU JF(tC,MF(JR,?1.t;~.fU~ 1 CTW) CALL P~LIST{Crl~Ff!P,2l,~,h) 

CALl- P!J~~(P~N~F~·,Pil~Pi) 

f:'2NWf-I~:(.'Ht (P2J 
t5 F2NWF~=COR(P2t~~FW) 

.TF: ( (P?,~I!.>lFi.J,fQ .. Lil) .nR, (Cb.f~ (P2N~;F,~) ,FQ,{)J) l GUTO tf.o 
P?•CA!-! (~2~-JI>JF.W) 
Gr_lTO t 7 

1~ ~ALL PUPLJPrP~N!~Fw,PrSP?l 

JFr~h5P? .. ~F.~l~DT8 15 
G!JTD 'i 

II JF(C0MF(TR,2J,NE,ADJU) G~TO I 
CALL OET(p•CPl,CAf'(CAA(C!l"[P)ll.~V~) 

v!EWP • CIP(Cn•cc~R(CnA(CIR(rDA(HVP)J)lll 

tFlFL>rJ.~CJ,IJ r.arn 13 
CALL flrw(HJ 
C'Ll aPPENDCt5.TI,C!l 
CAQ(T~)•CA'I{Pl 

1 ~ tALl. r-ol::w(~,)() 

CALL APPENrtT~,~~,TXl 
CAF (MX) =V n:·,·.1 P 

Cf'.L\ AF!'PF_NO (~lX 1 Ct..R(T),r-iX) 
FLA(~ c , 

r,r.JTO 2 
q0 CALl PRLT~T((AS~,l ,~) 

0 CALL PI,.JJfLlfCAS~-,1_ 1 1,1) 
iHliJI-tf., 
E'"D 
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(iii)Sernantic structure 

SEM 

parameter~:CONF, a configuration 

operation: 

SEM computes the semantic structure and prints it on an 

outputdevice 

code: 

00~1 

0002 
0003 
00~4 

~m 
0007 
00~8 
000q 
0010 
~011 
0012 
0013 
0014 
0015 
0016 
00!1 
~018 
00!Q 
~020 
0021 
0022 
0023 
0024 
0025 
002& 
0027 
0028 
002q 
a.QI'1:01 

D 

0 
D 101 

0 
D 102 

D 
D 
0 lOb 
0 
D !03 
0 

0 104 
0 

SUBRnuTI~E SEM(CD~F) 

IMPLICIT tNTEGER(A•Xl 
LOGICAL•! H 
COMMON CAR(3000l,CDR(3000),AF(3000) 
cOMMON 1SEM10L!ST,5EM5TR 1 PREO,ARG,FEAT,MOO,OBJEC,ADJU,FUNCTW 
C0MMONICOMFICOMF(30,!0l 
COMMDNtADDIRULE 
NUM•0 
P2NWfWo0 
wR I H. ( & ,! 01 l 
FoRM'TC!x,'CREATING TOP OF SEMANTIC STRUCTURE') 
ULL NEWCSEMA) 
CAR(SEMAJ•SEMSTR 
SMoSEMA 
wRlTE(b.l~2) 
FORMAT(tX,'CREATlNG INITIAL TASK IMAGE') 
CALL PUSH(CONF,PDSCO) 
CAL~ PUSH(~ 1 PD5SEJ 
CA~L PUSH(0,PDSO~) 
CALL PUSH(0,pDSPRl 
CA~L POPUP(PCO,POSCO) 
~UMoNUM•1 
WR1TE(&,t4&) NU~ 
FDRHAT(IH0,!H[ 0 12 1 1Hl) 
wRITE(&.103l 
FORMAT(!H0 1 ',1, POPPING UP NEW TASK IMAGE') 
WR!TE(~,!04) 

FOOMAT(,X,'PRESENT POINT IN CONfiGURATION:') 
CALL PRL!ST(PCO,q,&l 
CALL PDPUP(PSE,POSSE) 

