
Promotor:

UNIVERSITEIT ANTWERPEN

UNIVERSITAIRE INSTELLING ANTWERPEN

OEPARTEMENT GERMAANSE FILDLDGIE

ASPECTS OF A MODULAR THEORY OF LANGUAGE

VOL II.

Praefschrift ter verkrijging van de graad van Doctor

in de Letteren en Wijsbegeerte aan de Universitaire

Installing Antwerpen te verdedigen door LUQ STEELS

H. Brandt-Corstius
Wilrijk,1977

§ 2. THE PROCESS THEORY

In :thM ehap:teJt we pJteAen:t a :theoJty abou.:t language pJtaceMeo

whA_ch ,U, bMed an the modu.l'aJt gJtammaJt :theOJty fuewoed -Cn

pJtev-CoUi> chap:teJt.

In a fi-CM:t Metian we pJtel> en:t a paM-Cng o yo tern fiOJt natu.J<a.i

.l'anguage. Afi:teJt an -Cni:Jtoduetion to the paMing pJtobf.em and

an -tn:tuLttve oveJtv-Cew ofi the mode.!' we defiine -Cn fiuU de.i:<Ue

the JtepJtel>en:tat-Con conoi:Jtu.W, the MJtt ofi unguiotic Jteaoon-Cng

and the eoni:Jtof. .;;tJtuc:tuJte afi the oyo:tem. Afi;teJt that we

fucwo an exampf.e and oholttf.q -Cnd-tca:te how oi:Jtu.c:tuJtu can

be exiltac:ted fiJtom :the Jtel>uU ofi the paM-Cng p!tocuo.

In a .;econd oection we p!tel>eVIX veJty bltiefif.y Mme -Cdeao

fioJt a natu.!<a.i f.angu.age pJtOdu.ung oy<ltem whA_ch conou.I'U the Mme

ungui.;tic -£nfio!tmation M ,U, Ul>ed by the paM-£ng l>ljotem.

§ 2 • lliE Pro::ESS THIDRY

2.1. The parsing process

2.1.0. Introduction to the parser

2.1.1. Particles

2.1.2. The parsing predicates and their combination

2.1.3. The creation of new particles

2.1.4. The general control structure

2. 1. 5 . Example

2.1.6. The computation of the resulting structures

2.2. The production process

2.2.0. IntroduGtion

2 . 2 . l. The tasks

2.2.2. The process

2.2.3. Example

•

introduction

2.1. THE PARSING PROCESS

2.1.0. Introduction

In this section we present an exact model for the analysis of

natural language based on the linguistic principles discussed

in previous chapter. In this introductory part we define the

parsing problem itself and present an overview of our system.

Normally the parsing prOblem for natural language is defined as

the problem of how to find for a given natural language sentence

the structures upon which an interpretation can take place.

However recently it has become more and more clear that this

goal is not reachable simply because the input sentence itself

does not contain enough information for an effective interpretation

to take place . Based on the principle that the more intelligent

the receiver the less explicit information you need to transmit,

the information in a natural language sentence is restricted

to the minimum.

So we restate the problem as follows: A parsing system extracts

from the natural language sentence as much as possible information

which is relevant for the interpretation process as can be

done on the basis of a grammar.

The parsing problem consists then in the construction of a parsing

system.

If we stick to our terminology of language phenomena and

language factors, we can define the main problem in the

design of a parsing system as follows. How can one observe the

presence of a certain language factor. In the past two basic

methods have been introduced and we want to add a third method

here.

The first method is the inductive method (called bottom up

parsing in the computational linguistics jargon). It proceeds

as follows: You start from observing certain phenomena andby

gradual abstraction over the phenomena you try to re1ate a

certain phenomenon to a certain factor.

- 2.1. -

introduction

A typical notion in this context is that of a surface structure

(first level of abstraction) and one deeper structure and

maybe even later still a more semantic structure, etc;.

The second method is the deductive method(called topdown

parsing in the computational linguistics jargon). It proceeds

as follows: You start from certain grammatical expectations

and you gradually translate these expectatiOns up to a point

where you are able to compare them with the langua9e input.

Notice the same ideas about small steps (but how in

a reverse direction) leading from 'deep' structures to

surface structures.

The third method, and the one that will be followed here,

is what we will call the method of falsification It proceeds

as follows: the input elements themselves define a set

of hypotheses about the factors being signalled. The system

knows the relation between a factor and a phenomenon. Thus

it can compute the implications of a given factor for the

language situation. If these impliciations are not present,

the hypothesis is falsified, else it is accepted, at least

for the time being.

So, in the first methods you consider a certain phenomenon

over a given input element and ask the question what pattern

of my grammar applies. Suppose you have found the pattern then

you ask what pattern applies next, etc.

In the falsification method a given input element tells right

from the start what things it may be used for. Then you go

to the grammar and ask suppose I use that input element for

x, what itnplicatiOns does this have as regards the language

phenomena over the input elements. Then you go back to the

input situation and check whether it is as predicted.

In general the falsification method assumes an active

grammar consultant that computes implicitions whereas the

other methods assume an active representation that changes

from surface to deep in small steps.

- 2. 2. -

introduction

From this option follows the way in which the next

main problem is approached: How are you going to bring

the variety of knowledge sources relevant for parsing

in motion.

In the recent history of parsing systems the discussion

has been centered around the dichotomy between syntax

vs. semantics directed parsers. Let us introduce these

two modes of thinking briefly before we present our

own position.

The first attempts (around 1960) to analyse natural language

mainly from the point of view of automatic translation were

mostly directed towards morphological processing and the

construction of large dictionaries (see Vauquois,1976, for

an overview) .

The second school of thinking (around 1965) was strongly syntax

based. The problem of analysis was split up in two subproblems

(a) the discovery of preliminary structures representing the

syntactic properties of the input, and {b) the discovery

of the actual semantic structures.

In the syntax-direc_ted parsers designed during this period,

the preliminary structures represent the syntactic aspects

of the sentence (in particular functional relations a1beit that

functional relations are sometimes indirectly represented in

terms of constituent structure trees) . To construct these

preliminary structures a grammar in the usual sense is consulted

as source of knowledge. The semantic structures are obtained by

still quite complicated mappings starting from the !)reliminary

structUre.

A typical well known example of such a parsing system is

the Woods' transition network parser {Woods, et.al.,l972). In

this system recursive transition networks augmented with tree

transforming actions and register manipulations are used to

obtain the preliminary structures. To compute the semantic

structures semantic rules are applied. These rules have two

parts : a ·left part with 'templates consisting of a(syntactic)

tree fragment plus additional semantic concidtions 1 (ibid. 2. 18)

and a right part wi·th 1 forms or schemata' upon which the evaluation

can take place.

- 2.3. -

introduction

The mapping of' rules proceeds by matching a syntactic structure

with the left part of a rule, and if successful the result is

the right part.

Another example is Petrick's tranformational recognition procedure

which uses a reverse transformational grammar to obtain the

preliminary structures and a mapping based on patterns to compute

the semantic structures stated in some predicate logic language

(Petrick, 1973).

It may be of interest to point out the parallellism with the

so called standard theory of transformational g.rammars as

presented in Aspects (Chomsky, 1965) . The preliminary structures

correspond to the deep structures in this theory and .the

semantic structures which in a Katz-Fodor conception often

associated with this standard theory, consists of feature

sequences, are obtained by some system of projection rules

(Katz,l973).

The third school of thought (around 1970) which is said to

perform semantics-directed parsing does not use the intermediary

step of having preliminary structures in which J:unct:i..onal, re.lations

or category information pl~ys a rOle. Here one starts imrnrnediat~ly

on the level of constructing structures which are to be used

in the interpretation. A typic.al well known example here is

Wilks' analyser(Wilks,1975)or Riesbeck's parser (Riesbeck,1976)

Wilks uses templates and other forms of semantic knowledge

to discover the semantic structureS directly.on the basis"

bf the input. The parallel to the generative semantics viewpoint

should be obvious here.

In the light of our own parser it seems that the syntax/semantics

directed dichotomy can be resolved into an option for

all available knowledge directed parsing . It is only because

an hierarchical dimension was introduced in the parsing system

that the question arises. We will see that this hierarchical

thinking need not be the only way. In particular we will show

- 2.4. -

introduction

the various knowledge sources can act in parallel and can

be brought together by a supervislng control structure.

We stress that these two developments, i.e. the falsification

method and the parallel application of knowledge is an

immediate result of the linguistic theory presented in previous

chapter, more in particular of the modular property of

this theory and of the fact that the grammatical rules

define a relation between a factor and a language phenomenon.

The intuitive model: the particle theory

Let us now create a picture of the lang\].age process as we

see it happening. (Theoretically of course. No claim is made about

the psychological reality of the whole thing, although we hope

psychologists may find inspiration in the model.) The description

here will seem to be rather intuitive. But our aim at_the moment

is to evoke understanding of, the general spirit and underlying

ideas. The exact account up to the level of computer programs

simulating the language process, as we will depict it· here,

will follow later.

Language can best be seen as a form of energy exchange between

two information processing systems. What interests us is how the

exchange takes place. Obviously there_ is a system which emits

the energy and a system which accepts the energy. First we discuss

the accepting process, normally called language understanding.

Language understanding is the evocation of a series of actions

caused by the incoming energy of a language sentence. Imagine

a sort of work space, \.Jhich we will call the state space:

state space

- 2.5. -

ln.tJr..oduc..tlon

Each time an element of a language sentence comes in, it

provides the energy to create one or more particles:

0
state space

l

IN UT l

time: tl

The particles are numbered for ease of reference. The time

dimension is very important. Indeed, at the next moment of time,

a new pulse of energy comes in (but the old particles

remain in the state space of course) :

10 02

0
3

Os
state space

0
4 ~

INPUT 2
time: t2

Now comes the second sort of action : the combination of two

particles to form a new one. This combination is caused by the

activation of a number of forces which are resident in the

state space. The word force is important here. Think about physical

forces as magnetism or gra~ity. Although certain conditions should

- 2.6. -

-Lrt.t!w duc.t-Lo 11

be met with by the particles for a force to become active, the

force should be seen as a global phenomenon, present in the

Complete space.

/
' I /

v~r::
0 p

1

I 2+5

~
5

state space

time t2"

There are some general conditions for the combination of two particles,

such as {i) particles created due to the same input pulse are never

combined (ii) a particle that was combined earlier to a

certain particle can later not be combined again to this particle,

(iii) it is allowed however to combine the same particle with more

than one other particle.

Another interesting thing is of course the investigation of the forces

themselves. We ,.Jill see that there are two types of forces: {i) Forces

which incorporate aspects of the system of conventions that the language

users agreed upon (in such a case an alternative word for force is

knowledge source) and (ii) forces which incorporate results of previous

actions by the system, e.g. the status of the state space as

a ~"'hole is (paradoxically !) a force in the state space.

Note that the newly formed particles may still combine later with

other particles which float arond in the state space. As a whole

you get a regular pulse of incoming energy creating particles, and

of subsequent combination processes.

- 2. 7. -

1+4

0
0 l state space

forces 2+5

'--o--?O-r---o_o--"'2-~
INPUT 3

time: t3

1+4+8

0 9
l 40

06+7 0
2+5

02

06 state space

90 0 10

On

INPUT 4

time: t4

Now comes the second part of the story. Imagine

a second work space which t.Ye will call the .cognitive space on

top of the state space.

- 2. 8. -

-in:Vw duc..t-lo vt

inputpulse

cognitive

space

} state space

The particles travelling through the state space are

now to be seen as input energy for action in the cognitive

space:

inputpulse for

cognitive space

--

INPUT for

state space.

- 2. 9. -

cognitive space

state space

ln.tnodu.c..tlon

Actions in the cognitive space can take the form of changing

the memory structures, cemsing sequences of commands for

physical action, causing the evocation of thought processes,etc.

The particles enter a new sphere so to say, they become

forces themselves.

The first type of actions (creation of particles and their

combination) are called analysis actions. The second type

(where particles themselves become forces) the interpretation

actions. It is fruitles;:; to assume that the two types of actions

occur after each other in time, rather we say that the two

phases occur in parallel, even more, although the second operates

on output of the first, it turns out that the interpretation is

(paradoxically)one of the forces in the analysis phase itself.

When reading this short description of the language process,

the analogies with chains of chemical reactions or With interactions

of physical forces will readily come into the reader 1 s mind.

We do not discourage these analogies.

too mechanistic conception of the language processing systems

and the language process itself. Instead one should see it as

a "living" phenomenon, in the biological sense. Typical are

the goal directedness, the interaction with the environment

(made up by other information processing systems) , the constant

evolution known as linguistic change, the maintenance of a

steady state, the high interaction of the subsystems, the

interconnectivity of everything, etc .. See for a general

discussion of this Steels(l976,b)

A great number of questions are raised by the above description

of the language process. The questions that will concern us

most are:

l.what is the nature of the particlesl

2. what forces are operating ~
3. what are the mechanics of each force~

These questions will be our main concern in the next paragraphs.

- 2.10. -

introduction

First we will discuss the interior details of the particles

themselves (2.1.1.) .then_ we will formalize the sort of

reasoning that is embodied in the forces and how the results

of reasoning interact. (2.1.2.).

The next topic is the construction of new particles: the

merging process (2.1.3.). Then we discuss the general control

structure of the system (2.1.4.) and give a detailed example

of a complete process for one sentence (2.1.5.). We close this

section by showing how structures can be extracted from the

particles (2.1.6.).

Numerous examples of parsing processes will be given in next

chapter when we present the experimental results.

- 2.11. -

particles

2.1.1. Particles

We said already that a particle is a linguistic object that

contains sequences of primitive information items in a

structured way. The following principles will be used

for the design of these information sequences:

(i) Only the information necessary to run the process

is included. This implies that information which is available

at other places (e.g. the dictionary) is considered to be

superfluous in the particle.

(ii) We try to preserve ambiguity as much as possible,

that means until it can be resolved. In practice this leads

to the following options:

-a- An initial particle should be made for every

possible function and for every predicate/viewpoint, i.e.

for every sequence in the lexicon .

-b- Ambiguity as regards syntactic features and

semantic features is preserved due to our feature complex

ca~culus.

-c- Ambiguity as regards states in transition networks

(both syntactic and semantic)is preserved.

-d- Only if due to a certain merging (on the basis of

an object relation) more than one case comes out, it proves to

be necessary to construct more than one resulting particle.

In all other cases the combination of two particles yields

only one new particle. This is a very strong.result.

-e- Lexical ambiguiy which has no influence ·an the

parsing process is preserved, even up to the level of semantic

structuring . In other words some sorts of ambiguity cannot

be resolved on the basis of the grammar alone.

(iii) It should be possible to compute the functional,

case and semantic structures, as defined earlier, immediately

on the basis of the particles~ In other words no other sort

of processing is allowed as interface for the semantic component.

- 2.12. -

particles

We now define the particles in full detail. A particle

contains mainly 'configurations' linked with each other.

So we first define the notion of configuration.

Definition

A configuration is an n+2 tuple:

n;yo

such that

a 1 is a word

a 2 is an information sequence

ai+2 , . • . , an+2 for i) 0, n 1r i other configurations

Definition

An information sequence i for adjuncts and functionwords is a 6-tu~le:

i <il, i2, i3 ,i4 ,i5 ,i6>

SUCh that:.

il is the hypothesis of the word under consideration; we

number hypotheses according to the moment of input: INPl,INP2, ...

i2 is the function name of the word for that hypothesis

i3 the state in syntactic network

according to our principle. of the preservati.on of ambiguity we

allow there to be a set of states;

i4 the state in the semantic network, also here we will

allow there to be a set of states;

i5 the internal syntactic feature complex (the extension)

i6 the qual/mod/undet characteristic

An information sequence i for objects consists of a 7-tufle

i =(il,i2,i3,i4,i5,i6,i7>

such that

il,i2,i3,i4,i5 are as for adjuncts

i6 is the extension of the semantic features associated

with the viewpoint of the word for the predicate in the lexicon

sequence that immmediately caused this information sequence

i7 the case.

- 2.13. -

particles

An information sequence is initially constructed on the

basis of the grammar but may be changed during the parsing

process. According to our first principle, we need

a special reason to incorporate an item. Let us therefore

now give arguments for incorporating the above information

pieces and no other ones in an information sequence.

(i) The hypothesis is necessary because one word may have

different hypotheses.

(ii) The function is there because we want it to be possible

to extract a functional structure directly from a- configuration.

(iii) The state of the function in its syntactic network is

incorporated because it can be changed during parsing.

(iv) The state in the case network is only relevant if

there are objects, but if so, it is obviously necessary

because the state in the case network changes for every

object that comes in.

For adjuncts

(v) The qual/mod/undet characteristic relevant for the

semantic feature matching e.g. is incorporated because it

is worked out (sometimes) by the parsing process which

characteristic holds.

(vi) The internal feature complex is incoporated because

it may be changed by a synnactic feature match or by

features being added to it due to the send-th~ough rule.

Consistency must be kept, i.e. if a match was successful

for a particular subset, then later on the same subset

must be used.

For objects:

(v) For the same reason the syntactic feature complex of

objects is incorporated.

(vi) And for the same reason the semantic feature complex

is necessary. If an object fills a slot in one frame

on the basis of a particular subset, then if a test is made

whether it fits in another frame this can only be based

on the same feature set.

(vii) The case itself is a necessary element for objects

(except for the subject of the sentence) because it is

computed during parsing time and the same initial hypothesis

may later lead-' to different cases.

- 2.14. -

particles

Besides a configuration a particle contains the following:

(i) The range of the configuration, i.e. from which word

to which word the configuration goes,

(ii) whether the particle is open for further combination

processes or not (if not we add the label LOCKED to a configuration) ,

(iii) the state in the syntactic network of the topword

in the configuration when the reduction relation is proceeding

from left to right.

In the discussion and examples (i) and (ii) will often be left out.

l. ((Nl) LETTER (INP4 NOM.OBJ NIL NIL ((SING OBJ) (SING SUBJ 3PS))

2.

state word

((THING))
semantic
features

hypo function
thesis

NIL))
case

state
ln

s:.f.nt.
net

state
in

sem.
net

syntactic features ·

(confiquration for object with state in synt netw added on top)

(WRITES (INP2 VERB NIL (W/l FIN)
word hypo

thesis
function state

in
synt.
network

(configuration for adjunct)

state in

sem.

netw.

((PRESENT)) QUAL))

synt.

features

qual/mod/undet
characteristic

3. ((NS) GIRLS (INPS NOM.OBJ NIL NIL ((BY PREP DEF TWO PLURAL))

((PERSON)) NIL)

(BEAUTIFUL (INP4 ATT.ADJ NIL NIL NIL UNDET))

(TWO (INP3 NUMl NIL NIL NIL NIL))

(THE (INP2 DETERM NIL NIL NIL NIL))

(configuration with three depending configurations)

~or the ~ollowlng discussion we will use schematic representations

of configurations in the form of tree structures:

- 2.15. -

particles

Convention

If c = <a1 , a 2 , a 3 , ... , an+Z) is a configuration with

a 3 , ... , an+Z other configurations then we draw a tree:

We can now define the particles themselves:

Definition

A particle is a quadruple (al,a2,a3,a4)with

al the range {i.e. from where to where in the input sequence

the particle contains words)

a2 LOCKED or NIL (keywords i~dicating whether the particle is

no longer or still subject to combination processes

a3 a state in a network or a set of states associated with

the word in the topconfiguration of a4

a4 a configuration.

Convention

As was mentioned already the range and the LOCKED/NIL

will normally be omitted in the discussion.

- 2.16. -

parsing predicates

2.1.2. The parsing predicates and their combination

Now comes the second step in the exposition: an investigation

of what sort of reasoning can be used to decide whether

two particles should merge or not. It is obvious that the

more precise this decision process, the more efficient the

parser.