- 3.86.-



structuring 

0031 
0032 
00H 
0034 
003~ 

003~ 
0037 
0038 
00H 
0040 
0041 
~042 

0043 
0044 
0045 
004b 
0047 
0048 
004~ 
0050 
0051 
0052 
0053 

0054 
0055 
0056 
0057 
0058 
0059 

0060 
00&1 
0062 
0063 
0064 
00~5 
00&~ 
00&? 
00~8 
00&~ 
0070 
0071 
0072 
0073 
0074 
0~75 
~07b 

0077 
0078 
0079 
00~0 

0081 
00a2 
0083 
0084 

00 8s 
0086 
00A7 
0088 
0089 
00Q0 

0 
0 10~ 
D 

0 
0 10b 
0 

D 
0 10T 
0 

WR!TEC&r10~l 
fORHAT(SK,'~TTACHM~NT POINT IN SEMANTIC STRUCTURE!') 
CA~~ PR~IST(PSE,Q,b) 
CA~L POPUP(MQOK,POSOll 
WR!TEC6,106) 
fORMAT (Sl, 'TOP OF NODE (FOR GUA~l I') 
CALL PRLIST(MQOX,Q,bl 
CAL~ POPUP[MQPR,PDSPRl 
WRITE(~, 1011 
fORMAT(Sx,'PRED!CHE NODE [FOR MOll') 
CALL PRL!ST(MGPR,~,b) 
!F(PCO,EQ,0) GOTO Q0 
lFCPSE,E0,0) GOTO IT 

!6 lF(CD~(PSEl,NE,~l PSE•CDR(PSE) 

D 
lf!CDR (PSEl,NE,0l GDTD 18 
WRITE(&, 10Q) 

0 109 
0 

FORMAT(5~,'~EAOJU5TEO ATTACHMENT PO!NTI'l 
CA~L PR~!ST(PSE,~,&l 

0 

IT PfU•COR[CARCCDR(PCOlll 
CA~L GET!CAR(PfUJ,RULE,!Rl 
WRJTE(b,1!~) 

0 110 
0 

F0RMAT(!H0,',11, EXECUTION Of TASK') 
CALL PR~!ST (CAR(PfUlr30,~l 

D WR!TEC~,Ittl 

D Itt FORMAT(!H+r'FUNCT!ON OF PRESENT WORO lSI') 
PNW•COR (PCOJ 
!F(PSE,NE,0l GOTO 19 

0 WR!TEC&,ttJl 
0 t!3 FORMAT!tX,'* PRESENT WORD IS FIRST WORO IN CONFIGURATION'/ 
0 o5X,'START!NG TO CREATE INIT!A~ 08JECT NODE'l 

IFCCOMF(!Roil,EQ,OBJECl O~IST•COR(OL!STl 
P2oPCO 
P2FU•PFU 
GDTO !b 

2 PSE•NP~ 
MQOX:OX 
MQPRoPR 

0 WR!T~Cb,ll•l 
0 114 FORMATC3X,'CHANG!NG TASK IMAGE AFTER CREATION OF NODE') 
D WRITE(~,!!~) 
D liS FORMAT(SX,'ATTACHMENT POINT IN SE~ANT!C STRUCTURE!') 
D CA~~ PR~IsTCPSf,q,~) 
n WRIToC~,IIb) 
0 !16 FQRMATr,X,'TOP OF NODE (FOR QUllll'l 
D CA~~ PRLIST(MQOX,~,&l 
D W~JTE(.,II7l 
0 !17 FOP•UT[~M,'PRE~ICATE NOOE (FOR MODll'l 
n r.ALL PRLIST(MQPR,9,6) 
D WR!TE(6,12~l 
n 12~ FORMAT(!X,'STARTING TO TRACE DEPENDENT WORDS') 

GOTO 4 
!q IFtCOMF(IR,~J,NE,OBJECl GOTQ le 

D CALL PRLISTCCAR(PCQ),I5o&l 
0 WRITE (~,1!8) 
D liB FORMAT(tH+•'PRESENT WDRDI IS DBJECT•TYPE'I 
P •IX,'START!NG TO TRACE DEPENDENT wORDS') 