It turns out that there are two main sorts of reasoning about

the information in the particles, the first one is based on

linguistic knowledge about the systematic aspects of the

source language. The second one is concerned with the general

principles of parsing that seem to govern the whole process.

Because there are many different knowledge sources available

to support linguistic reasoning about language, we decided

that the main problem, i.e. whether two particles should merge

or not, can best be split up in a number of subproblems:

should the particles merge on the basis of knowled~e source

x {say word order), should the particles merge on the basis

of knowledge source y (say concord), etc. Once this step

is taken one needs a formal model to combine the outcomes of

the different consultations. We will therefore develop first

of all a formai model for the combination of the results of

linguistic reasoning performed by means of the parsing predicates

which will be discussed in the following sections.

2.1.2.1. The combination of the parsing predicates

As theoretical model for the interaction of the knowledge sources

we adopt a model from automata theory that was never before

presented as a model for language parsing but rather as a model

for do::ing computational geometry or solving the problem of

perceiving objects and pictures ! We are thinking about

perceptrons (see Minsky and Papert,1969).

- 2.17. -

parsing predicates

(1) A set of predicates which are computable independent

of each other and which all deal with a particular aspect of

reality, and

(2) a decision function that brings the results of the various

predicates together and thus computes the value of the predicate

as a whole.

You may imagine a perceptron to be a sort of voting system where

each subpredicate is a voter. The decision function is then used

to compare the results of all voters and to make the final

decision. Formally, it is not excluded that the decision of one

voter is considered more important than that of another one,

we say that the first voter has more weight than the other.

Another aspect is the treshhold which is a way to incorporate

the idea that a minimum of voters must agree before the whole

decision becomes positive:

VOTER 1

VOTER 2

VOTER N-1

VOTER N

global

decision
RESULT

Minsky and Papert define perceptrons using the notion of a

treshhold and weight as follows:

- 2.18. -

parsing predicates

Definition

"Let ~ , ~ n be a family of predicates.

We will say that W is linear with respect to ~ if there exists

a number 8 (the treshhold) and a set of numbers

a¢l' a~ 2 , ... ,a¢n (the weights)

such that

~(X) ~ 1 iff o
01

1>1 (X) + +"on 1>n(X) ;? e " (ibid,lO)

(Notice that the code for true is 1 and false 0).

Definition

"A perceptron is a device capable of computing all predicates

which are linear in some given set ~ of partial predicates "(ibid,ll)

Now we apply this concept to the parsing process.

The main predicate for which we want a decision true or false

is this : Is it necessary to merge two particles ?

To decide on this we distinguish a number of subpredicates which

we will call the PARSING PREDICATES where each subpredicate

embodies a particular force. Take e.g. the predicate

which applies the synDactic features match rule. This predicate

checks then for a word in each particle whether there is

concord between the two. If so, the subpredicate is true,

else it is false. Similarly for all other phenomena.

It is important to note that each subpredicate is computed

independentl~f the other ones.

We think that this perceptron conception of the parsing process

solves the following problems:

- 2.19. -

parsing predicates

(i) Each moment the system wants to merge two particles, all

available knowledge sources can be asked to vote for or against

the merging. In this way we can obtain a complete interaction

of all knowledge sources on the decision and this prevents

superfluous combination processes right from the start.

Also we can organize the application of all knowledge sources

in parallel, because each of them works independently of the

others. This is certainly a fascinating idea and obviously

leads to very powerful parsers.

(ii) The perceptron conception solves another great problem

on which parsers currently break down, namely the problem

of unreliability.

First of all there is unreliability of a knowledge source.

Take e.g. semantic features testing. It is well known that

any rigorous system set up to obtain consistency of semantic

feature processing will break down because one can always

produce semantically anomalous sentences and still be understood.

The same holds for other linguistic phenomena. The sentence

"he speaks not good English '' is perfectly well understood,

as well as "he speak not good English" and (although matters

obviously become worse) "not speak he good English". But on

the other hand there is a boundary of understandibility.

Consider "speak good he English not".

Second there is the unreliability of the input. To say

that every sentence formulated in a certain language is

grammatically 100 % correct is quickly refuted by observation.

E.g. there are bound to be numerous mistakes in this text due

to the fact that its author is not a native speaker of the language

and therefore does not know the conventions as well as someone

who has been practising them all his life. Notice that the

language user is not only able to understand these imperfect

sentences, moreover he knows why this or that sentence is

imperfect.

These two factors can in our opinion only be coped with by

a perceptron conception for the intenaction of the various

knowledge sources, where we can attach weight to each knowledge

source and where the treshhold should not necessarily be

equal to a 100 % satisfaction of all subpredicates. E.g. if

- 2.20. -

parsing predicates

all but the semantic features predicate yields true

, the decision function may decide that enough evidence

is there to insist upon merging the two particles.

Notice that when we meet a linguistic fact that is

not consistent with the linguistic description in the

grammar we do not necessarily consider the grammar to be

falsified by the occurrence of this phenomenon !

Having discussed the combination of the parsing predicates,

we can now turn to a discussion of the parsing predicates

themselves. As already mentioned in the introduction to

this section there are two sorts of reasoning possible.

Consequently we organize two further subsections. One

about the systematics of the language and one for reasoning

about the process or results about the parsing process.

2 .1. 2. 2 .. Parsing predicates based on systematics of the language

The question whether two particles are allowed to merge

amounts to answering the questiOn whether a certain word say

wl in configuration cl can act as the subordinate of another

word, say w2 in configuration c2. The envi,ronment ,i.e. the

other items in the configuration, may be involved in this

decision as we will see and also the position of each word

in its own configuration is not irrelevant. This will be

discussed in§ 2.1.2.3 .. Here we concentrate on the two

words themselves and their associated information. Consequently

the predicates will be formulated on the basis of two words.

We address the information sequence of a word wk as iwk and

the n-th item in it as i k" n,w

The discussion here runs parallel with the discussion of the

grammatical rules, in particular there is a predicate fOr

each rule. To make the relation between the linguistic rules

and the parsing predicates explicit, we place a p-indicator

before each rule, e.g. if function-of-head is a rule, then

p-functioh-of-head is the predicate derived from it.

- 2.21. -

~~rsinz predicates

(l) FUNCTION-OF-HEAD and TAKING-OBJECTS

Recall the structural property that given words wl

(in configuration cl) and w2 (in configuration c2), if r,.1l

is supposed to have a particular grammatical function f as regards

w2, w2 should have a particular possible function, indicated by

fUnction-of-head (f)

From this we extract the following predicate:

Definition

p-function-of-head : W

(1/w) (iZ,wl E F-adj

x W -+ ~~TRUE, FALSE) is defined for

u F-functw) as follows:

TRUE if function-of-head (iZ,wl)

p-function-of-head(wl,w2)=

l FALSE otherwise

Recall also that for objects the information was stored

vice-versa by means of the taking-objects rule telling whether

a word takes objects or not. This leads to the next predicate:

Definition

p-taking-objects: W x W -+(TRUE,FALSE) is defined for

(Vwl) (i 2 ,wl E F-object) as follows

TRUE if taking-objects(i2 ,w2) TRUE

p-taking-objects (wl,w2)=

FALSE otherwise

- 2.22. -

i
2 ,w2

parsing predicates

(2) Word order

The second property is that two words should be in a relative

position as regards each other for a particular grammatical relation

to hold.

We use two linguistic rules for this purpose: position (if

the subordinate has the function adjunct or functionword) and

object-position (if the subordinate has the function object)

Consequently we will have two corresponding predicates. But

first we need an auxiliary predicate.

Definition

as

say that a word wi comes before another word wj

wi (wj if in the input sequence we have

wi .•• wj wn n)Oandl~i~j.{

denoted We

n

Definition

Let p-position : W

(11 wl) (i2 ,wl E

X w -+ LTRUE I

F-adjuncts u

FALSE] be defined for

F-functw) as follows:

TRUE if position{i2 ,w1) before or undet

and wl < w2

p-position (wl,w2)

FALSE otherwise

Definition

Let p-object-position : W x W -+ TRUE, FALSE

(V wl) (12 ,wl E F-object) as follows:

be defined for

TRUE if objectposition(il,w~) before or

p-object-position {wl,w2) undet and wl (w2

FALSE otherwise

- 2.23. -

p~rsing predicates

(3) Syntactic networks

Completion automata are used in the system to regulate in

a nontrivial way the mutual restrictions that occur when

different subordinates are related to the same head.

An important assumption behind the use of these networks

(when used in a left-going mode) is that the ranges of the

unit relevant for the transitions in a network are bordering

on each other and as soon as a unit is encountered that

does not fit, the network is assumed to enter a final state.

In this way we can discover the boundaries of word groups

and it must be noted that the method works excellent.

Another nice consequence of the assumption is that the state

in the network should not be incorporated in the information

seqUence of the topword of the combination but can be stored

externally in the particle itself and be declared irrelevant

as soon as the boundary of the network has been found.

This is the reason why we defined such a state as

being located outside a configuration.

The predicate relevant for syntactic networks is then defined

as follows:

Definition

p-synt-network: W x W ~{TRUE, FALSE) is defined

(V w2) (syntactic-network (iz,wz) is defined) as follows:

LetS= s 1 , ... sn be the set of states associated with the

particle of w2 , then

TRUE if (3 S E S)

p-synt-netw (wl,w2)

FALSE otherwise

- 2.24. -

parsing predicates

The second aspect in relation to syntactic networks is that

a set of new states is associated with the particle. This

operation is however dealt with in the section where

we deal with the construction of new particles.

(4) Concord

The next predicate has to do with the syntactic featu.re

matches based on the feature complex calculus we intrdduced

in previous chapter.

Definition

·p-concord: W x W_.{TRUE, FALSE!

(V wl) (wl €'- F-object)

is a function defined

p-concord(wl,w2)=

(5) Send-through

TRUE if either

(i) concord (i 2 ,w1)

or

false

concord (i2 ,w1) =true and

syntactic-feature-complex of w2

matches with iS,wl

FALSE otherwise

The other aspect having to do with syntactic feature complexes

is the phenomenon that certain features are 'send-through'

to the feature complex of the head. This is again a situation

where the information sequence is changed and this will

be discussed in the relevant subsection.

Now comes the second series of predicates related to case.

- 2.25. -

parsing predicates

(6) Semantic features for adjuncts

The next parsing predicate investigates whether the head

of a function has the appropriate semantic features to fill

a slot in a frame of a subordinate.

For this purpose it is necessary' (i) to compute the semantic

features that are to be satisfied by means of the viev.1point

of the adjunct, (ii) to compute the semantic features that

are associated to the slot filler (recall the additional

complexity due to the modifier/qualifier dinstinction)

to see whether both features match, in particular whether

the result of (ii) matches with the result of {i). If

(iii)

the result of the match yields true the predicate is true,

else false.

Definition

p-sern.feat-adju : W x W~ _TRUE, FALSE\ is defined

('il wl) (wl c F-adjuncts) as follows:

Let(wl,w2) f.F, pl = predicate(wl), cl =viewpoint (wl) and

p2 = predicate (w2), c2 =viewpoint (w2) then

TRUE if

(i) either F has the rnodifier/undet characteristic

and rnatch(valuerestriction(self,p2),

p-sem.feat-adju (wl,w2)

valuerestriction(cl,pl))

or

F has the modifier/undet characteristic

and rnatch(valuerestriction(c2,p2),

valuerestrictiOn(cl,pl))

FALSE otherwise

- 2.26. -

TRUE

TRUE

parsing predicates

A side-effect of the p-sern.feat-adju predicate is that

the domain of the semantic features complex of the

head involved is restricted to the set of subsets satisfying

the value restriction to be satisfied.

' (7) I Semantic networks

Next we have the predicate which conSults the semantic networks:

on the basis of the syntactic features complex it is investigated

whether there is a transition possible.

De-finition

p-sern-netw : W x w~(TRUE, FALSE} is defined

(V wl) (wl ~ F-objects1 as follows:

LetS ={s 1 , ••. , sn1 be the set of states in the case networks

with the configuration of w2, then

TRUE if (J s S) ~ (i5-,wl ,s) i1l)

p-sem-netw (wl,w2)

FALSE otherwise

Notice the side-effects: we can compute c, because c is associated

with a transition in the network, we have a new state in the

case network and , because of the feature match, a subset of the

syntactic feature complex will be cut out of the domain.

This information will be of use in the construction of a new

particle.

- 2.27. -

pnrsing prsdicates

(8) Semantic feature test for objects.

The final predicate deals with the test whether the

semantic features of an object are compatible with the

case it wants to fill in a certain case frame.

Definition

p-sem. feat-obj: W x W-----'}> {TRUE, FALSE j is defined

(Vwl) (wl Eo F-object) as follows:

Let (wl ,w2) t f, pl == predicate {wl) , cl = viewpoint (wl) ,

p2 = predicate (w2) , and c one of the .cases of p2, then

p-sern.feat-obj (wl,w2)

TRUE if

match (valuerestriction(c,p2),

valuerestriction(cl,pl)

FALSE otherwise.

A side effect of this predicate is the restriction of the

semantic features complex of the object involved.

We have now presented predicates for all rules in the

modular grammar defined in previous chapter. We now turn

to reasoning based on results of the process of parsing itself.

- 2.28. -

true

parsing predicates

2.1.2.3. Parsing predicates based on the process

In this subsection we present a number of forces which also

help in the decision whether two particles merge but which

do not use linguistic information to formulate a decision

but rather information accumulated during parsing time.

We feel that there are more facts to be discovered about

these knowledge sources . Nevertheless the

general assumptions about the parsing process which determine

the sort of reasoning under discussion in this subsection already now

proved to have a very strong impact on the efficiency of

the parser.

Let us present these assumptions in some detail.

(i) The linearity of langauge

The fact that the words of a language come after each

other is used by several parsing predicates (e.g. p-position).

It turns out that the linear structure of language sentences

can also be used to optimize the parsingprocess itself,

based on the following principle:

Principle 1

A particle can only merge with another one if the range

of the first particle is bordering on the range of the second

particle.

Example:

Given a sequence "w1 w2 w3 w4 wS" then if there are e.g.

particles on w3 and wS containing the structures

w3 w5

/ ~ and I
w2 w1 w4

(particle l) (particle 2)

- 2.29.-

parsing predicates

then We may consider the merging of these two which may lead

to

wS
w3/ '---w4

/'_
w2 wl

or
w3

/~
w2 wl

I
wS

I
w4

But suppose we have particles on w2 and w5 with structures

w2

I
wl and

(particle l) (particle 2)

then we will not attempt to link the two according to

princi,ple 1 because w4 is in between the ranges.

To see the value of this principle consider 11 the good old boy,

which should result in a particle structure

/0~
the good old

But suppose we do not accept the principle, then the structures

boy boy boy

I /~ /~
the the good the old

would equally well be constructed as there is no linguistic

information preventing it.

(From a formal language point of view it is interesting to note

that the principle reflects the basically context-free character

of natural languages !)

- 2.30. -

parsing predicates

(2) The time dimension

Another consequenc1bf taking this time dimension seriously

is that if a particle will be attached to one of the sub­

configurations of another particle, what subconfiguration is

allowed depends strongly on the time moment this subconfiguration

was added to the particle. This is reflected in the following

principle:

Principle 2

If the subconfiguration was added by a "forward merge", i.e.

suppose aj and ai

it is not allowed

were to be merged, a. comes before
J

to merge any new particle ak on aj

ai, then

anymore.

(Readers who think we may come in trouble with this principle

should bear in mind that the parsing proceeds from left to right

and therefore all possible forward merging that could be done is

already done when the particle itself is subject to forward

merging)

To see the point of this principle consider the phrase

"he reads a nice book 11
• Whatever comes after 11 book" or

before 11 a 11
, as soon as the structure

book

/\
a nice is created,

it is pointless to look for further combinations with 11 a" or

"nice".

Notice that the principle does not hold for .. backward merge".

This can easily be understood when considering the

ambiguous sentence 11 he saw the man in the park with a telescope 11
•

(3) Power from structure

The final predicate to be discussed now has to do

with the interrelationships of the particles:

- 2.31. -

parsing predicates

Principle 3:

A partiCle with the same top as another particle but with

more subcc:infigurations is more powerful than the other

particle.

To understand this hypothesis consider the following

example: "The boys sing ... ". During parsing a particle

will be made for "the boys", but the particle for "boys" on

its own remains in the state space. Now we want to prevent

that two structures are built one for "boys sing ... " and

on;e for "the boys sing ... " although both of them go on the

-baSis of linguistic information as such.

Notice that the· hypothesis reflects the principle of goal-directedness

which is found in most cognitive tasks: the structured objects

will leave a stronger impression on our perception system than

not structured ones.

Some care is needed in using the above principles. Apart from

the fact that Certain constructions such as coordination

(which we have not yet considered) will not fall within the scope

of the principles it is possible that deviations occur just

as there are deviations from the linguistic predicates discussed

in previous section.

Some examples of deviations: Take the expression" the author"s

article". Is 'the' a determiner of 'author' or of 'article' ?

According to principle 3 'the' will be considered as a determiner

of 'author', and most people would agree on this. But some people

would argue that at least theoretically 'the' can be cohsidered

as determiner of 'article'. Take as another example the expression

'a brighter colour than this one', where 'than' obviously

relates to 'brighter' But this is against principle 2 !

- 2.32. -

m.erging

2 ~-1. 3. The construction of new particles: the merging process

Suppose that the various parsing predicates have been

computed for two particles and that via the perceptron

combination the final result yields positive, how is

the construction of the new particle working then.

First of all we stiess that this combination process is

not fatal for the source particles, i.e. when a new particle

is made the source particles from which it is made remain in

the state space. Although the particle may be 'locked'

according to principle 3 discussed earlier.

The definition of the merging process proceeds in two steps.

First we define the merging of two configurations, only

then we turn to the merging of two particles.

The definition of the merging of two configurations itself

proceeds also in two steps. First we define the merging of

two simple configurations , the so called direct merge ,

then we define the merging of two more complex configurations.

Definition

We say that 1wo configurations

iff
(al,i' ai a2

1
i 1 a2+1

1
i 1

and

aj <alI j I a2~j~ a2+1,i'

then

<al . ' ,l

ai,aj

... '

... '

a2' . ' ,l

directly merge

a2+m, il rn --:> 0

a2+n
1
j) n ,;:- 0

a2+1 1 i 1
•• •

1 a2+m,i 1

How a2,i is computed from a 2 ,i will be discussed shortly.

- 2.33. -

merging

Definition

We say that two configurations a.,af merge iff either
J " ' < d-rnerge(a.,a.) or aj merges with a 2+ . , 1 (, p , rn

J 1 p,1 ~ '
The resulting configuration is denoted as merge (a.,a.) .

J 1

Example

a2+l,j · · ·

then

Now we can define the merging of two particles

Definition

Let pl and

p2 = <.P1 , 2 , P2 , 2 , p 3 , 2 , P 4 , 2) be two particles

merge (p2,pl) if

(tor P2, 3 and p' 3 , 3 cf.infra)

-2.34.-

merging

During the merging process the information in the information

sequences of the respective particles are changed.

There are first of all changes in the configuration of the

subordinate and second changes in the configuration of the

head of the grammatical relation.

(l) Subordinate

(a) If the subordinate is an object, then side effects of

the case frame application are:

(i) That we know the case;

(ii)That we know the subset of semantic features satis­

fYing the case slot;

(iii) That we know the subset of syntactic features

satisfying the case slot.

So we change the three items in the information sequence of

the subordinate.

(b) If the subordinate is an adjunct we only change the

qualfmod/undet characteristic.