4 PNwaCDR (PNW) 
IF ( (PNW,EQ.~) ,OR, (CAR (PNI~) ,EQ,0) l GOTO 80 
P2aCAR(PNW) 

D CALL PRLISTCCAR(P2l,27,6) 
~ WRITE(6,1!Q) 
0 11q FORMAT(tH+•' •> DEPENDENT WORD fOUNOl'l 
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00ql 
A0q2 
00q3 
00q4 
~0q9 
00q6 
00q1 
00qe 
0zqq 

010~ 
0101 
0102 
~103 
0104 
0!05 
010b 
0101 
0108 
01~q 
0110 
0111 
0112 

~IU 
:u~ 
~m 
011q 
0120 
0121 
0122 

0123 
0124 
0125 
012& 
0127 
0!28 
0Uq 
0130 
0131 
013~ 
0133 
0134 
0135 
0136 
0137 
0138 
01H 
014~ 
0141 
0\42 
0143 
0144 
0145 
0!46 
Dlt4'7 

2~ peFuoCDR(C~R(COR(P2lll 
C~L~ GET(C~~(P2FUl,RU~E,IRl 

0 CA~~ PRLISTtCAR(P2FUl,!8,&l 
0 WRIT~(&,I21l 
0 121 FORMAT(IH+,U,'fUNCTION ISI') 

!FICO~F(!R,2),NE,OBJEC) GOTO 7 
0 CA~~ PR~!ST!CAR(P2),1!,6l 
0 WRITE(h,\22) 
D 122 FORMAT(IH+,4~,'WOROI lS OF OBJECT•TVPE'I 
D oSX,'START!NG TO CREATE NEW OBJECT NOOE') 

16 CA~~ NEW(NPLl 
OX•CAR !OL IST) 
OLtSToCDR(O~tST) 
CAR(NP~I•OX 
CA~L APPENO(SM,NPL,SM) 
CAL~ NEW (PR) 
CAR (PR loPRED 
CALL APP!ND(NPL,PR,NPL) 
CA~L GET(CAR{P2),CAR(CAR(COR(P2))),lNF) 
IHPRoCOR(tNF) 
CALL APPEND(PR,CAR(COR(CD~(!HPRll),PRl 
CALc APP~NOIPR,CAR(tHPR),PR) 
tF!cAR!cpR(IHPRl),NE,~I CALL APPEND(PR,CAR(COR(tHPRl),PR) 
FE&tN 0 COR(CDR(COR(P2FUl)l 
tF!cOMF(tR•~l,NE,08JECl fEAlN•CDR(FEAINl 
C&LL FEAcoMCCAR(FEAINJ,FEAOUTl 
tf!FEADUT,EQ,0) GOTO 20 
CALL NEWIFEl 
CAR(fEI•FOT 
CALL APPEND!NPL,FE,NPLl 
CA~L APP£ND(FE,FEAOUT,FEl 

D WRIT£(~,123) 
D !23 FORMATtlx,'* OBJECT NOOE COMPLETED AND ATTACHED TO '• 
D •'SEMANTIC STRUCTURE'! 
0 CALL PRLIST!CAR(SMl,T,&l 

2~ P2C&•CDR(COR(CDR(CORICOR(P2FUlllll 
lFf(CDMF(!R,2l,NE,OBJECl,OR,(CAR(P2CAJ,EQ,0ll GOTO 2 

D CALL P~L!ST(0~,2T,&) 
D ~RlTE(b,l24l 
0 124 FDRH&T(!Ht,4X,'NOW ATTACHING nBJECTI TO ARGUMENTS') 

!F (C&R (CU (PSE)) ,EQ, ARG) GOTO 5 
CALL NEW CARl 
CAR tARl•ARG 
CALL APPENO(PSE,AR,PSEl 

5 CALL NE~ICA) 
CAR(Cl]oCAR{P2CA) 
CALL APPENP(AR,CA,ARl 
CA~L APPENO(CA,OX,CAl 

0 CA~" PO~IST!CAR!~SE),7,~) 
P2NW•COR(CDR(P2ll 

0 CALL PRLlST(CAR(P~l,S,~) 
!F((P2NW,EQ,0],0R, (CAR!P~NW),EQ,0)l GOTO ?q 

n wR!TEC&,I25l 
0 125 FORMAT(IH+,!1X,'HAS PEPENOENT WORDS~ PUSH NEW TASK tMAGE'l 

CALL PUSH(NPL,PDSS!) 
CALL PUSH(P~,PDSCO) 
CAL~ PUSH(OX,POSOXl 
CALL PUSH(PR,PQSPR) 
GOTO 2T 
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0iliri 
014q 
~190 
0151 
0!52 
0153 
0194 
0!55 
015& 
0157 
0158 
015q 
01&0 
0161 

01&2 
01&3 
01&4 
01&5 
~I&& 
01U 
01&8 . 
01&9 
0170 
01 Tl 
0172 
0173 
0174 
~115 

011& 
0117 
0!78 
01H 
0180 
0181 
0182 

0!83 
0184 
0185 
018& 
0!87 
0188 
018Q 
0U0 
0191 
01Q2 
0!93 
01Q4 
01q5 
019& 
0197 
0198 
0\QQ 
0200 
0201 
0202 
0203 
~204 
0205 

29 CONTINUf. 

8 12& 
2T 

T 

0 
0 

W~!TEC&,!2&) 
FO~MAT(IH+,l7M,'HlS NO DEPENDENT WORDS') 
IF(PDSP2,NE,0l GDTO 24 
GOTO 4 

CALL GET CCl~(P2FU),RULE 0 1Rl 
IF (COMP(IR,2),NE,&OJUl GOTO 8 

CHAR•CAR(COR(CnR(COR(COR(P?,FU)llll 
CALL PRL!ST(CAR(P2l,ll,&l 
WRIH(6,1,2Al 

0 128 
0 

FORMAT(!H+,4~,'WOROI !5 OF ADJUNCT•TYPE') 
CALL PRLISTCCHAR,!& 1 &l 

D WRtTE(&,!2Q) 
D ! 29 FORMAT(!H+o&M,'SU6TVPE1 • PUSHING NEW TA5~ !MAr,£•) 

0 
0 

tF(CH&R,EQ,MOD) GOTO 21 
CALL PUSH(PSE,POSSEl 
GOTO & 

21 CALL PUSH(MQPR,POSSEl 
& CALL PUSH(P2,PDSCO) 

CtLL PUSH(MQOX,POSOXl 
CALL PUSH(~,POSPR) 
IFCPOSP2,NE,~) GOTO 24 
GOTO 4 

8 JF(C0MF(!Ro2l,NE,FUNCTW) GOTO 23 
CAI.L PRUST (CAR (Pal, II, bl 

0 131 
W~!HCbol!ll 
F0RMAT(IH+,U 1 'WORD I 
CALL PUSH(P2NWFW,POSP2l 

P2NwFw • COR(P2l 

IS OF fUNCTJONWORD·TYPe'l 

24 P2NWFWoCOR(P2NWFWl 
!FC(P2NWFW,EG,0l,OR,(CARCP2NWFW),~Q,~l) GOTD 2& 
P2•CAR(P2NWFW) 

0 CALL PRLIST(CAR(P2) 1 !3,&l 
D WR!TE(b,13~l 
0 132 FORMAT (!H+,&X, 'WORD I IS DEPENDENT FROM FUNCTtONWORD'/ 
0 •UX, 'AND IS CONSIDERED TO H~E IlS PLACE') 

GOTO 25 
2~ CALL P0PUPCP2NWFW,P05P2) 

!F (POSP2,NE,0l GOTO 24 
0 WRIT!th, 133) 
0 !33 FORMAT(?M,'• NO (MOR~l WORDS DEPENDENT FROM FUNCT!ONWQRO'l 
D WRITEC&,nAl 
0 134 FORMAT(!H+,53~,'• PoS EMPTY') 

GOTO 4 
23 CALL PRLIST(CAR(P2FU) 1 39,hl 

WRITE(b,\35) 
\35 FORMAT(tH+ 1 'S ~RRQR S ••CANNOT IDENTIFY FUNCTIONI'l 

CALL PRL!ST(CAR(P2l 1 3Q,b) 
"RITE(&, 13~) 

13~ fORMAT[t~+o2qX, 1 0F WOROI'l 
GOTO 4 

1~ IF(COMF(lR,2l,NE,~DJIJl GOTO lJ 
0 CALL PRLI$T(CAR(PCDl,!5,&l 
0 WRlTEC&,!3Tl 
0 13? FDRMAT[tH+,'PRES~NT WORD! 