(c) If the subordinate is a functionword no changes are

necessary.

(2) Head

(a) If the head is an object,then

(i) The state of the function may have to be changed

due to a transition in the netwo:r:_ks,

(ii) Similarly the state in the case network may have to

be changed on the basis of objects evoking transitions in

the networks.

(iii) The subordinate may have restricted the syntactic

feature complex in the syntactic feature match.

(iv) The subordinate may have restricted the semantic

feature complex via the semantic features match to consult

the case frames of the adjunct.

(b) If the head is not an object, then

(i) The state of the function may have to be changed due

to a transition in a syntactic network,

(ii) the state in the case network may have to he changed

if affected by the income of objects.

- 2. 35. -

me.rging

, , ,JIF· the particle top structure we moreover change the

LOCKED/NIL indicator if necessary according to principle 3

and the state in the syntactic network for the leftgoing

t.ransitions. Principle 2 is realized by hanging the

indicator NIL after the information sequence of the

subordinate as a sort of end marker.

We leave a formal defi~ion of these changes to the reader.

When a merging has taken place, the newly formed particle

is investigated further to see if other combinations are

possible.

To explain how this is going we present now the general

control structure of the parser.

A note on the control structure

To regulate the whole process we use the concept of a tasklist

and a function picking out each time the task on top of the

tasklist until no tasks are left. The execution of a task

may cause the creation of new tasks on the tasklist.

Schematically:

tasklist

When an inputpulse comes in all particles created by this

pulse are put on the tasklist. For each particle on the

tasklist we try to merge with each particle associated with

the word just before the range of the particle. If a merge

takes place, we put the newly made particle with extended range

again on the tasklist. If no merging can take place no action

is undertaken. If the tasklist is empty we consume the next input

inputword. If there are no inputwords left we compute the

structures contained in the final particles associated with the

last word of the input.

example

2.1.4. An example

The best way to see how a parsing process as dep~cted

in this chapter is actually going is to consider in full

detail an example. For this purpose we take one single

sentence 11 tirne flies like an arrow" and although we know very

well that one normally understands this sentence only as

meaning "time passes by quickly" (basically becau!:?e the

sentence has a proverb status) we will for the sake of example

assume that all possible readings should come out of the

parser. These readings are by the way all produced by anyone

if you explicitly ask for thern.Much more examples will be

given in next chapter when we discuss our experimental results.

Here are the readings:

reading (1) (the normal one) Time passes by quickly.

"Time"is an object of "flies" which is itself a predicate.

"like an arrow" is an adverbial adjunct of "flies".

reading (2) There is a particular sort of insects, called

time flies and they have the shape of an arrow.

1tere "time'1 is an adjunct of "flies", "flies" an object and

'
1 like an arrow 11 an adjunct of "flies".

reading (3) There is a particular sort of insects, called time

fY~es and they love arrows.

"Time"and 11 flies" are as in reading (2), 11 like 11 is now the

predicate and "arrow" fills a slot in the case frame of 11 like".

reading (4) Measure the time of a particular sort of flies, namely

those which are like an arrow.

"Time" is now an imperative verb, "flies" object and "like

an arrow" adjunct of "flies" as in reading {2)

read:Ling (5) Measure the time of a particililar sort of flies and

do this "like and arrow".

"Tilne" is again imperative and "flies" object, "like an

arrow" is now an adverbial adjunct of "time".

- 2.37. -

example

aefore we can discuss the parsing process we need a

small grammar which contains all the information that will

be necessary for the parsing process. Let us discuss this

grammar first. It is an example grammar , that means that

in later experiments we do not necessarily use the same

grarrunar.

(i) The grammar

1.1. Type object

(i) Function nom.obj (nominal object)

type : object

taking-objects: true

. ·object-position: after

eXample: 'flies' as in 'to capture the flies'

{"ii) function: norn.att.adj (nominal attributive adjunct)

being adjuncts formed of objects which consist of a relationword

(that gets the function nom.att.adj) and an object. We will

use the phenomenon of syntactic networks to make the object

obligatory.

type: objective adjunct

position: after

function-of-head: nom.obj

Q/M characteristic: qual

example: 'like" as in "there are time flies like an arrow"

(iii) function: nom.adv.adj (nominal adverbial adjunct)

being adjuncts of other adjuncts which consist. :of a relation

word (that gets the function nom.adv.adjunct) and an object.

We use again the syntactic networks.

type: objective adjunct

position: after

function-of-head: verb (at least)

Q/~4 characteristic: mod

example: "like" in the proverb "time flies like an arrow"

(Notice that it is possible to consider only one function

for norn.att.adj and nom.adv.adj but we split them up for the

sake of the example.)

- 2.38. -

example

1.2. Type: adjunct

(i) function: verb

being the main verb of the sentence

type: adjunct

function~of-head: nom.obj

position: after

taking-objects: true

object-position: after

concord: true

Q/M characteristic: undet

example: "flies" in the proverb"tirne flies like an arrow".

1.3. Type: functionword

(i) function determiner (det)

type: functionword

functio·n-of-head and position are specified via the syntactic

networks associated with nom.obj

concord: true

send-through: true

example: "an" in "an arrow 11
•

(ii) function: casesign (casesi)

type: functionword

function-of-head and position are specified via the syntactic

networks associated with nom.obj.

send-through: true.

(this function is only added to make the example more;interesting)

2 • The syntactic networks

There is one left-going network and one right-going network ..

for
casesi~ det

where OBJ/1 is the initial state.

and
nom. obJ

for FIN is the final state.

- 2.39. -

example

(3) The case frames

The surface case frames are only given if necessary.

-i- MEASURE

abstract case frame:

self

ag nt

I ANIMATE I

what
(OR THING

ANIMATE

surface case frame for function adjunct and viewpoint agent

-ii- ENJOY

objective

[what]

abstract case frame:

self

what

surface case frame:

agent

for function adjunct and viewpoint agent:

[;hatj

-iii- INSECT

abstract case frame:

I ANIMATE ~~s~
surface ~frame~bjective

V kind

- 2.40. -

example

- i v- INSTRUMENT

abstract case

INSTRUMENT self \THING \

-v- MOVE

abstract case frame

80 VE

i(XOR ANIMATE E} _ ___;s~e"-!ol!o_f_____ ~-----a-g_e_n~t---L THING)

-vi- SHliLAR

abstract case frame

IPROPERTY~~-~s~e~l~f ____ ,8IMILA ! ______________ r~n ____ ~(XOR ANIMATE

· (XOR THING ACT))

XOR ANIMATE

(XOR THING)

surface case frame

for function adjunct and viewpoint what=

-vii- TIMELINE

abstract case frame:

(XOR THING PROPERTY))

4. The lexicon

self

(i) AN function: det

syntactic features: SING

send-through feature: UNDEF

- 2.41. -

example

(ii) ARROW

(iii) FLIES

-a-

-b-

function: nom.obj

predicate: STICK

viewpoint: self

syntactic feature complex:

/XOR"
AND SING

/""' OBJECTIVE SING

function: nom.obj

predicate: insect

subpredicate: flying

viewpoint: self

synt.feat.complex

XOR

/~
AND AND

/\ /~
PLURAL 3PS OBJECTIVE AND

I~
PLURAL 3PS

function: verb

predicate: move

subpredicate: through-air

viewpoint: agent

synt.feat.complex

~D~
NOT AND

I I\
OBJECTIVE SING 3PS

internal feature complex: PRESENT

- 2.42. -

examples

(iv) LIKE

-a-

-b-

(v) TIME

-a-

-b-

function:nom.att.adj or nom.adv.adj

predicate: similar

viewpoint: what

function: verb

predicate: enjoy

viewpoint: agent

external feature complex

/D~
NOT XOR

I ~~
OBJECTIVE PLURAL AND

/~
SING NOT

internal feature complex: PRESENT

function: nom.obj

predic:timeline

viewpoint: self

synt.feat.cornplex

XOR

/~
AND AND

/\ /~
OBJECTIVE AND SING 3PS

/\
SING 3PS

function: verb

predic: measure

viewpoint: agent

ext.feat.complex (AND SING 2PS)

int. feature complex: imperative

I
3PS

We now start a discussion of the parsingprocess. We try

to keep the presentation as understandable aS possible and

avoid formal representations.

- 2. 43. -

example

Before the first word is consumed the state space should be

considered completely empty. Each time a word comes in

particles are created and confronted with already existing

ones. For ease of reference we number particles according to their

moment of creation. For each particle the configuration contained

in it will be give explicitly.

I INPUTPULSE NR. l TIME

I. Initial particles

The first particles are created for each possible function

of TIME according to the lexicon:

(i) Particle 1 (for function nom.obj) has configuration

(TIME

(INPl

NOM.OBJ

N-IL

NIL

hypothesis number

function

state in right-going synt.net

state in sem. netw

((SING 3PS) (OBJECTIVE SING 3PS)) ~ synt.feature complex

((THIUG) (PROPERTY))

NIL))

Notice that all information to construct this configuration

comes from the linguistic description syste~. E.g. the semantic

features are computed by taking the extension of the features

associated with the case frame of TIMELINE (the predicate of time)

with the self~case (the viewpoint of time).

(ii) Particle 2 (for function- verb) has configuration:

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET))

II. Merging

As no other particles are in the state space, nothing more

happens and we get as first result:

Qi

state space

- 2.44. -

example

IINPUTPULSE NRo 20 FLIES

I. Initial particles

Again we make a new particle for each function:

(i)particle 3. (for flies as nom.obj) has configuration

(FLIES (INP3 NOMoOBJ NIL NIL ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS))

((ANIMATE)) NIL))

(ii)particle 4 (for flies as predicate) has configuration

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET).)

II. Merging of the p_articles

For each particle of inputpulse 1 and for each particle due to

inputpulse 2 it is investigated whether they can merge either

from right to left or from left to right. The last

one created is always the first one to be investigated further,

so we start with investigating particle 4:

Investigate particle 4 (with flies as verb).

1. Let us try to merge this particle with particle 1 embodying

INPl (time as nom.obj)

In other words we investigate Whether a nom.obj and a verb

may form a link.

From left to right will not do. Although a verb takes objects

they come after it, so "time" is in a wrong position to be

an object of flies.

From right to left however is a good combination:because

- function-of-head {verb) = nom.obj and time has the function

'nbrn.obj. So the function-of-head test is successful.

- position(verb) = after and flies comes after time, hence

there is a successful order test.

- The syntactic features match is necessary (a verb agrees

with its sub-ject) and it yields true because the features of

"flies" are (AND(NOT OBJECTIVE) (AND SING 3PS)) and those

of time are ((SING 3PS) (OBJECTIVE SING 3PS)) o Notice that the

possibility of time having the case signal objective is ruled

out.

- 2 0 45 0 -

example

- The semantic features match yields also true because

the viewpoint of flies is agent, the predicate is MOVE and

the feature associated is the abstract case frame of MOVE

with agent is (XOR ANIMATE THING). Recall that the serna .ic

features of time in particle 1 are ((PROPERTY) (THING))

So there is a feature match for the subset ((THING))

as well for modifying as for qualifying.

On the basis of these results it is decided that the particles

should merge to form a new one:

particle 5 with the following configuration

(FLIES 1 (INP4 VERB NIL NIL ((PRESENT)) UNDET)

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS)) ((THING)) NIL)))

Notice that the semantic feature complex of 'time' has

been restricted to time ·as a thing.

Notice also that the predicate forms the top of the structure.

This in contrast with the normal procedure of merging

particles.

3. We try to merge paiticle 4 with particle 2 containing INP2

(time as verb).

From left to right will not do with the verb flies because a

verb has no head and certainly not a predicate.

From right to left is for the same reason not a good combination.

Function-of-head(verb) is norn.obj and nom.adj is not a nom.obj.

As we now confronted all particles of inputpulse 1 with the

particle 4 of inputpulse 2 we can 'turn to the next particle of

inputpulse 2:

(b) Investigate particle 3 (with flies as nom.obj)

(1) We try to merge with particle 1 (time as norn.obj)

- 2.46. -

example

From left to right the order test is successful because

we specified in the grammar that objects may come as

well before as after a nom.obj (not necessarily a good

assumption in general). Now we investigate the networks.

As initial state with flies we have INS/1 . The network

itsel~~ectiv·
\NS') (kind)

So we go from the initial state INS/1 to the state FIN.

The associated case is KIND.

The next step is the matching of the semantic features.

This yields also true, because with the KIND-case in

INSECT, we have the feature •property•, and property is

in the feature complex of time.

We conclude that time is a nom.obj of flies. Notice that

this could only be concluded after considering time as

some kind of property.

A new particle (particle 6) can now be created:

(FLIES (INP3 NOM.OBJ NIL FIN ((OBJECTIVE PLURAL 3PS))

(PLURAL 3PS)) ((ANIMATE)) NIL)

(TIME (INPl NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS))

((PROPERTY)) KIND))

Notice how the featUres of the subordinate are restricted

and how the case 1 kind 1 has been added, the case state of flies

is now FIN.

From right to left a merging is possible accordin9 to the

position and taking objects tests, however there is no

prefix state in the case network of TIMELINE, so we abandon

the idea of merging in this direction.

(2) For particle 2 with INP3 (time as verb)

From left to right no merging will take place due to wrong

positions.

From right to left we have more success. A verb takes objects

and they come after the word, so we proceed with the investigation

of what case is filled by 1 flies•.

- 2.47.-

example

For this purpose we call the semantic network of MEASURE

which is the predicate of time, and try to make a transition

from the initial state MEAS/1 on the basis of the syntactic

feature complex ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)).

The transition is successful and we come in the final state

FIN with associated case· 'WHAT'. The syntactic features are

now restricted to ((OBJECTIVE PLURAL 3PS)). Next we investigate

the semantic features. The what case requires (OR THING ANIMATE)

and this matches with the feature complex of flies. Hence we

may merge the two particles which yields:

particle 7

(TIME (INP2 VERB NIL ((~RESENT)) UNDET))

(FLIES (INP3 NOM.OBJ NIL NIL

((OBJECTIVE PLURAL 3PS)) ((ANIMATE)) WHAT))

We have now checked all particles of inputpulse 1 against

those of inputpulse 2 and obtained some new particles.

Summary of actions in the state space:

from

to
l

t 51 ,' I

4 3

3

0

7

- 2.48. -

example

Although particle 1,2,3,4 remain in the state space 5,6,7

will be the stronger ones.

So a better representation of the state space at the

moment would be:

sO
Q

IINPUTPULSE 3 LIKE

I. Creation of new particles

First four initial particles are created for each function

assigned to 1 like 1 by the lexicon.

particle 8 with configuration:

(LIKE (INPS CASESI NIL NIL NIL))

particle 9 with configuration:

(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET))

particle 10 with configuration:

(LIKE (INP7 NOM.ADV.ADJ A/1 NIL ((PRESENT)) UNDET))

particle 11 with configuration

(LIKE (INP8 PREDIC NIL NIL ((PRESENT)) UNDET))

(NOtice that in particle 9 and 10 like does not have a final state)

- 2.49. -

example

II. Merging

Again we start with the latest made particle to see whether

combinations are possible with previously made particles.

(A) Particle 11 with INPB (like as verb)

1. Let us confront this particle with particle 7 (time as verb)

Neither from left to right nor from right to left is linking

possible. A verb does not relate to a verb and vice-versa.

2. Let us confront particle 11 with particle 6 (with flies as

nom.obj and time as nom.obj depending from it)

From left to right no merging will take place because the objects

of· a verb come after their head and not before it. From right to

left a merging is indeed possible on the following grounds:

- the head of a verb, i.e. its subject,comes before it, this

is the case, hence the test on order is true,

- a verb agrees with its subject, so we have to perform a

syntactic features match between (AND (NOT OBJECTIVE) (XOR PLURAL

(AND SING (NOT 3PS))) being the features of the verb and

((OBJECTIVE PLURAL 3PS) (PLURAL 3PS)) which is the extension of

the features of flies. The match process returns true for the

domain ((PLURAL 3PS)). Next we investigate the semantic features

via the viewpoint of like (agent) we find that the features of the

slot should be ANIMATE; because flies has ((ANIMATE)) this test

is again successful and we decide to merge both particles yielding:

particle 12 with configuration:

(LIKE (INPB VERB NIL NIL ((PRESENT)) UNDET)

(FLIES (INP3 NOM.OBJ FIN NIL ((PLURAL 3PS)) ((ANIMATE)) NIL)

(TIME (INP1 NOM.OBJ NIL NIL ((OBJECTIVE SING)) ((PROPERTY)) KIND)))

- 2.50.-

example

3. Let us finally confront particle 11 with particle 5

(INP3 flies as verb on top)

Both from left to right and from right to left no success

is obtained because a verb does not link with another one.

Notice that if the verb Would have been placed structurally

under its head, the merging would. in principle be considered

but the syntactic feature matches would have resulted in false.

(B) Particle 10 with like as nom.adv.adj

1. Particle 10 in relation to particle 7 (with time as verb

on top)

From left to right no merging takes place because the position

tests are unsuccess.ful.

From right to left for the word TIME we have more success.

- The head of a nom.adv.adj is a verb and because flies

acts here as a verb, this test is successful.

- Moreover the position of a nom.adv.adj is after its head

and this is so.

There is no synt.features match but there is a sem.feat

test. The features associated with the viewpoint of like

(which is BETWEEN) are (XOR ANIMATE (XOR THING ACT)). In the

frame of MOVE the feature act is associated with the SELF-case

(norn.adv.adj is a modifier). Hence there is a match.

The new particle (particle 13) has configuration:

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET)

(FLIES (INP3 NOM.OBJ FIN NIL ((OBJECTIVE PLURAL 3PS))

((ANIMATE)) WHAT)

(LIKE (INP7 NQM.ADV.ADJ A/1 NIL MOD)))

(Notice that like is not in a final state yet)

- 2.51. -

example

(2) Let us confront particle 10 with particle 6

From left to right no test is successful , the objects

of a norn.adv.adj come after it and not before.

From right to left is not possible because the head of a

nom.adv.adj is another adjunct and not an object.

(3) Finally we confront particle 10 with particle 5

(flies as verb on top)

From left to right no success is obtained. The head of

flies is an obj·ect and not an adjunct. From right to left

we are successful:

- The head of a nom.adv.adj is a verb and because flies

is a verb, this test is successful;

- Moreover the position of a nom.adv.adj is after its head

and this is so:

- There is no syntactic features match, but there is a

semantic features test: The features associated with the

viewpoint of LIKE (which is WHAT) are (XOR ANIMATE (XOR THING

ACT)) . In the features of MOVE we have with the SELF-case

(note that nom.adv.adj is a modifier) the feature ACT.

So this test is .true.

To conclude, we construct the new particle , ~article 14, with

configuration:

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET)

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS)) ((THING)) NIL))

(LIKE (INP7 NOM.ADV .ADJ A/1 NIL MOD)))

(C) We try to expand particle 9 (with like as nom.att.adj)

Agciin we confront this particle with all particles. actiVe

before the inputpulse of like came in.

(1) Confrontation with particle 7.

From left to right will not do. The objects of a nom.att.adj

come after their head. Now from left to right.

We start by investigating the word flies. Here we are

successful:

- 2.52. -

example

- The head of .3. norn.·att.adj is a nom.obj and this

is the case;

- The position is as expected;

- There is no syntactic features test, but there is a semantic

features test. We have to see whether 'flies' fills

a slot in the frame of like, namely the viewpoint of like which

is what. To do so the features (XOR ANIMATE (XOR THING ACT))

must be satiSfied. This is the case and we get a new particle:

particle 15

particle 15 with configuration:

(TIME (INP2 vERB NIL NIL ((PRESENT)) UNDET

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))

((ANHIATE)) WHAT)

(LIKE (INP6 NOI!.ATT .ADJ A/1 NIL UNDET))))

or the word time in particle 7 there is no successful

function-of-head test.