o~•CAR(CDRCCDRCCDRlCOR(PFUlllll 
0 CALL PRL!ST(O~,l4 1 &l 
0 WR!TEc&,t38l 
0 1!8 FoRMAT(!H+,2M,'SUBTVPE1'1 
D •SX,'START!NG TO CREATE NEW ADJUNCT NOOE'l 

IS OF AOJUNCT•TVPE'l 
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020& 
020 7 
~208 
0209 
0210 
.0211 
0!12 
0213 
0214 
02!5 

02!b 
0217 
02!8 
02!9 
0220 
0221 
022~ 

sm 
0225 
022& 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
~23& 
0237 
0238 
0239 

02U 
0241 
0242 
0243 

0244 
0245 
024& 
0247 
0248 
0249 
0250 
0251 

0252 
0253 
0254 
0255 
025& 
0257 
~258 

CALL NEW(NPLl 
CAR(NPL)cOX 
CALL APPENO(PSE,NPL,PS~l 
CALL NEWCPRl 
CAR(PRl•PR!D 
CALL APPENO(NPL,PR,NPLl 

CALL GET (CAR(PCO),CARCCARCCORCPCOlll,INF) 
IHPR • CDR (!Nfl 

CALL APPENO(PR,CAR(COR(C~R(lHPRll),PR) 
CALL APpENO(PR,CAR(lHPR),PR) 

IF(CAR(tORCIHPRll,NE,~l CALL APPENOCPR,CAR(CORCIHPR)J,PRl 
IF(OX,EQ,MO~l GOTO 2 

D CALL PRLIST(MQOX,20,&l 
D WR!TE(&,!J9) 
Q !3Q FoRM.T(!H+•'NOW ATTACHING TOPI TD ARGUMENTS OF QUALIFIER•) 

EALL NEI'i(ARl 
AR(ARl•ARG 

CALL APPENO(NPL,AR,NPL) 
CALL NEW(cAl 
CAR(CA)oCAR!CDR(CQR(lHPR)ll 
CALL APPENO[AR,CA,AR) 
CALL APPEND(C.,MQOX,CAl 

D CALL P~LtSTCC.~(NPL),I,~l 
0 CALL PRLtST(OX,3,&l 
0 WRyT 0 (o,l41) 
0 !41 FORMAT(tH+,!Ho,7X,'NODE COMPLETED •NO ATT.CHEO'l 
0 CALL PRLlST(CAR(~SE),I,&l 

GOTO 2 
I~ C•LL PRLlsTCCAR(PFU),3Q,~) 

D WRITEC&,t42l 
0 !4~ 'ORMAT(1H+ 0 '$ E~ROR! ••CANNOT tOENTtFY FUNCTlONa'l 
D C•LL PRLlST (CAR(PC0),39,6l 
D oRJlE C&,\43) 
D !43 ~ORMAT(tH+,a9X,'OF WORDI'/ 
D •I?X,'O~ INCORRECT INPUT FROM POpUP') 

GOTO 4 
S~ CONTINUE 

D wRITEC&,!44) 
D !40 FQRMAT(!X,'• NO (MOREl WORDS DEPENDENT FROM PRESENT WORD'/ 
D oiH~,',IU, SEMANTIC STRUCTUR! AT PRESENT STAGEr'/) 
0 SMAoSEMA 
0 81 SMAoCO~(SMA) 
0 IF(SM.,EQ,~l GOTD 82 
0 CALL PRUST(C.R(SMA] ,7,&1 
D GQTO 81 

B? GOTO I 
q~ wRITE(6,t45l 

145 FORMAT(\H~,'>>>>> S!MANTIC STRUCTURE COMPLETED NOW'/ 
o7X,'FINAL OUTPUTI'I) 

SMA•SEMA 
91 SMA•COR!SMAl 

1F(SMA,fQ,0] R~TURN 
CALL PR"!ST!CAR(SMAl 1 7,6l 
CALL PLOTLI(CAR(SMA),1,1,1l 
GOTO 91 
END 
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