(2) Confrontation with particle 6

From left to right no merging will take place because the

object of a nom.att.adj should come after 'like'; from

right to left we are successful because:

- The head of a nom.att.adjunct is a nom.obj and flies is

a norn.obj.

- Moreover the nom.att.adjunct comes after its head and

this requirement is fulfilled .

- No syntactic features match is necessary here, but we

have a semantic feature match with flies which has the feature

((ANIMATE)). Because the viewpoint of li~e is between,

the features to be satisfied are (XOR ANIMATE (XOR THING ACT))

So the ·test is successful.

We make a new particle:

particle 16 with configuration:

(FLIES (INP3 NOM.OBJ FIN NIL ((OBJECTIVE PLURAL 3PS) (PLURAL 3PS))

((ANIMATE)) NIL)

(TIME (INP1 NOM.OBJ FIN NIL ((OBJECTIVE SING 3PS)) ((PROPERTY)) KIND)

(LIKE (INP6 NOM.ATT.ADJ A/1 NIL UNDET))))

- 2.53. -

example

(3) Confrontation with particle 5 (flies as verb on top)

From left to right and from right to left no success is

obtained due to the function-of-head tests. A norn.att.adj

has as head a norn.obj and not a predicate whereas the head

of a predicate is a norn.·obj and not a nom. att. adj.

(D) Particle 9 (with INPS, like as case sign)

All confrontations with previous particles yield false

as the reader can find out for himself. The cause is

always the function-of-head test.

The particles resulting from the third input pulse 'like'

have caused a strong activity in the state space.

In particular we went from:

6

to

8 009
Qo

We will carry on with the most powerful particles in the

state space.

- 2.54. -

example

I INPUTPULSE 4 AN

I. New particles

There is only one: parti.lce 17 with configuration

(AN (INP9 DET FIN))

II. Merging

For all particles the tests will be unsuccessful. On the

basis of the function-of-head tests and/or order tests,

so we are left with the following state space:

IINPUTPULSE 5 ARROW

I. New particles

There is again only one particle: particle 18.

(ARROW (INPlO NOM.OBJ NIL NIL

((OBJECTIVE SING 3PS) (SING 3PS)) ((THING)) NIL))

- 2.55. ~

example

II. Merging

(A) We try to merge particle 18

(1) With particle 17

Due to one of our principles that you cannot 'hop' over

a word, the first job is to merge with particle 17. This is

possible from left to right because:

- A determiner makes a transition from the initial state

(OBJ/1) associated with the norn.obj 'arrow' which brings

us in the network in the state OBJ/2 ;

- moreover the syntactic features match is successful,

'AN' has 'SING' and arrow has ((OBJECTIVE SIKG)) So there is

a match. Also we have to send-through the feature 'UNDEF'

which brings us to the new feature complex ((OBJECTIVE SING

UNDEF)). No more tests are necessary which brings us to the

new particle:

particle 19 with configuration

(ARROW (INPlO NOM.OBJ NIL NIL ((OBJECTIVE SING UNDEF) (

SING UNDEF)) ((THING)) NIL)

(AN (INP9 DET NIL)))

We now have the opportunity to show what happens if a particle

is made and it does not cover the whole input sentence

yet. In such a situation a chain reaction can be said to take

place: We try to merge with other particles floating aroung on

the border of the range of this partiCle. The whole process

is set in motion again by placing particle 19 on the takslist

which is a pushdownstore; this implies that it is the first

particle again considered for further combination.

(B) We try to expand particle 19

(1) Let us confront it with particle 8 (like as casesign)

Recall that the latest state associated with norn.obj was

OBJ/2 .So we try to make a transition in the network which

brings us to the new state OBJ /3. Although there is no syntactic

feature match, we have to pass features to the feature complex of

the head.

- 2.56. -

example

This yields particle 20 with configuration

(ARROW (INPlO NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF LIKE))

((THING)) NIL)

(AN (INP9 DET NIL)) (LIKE(INPS CASES! NIL)))

Notice how the case sign is now in the feature complex of

the nom.obj and ready to become active in surface case

signal tests. To show this was the reason to incorporate
1
like1 in this function. No further results with this particle

will be obtained.

From right to left there is no merging possible because

like' (as casesign) takes no objects.

(2) Let us confront particle 19 with particle 16 (1 flies• as

nom.obj on top)

From left to right the order test and the taking-objects

test is true. But we did not include a semantic network for

'flies• and therefore do not investigate the possibility any further.

From right to left we are successful for the word like . Li~e

is a nom.att.adj it takes objects and they come after it.

The transition in the sem.netw is also successful. We go from

the state SIM.IL/1 to the new state f'Tl'l ,.Jith

associated case TO for the syntactic feature complex

((3PS OBJECTIVE SING UNDEF)). The sern.features test yields

also true and we get a new particle:

particle 21 with configuration:

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))

((THING)) NIL)

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SIN6'3PS)) ((PROPERTY)) KIND)

(LIKE (INP6 NOM.ATT.ADJ FIN NIL UNDET)

(ARROW (INPlO NOM.OBJ NIL NIL ((3PS SING OBJECTIVE UNDEF))

((THING)) TO) (AN (INP9 DET NIL)))))

- 2.57. -

example

Notice how 1 like 1 has entered a final state and how the

case has been added.

particle 21 is the first particle which is final in the sense

that it covers the whole input sentence

From right to left no further combinations are possible

for the word flies (no transition in sem.netw) .

(2 .2) For particle 15

From left to right will not do because a verb comes after

the object which is its subject. From right to left

there is greater success. Take the word like (function

nom.att.adj) It is obvious that on the same basis as for

the creatiori of particle 21 we will be able to link the

object to like. Hence we get a new particle:

particle 22 which is again final:

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET)

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))

((ANIMATE)) WHAT

(LIKE (INP6 NOM.ATT.ADJ NIL NIL UNDET)

(ARROW (INP10 NOM.OBJ NIL NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) TO)

(AN (INP9 DET FIN))))))

Still from right to left for the word flies, no linking

takes place because there is no transition possible. For

the same reason we cannot merge for the word time.

(3) For particle 13.

From left to right no merging takes place because a verb

(which is on top of 13) stands after its subject. However

from right to left we are again successful. This time for the

word 1 like•. Again on the same basis as for the two previous

particles.

- 2.58. -

example

The new particle (particle 23) has configuration

(FLIES (INP4 VERB NIL NIL ((PRESENT)) UNDET)

(TIME (INPl NOM.OBJ NIL NIL ((SING 3PS)) ((THING))

(LIKE (INP7 NOM.ADV.ADJ FIN NIL MOD)

(ARROW (INPlO NOM.OBJ 1.1 IL NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) TO)

(AND (INP9 DET NIL)))))

Still from right to left we try to merge for the word
1 flies•. This does not work because no transition is possible

in the semantic network.

(3.2.) Particle 14.

From left to right will not do because a verb comes after

its subject.

From right to left is more successful. Not for the word flies

because no transition is possible in the sern. network .

But fOr the word like, the order test is successful and there

is a transition from SIMIL/1 to the new state· FIN. The

sem. feat test is also successful which leads to a. new

particle: particle 24 with configuration:

(TIME (INP2 VERB NIL NIL ((PRESENT)) UNDET

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL 3PS))

((ANIMATE)) WHAT))

(LIKE (INP7 NOM.ADV.ADJ NIL NIL MOD)

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) TO) (AN (INP9 DET FIN)))))

For the word time there is no transition in the semantic

network although the ordeitest was successful.

- 2.59. -

example

(4) For particle 12

Here we are successful from right to left (from left to right

is not investigated because the top is a verb) . First of

all the order test and taking objects test are successful

for like, also we can perform a transition in the.case

frame of ENJOY and the semantic features test is successful.

This leads to the following new particle: particle 25:

with configuration

(LIKE (INPB VERB NIL NIL ((PRESENT)) UNDET)

(FLIES (INP3 NOM.OBJ NIL NIL ((PLURAL 3PS)) ((ANIMATE)) NIL)

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SING 3PS))

((PROPERTY)) KIND)))

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) WHAT) (AN (INP9 DET FIN))))

(C) It remains to be investigated how particle 19 can be

further expanded.

The investigation of this is left to the reader. There will be

no successful mergings.

As a summary of actions due to this inputpulse we get:

from

- 2.60. c

example

''

to

Here is a summary of all actions on particles that occurred

during the analysis qf the sentence:

(Final particles have double rings)

- 2.61. ~

structuring

2.1.6. The computation of the resulting structures

We now discuss how it is possible to extract from a particle the

structures defined earlier. These structures (even the semantic

ones) are all auxiliary constructs mainly used for didactic

purposes. In principle semantic interpretation can take

place immediately on the basis of the information contained

in a particle. (Notice how the distinction deep/surface

structure disappears).

(i) The functional structure

It is possible to extract a functional structure (as defined

earlier) from the configuration in a particle by means of

the function F-struct:

Definition

j);- 0

be a configuration with

> an information sequence

then

for j 0

(i 2 ,k (al,k F-struct (a2+l,k) ... F-struct(a2+j'k)
for j / 0

Notice that this yields a list structure which is co~ted into

a tree by the standard conventions.

- 2.62. -

structuring

(ii) The case structure

It is possible to extract case structures from a particle

by means of the following method:

Definition

j ~ 0

be a configuration

with

a2 ,k
sequence

then

(i)

and

an information

case structure

with

label ((a 1 , a 1 k))
,a2+i,k '

i
?,a2+i,k

with

iff
i 2 'a2+i,k

a '>
l,a2+i,k

F-obj

case structure

label a))
l,a2+i,k

l. ff .
~2 ,k "- F-adju

- 2.63. -

for l-Si ~ j

structuring

Some examples

We give some particleS of the earlier discussed example of

the parsing process and present each time the funct-ional

and case structure.

For particle 21 with configuration:

(FLIES (INP3 NOM.OBJ NIL NIL ((OBJECTIVE PLURAL.3PS)) ((THING)))

(TIME (INPl NOM.OBJ NIL NIL ((OBJECTIVE SING 3PS)) ((PROPERTY))

KIND)

(LIKE (INP6 NOM.ATT.ADJ FIN NIL UNDET)

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) TO)

(AN (INP9 DET NIL)))))

functioral structure

NOM.OBJ

liES~
Nm1.0BJ NOM.ATT.ADJ

I
TIME LIKE

I
NOM.OBJ

I
ARROW

I
DET

I
AN

- 2.64.-

structuring

case structure:

casestructure

~
FLIES LIKE

I I """ KIND WHAT TO

I I \
TIME FLIES ARROW

For particle 22 with configuration:

(TIME (INP2 VERB NIL NIL UNDET ((PRESENT)) UNDET)

(FLIES (INP3 NOM.OBJ NIL NIL ((oBJECTIVE PLURAL 3PS))

((ANIMATE)) WHAT)

(LIKE (INP6 NOM.ATT.ADJ NIL NIL UNDET))

(ARROW (INPlO NOM.OBJ FIN NIL ((3PS OBJECTIVE SING UNDEF))

((THING)) TO)

(AN (INP9 DET NIL))))))

functional structure:

VERB

I
TIME

I
NOM.OBJ

FLES

I
NOM.ATT.ADJ

I
LIKE

I
NOM.OBJ

I
ARROW

J~
I

AN
- 2.65.-

structuring

case structure:

CASESTRUCTURE

~~
TIME LIKE

WlT WH~~O
FLJES FLjES AlROW

(iii) Semantic structures

The extraction of the semantic structures in the format of

the SRL language is a straighforward process. It works on

the basis of a task oriented control structure just as the

parser itself.

A task here contains two things (i} a pointer in the structure

of the particles, (ii) an attachment point, i.e. a point where

the structure resulting from executing the task should be attached

in the already obtained semantic structure. This attachment

point is in fact a set: a point for if the function of the

in the configuration addressed to by the pointer is of type

object, then the attachment point- is the list of cases in the

head of the object, a point for if the function is of type

qualifying adjunct, then the attachment point is the variable

word

node of its head and a point for if the function is of type

modifying adjunct, then the point is the predicate structure of its head.

The initial task contains a pointer to the top of the structure;

the attachment points are NIL.

The system takes each time the algorithm on top of the tasklist.

Then the task is executed according to the following specifications:

- 2.66.-

structuring

If the word on top of the configuration pointed at in the

task is of type object

(i) create a new object node

(ii) hang the viewpoint, predicate and subpredicate as

specified in the lexicon under the predicate node

(iii) add features if any

(iv) construct a new task for all depending nodes

(v) if the object fills a slot in a case frame, attach

the case label and the pointer to the object node in the

semantic structure under the node defined in the attachment

point.

If the word on top of the configuration pointed at in the

task is of type adjunct

(i) make a viewpoint/predicate/subpredicate frame and

hang it under the attachment point indicated in the task

(ii) add features if any

(iii) construct new tasks for all depending nodes.

If the word on top of the configuration pointed at in

the task iS of type functionword

(i) construct new tasks for all depending nodes.

Extensive examples and detailed descriptions of several

semantic structuring processes will be given in the chapter

on examples and experimental results.

Notice how the distinction between objects/adjuncts/functionwords

which proved to be basic for the formulation of the grammar

rules is also fundamental to the semantic structuring process

as we have predicted.

- 2.67. -

production

2.2. The PRODUCTION PROCESS

In this section we present a short outline of the production

process based on the modular grammar theory. We will not

present a very detailed model for two reasons (i) the size

of the present work would grow out of the envisaged proportions,

(ii) the deadline forced us to remain in the presentation

here on a rather intuitive level. This does not mean

however that the investigation on the production process

was not carried out within our general methodological framework

(i.e. that computer programs should be constructed to prove

the operational ccpaciti·es of the approach). In fact we worked

extensively on a system for producing natural language even

before starting out for the parsing problem (results

are reported in Steels, 1976); and many important discoveries

were made during the investigation of language production

rather than recognition.

In particular the idea that grammatical function is one of

the basic factors in language functioning (more basic than

grammatical cateogry) and the idea of 'viewpoint• as a way

to compute surface case frames from abstract case frames and

thus to provide an alternative for transformational grammars

on this point were both discovered during studies in language

production.

By the production of natural language, we do not mean the

generation of a sentence from an initial symbol by successively

applying the derivation relation on the basis of some generative

grammar, but rather the realization of a mapping from information

contained in a store into sentences of some natural language.

Although recent work in transformational grammar is more and more

approaching the same subject matter, it must be noted that

there is a fundamental distinction between generating and

producing.

- 2.68. -

production

Generation is a process precisely defined in the theory

of formal grammars as an operation over strings (called a

derivation) which when applied in sequence as controlled

by the rules of the grammar results in one sentence of the

language that is to be defined. One of the main features of

this concept of generating is that it is uncontrolled,

that means if somewhere in the grammar two paths are possible

there is no mechanism that tells what path should be

followed.

Production is a transduction process and it is assumed

that every action that is undertaken finds its final

motivation in the intenstion of the system. In other words

a producing system is a goal-directed system, it wants

to convey information and uses certain means for that.

It follows that to construct a successful producing system

we must represent in the grammar the relation between a

certain intension and how this intension is made clear

to the reader/listener according to conventions agreed upon.

We claim that the modular grammar that was introduced previously

contains just the kind of knowledge we will need in order to

produce natural language. Even more, while we needed for the

parsing process special predicates (the parsing predicates)

it turns out that we now can consult the knowledge directly.

So, if a modular grammar is biased, it would be as regards

production (and not as regards analysis as probably all readers

have been thinking) .

Intuitive explanations of the model.

Let us again start from the •particle concept' as used to

explic ate the parsing process. Now the particles will be

called tasks because that seems an easier way to capture the

ideas we have in mind. There are two sorts of tasks, the first

type contains the basic impulse to create language code

for a certain piece of semantic information (we call this

a taskbuilder task) . This task then enters the language

production space and is expanded to a sequence of other tasks.

The new tasks are of two sorts, either from the first type agin,

- 2.69. -

production

i.e. a request for new impulses from the semantic processes,

from a second type, the so called leXicalisation

tasks. A lexicalisation task contains every information

that is necessary to produce one single word. It is handed

over to the dictionary routines which produce then

the word itself .

The crucial point in the system is of course the moment

of taskbuilding. This involves two aspects (i) the

scheduling of the tasks and (ii) the determination of what

information should be put in a newly formed task. It is performed

on the basis of the various knowledge sources already discussed.

Each module (or in other words each specialist for a particular

part of the language) is asked to contribute in order to

accomplish the complex job.

From the explanations it follows that the following points

need to be clarified (i) the exact definition of the contents

of the tasks, (ii) the control structure for the execution

of the tasks and (iii) the process of executinq a task.

2.2.1. The tasks

There are two sorts of tasks:

(i) Taskbuilder tasks which contain a pointer to a node

in the semantic structure that is to be receded in a

natural language. These tasks consitute the 1 stimuli 1 for

the production system to become active.

- 2.70.-

production

Definition

A taskbuilder task is a 4-tuple (al 1a21a3,a4(

with

al the keyword TKB (taskbuilding)

a2 = a pointer to the task which was the imrnrnediate source

for this task

a3 a pointer to a node in the semantic structure

a4 = a feature complex which is already due to earlier

processing.

(ii) Lexicalisation tasks which contain all necessary

information for the dictionary lookup process to do its

job.

Definition

A lexicalisation task is a 6-tuple (al, a2 1 a3 ,a4 1 a5 1 a6)

with

al the keyword LEX

a2 the function of the word

a3 the predicate

a4 the subpredicate

aS the viewpoint

a6 the feature complex(es)

No other sorts of intermediate representation constructs

will be used. In other words everything else is in the

process defined upon the tasks.

2.2.2. The process

Ideally a producing system should be able to reason about

language in a similar fashion as the parsing system

discussed in previous section did. Such a reasoning process

could again be organized in a nondeterministic process by organizing

particles which cover a whole sentence. (Cf. hints in this

direction when discussin5the transduction relation for completion

networks).

- 2.71. -

production

In the simpler account given here we assume that the process

of language production is straight forward and probably the

more we learn about language the more it will turn out to

be very strongly determined how a sentence should be

produced in view of certain meaning, context, situation,etc.

As regards the control structure of the system we need the

following:

(i) a store on which tasks are placed in a last in first

out manner

(ii) a function which takes one task and sends it

either to the taskbuilder (if it is a taskbuilder task) or

the dictionary specialist (if it is a lexicalization task) .

If there are no tasks left the sentence is complete.

Let us now provide some more detail on the taskbuilder and

the dictionary specialist.

(a) The taskbuilder

-i- The computation of the factors

The first assumption underlying the operation of the system

is that one can compute on the basis of the semantic

structures what the grarrunatical function of a predicate in the

structure will be. This is the exact reverse of the semantic

structuring process discussed before. There we saw that a

particular grammatical function implies a particular sort of

semantic structure. Now we reverse this relation: a particular

semantic structure implies a particular grammatical function.

Obviously this relation (and its reverse) are strongly depending

on the type of grammatical functions that the linguist

designing an empirical interpretation for a particular natural

language wants to use.

- 2.72. -

production

A second assumption is that it is possible to compute the

vie'i.'7point. When a TKB-task is resulting from a previous

TKB-task this viewpoint is the semantic relation holding

between the two nodes in the respective TKB tasks. When the

TKB task contains an object (as happens most of the time for

the first task) the viewpoint is the relation between the

predicate used to introduce the object and the entity

node itself.

If there are some more factors introduced in the grammar

later on, they ~uld also be computable on before hand.

-ii - The scheduling of the other tasks

Once it is known what the function of the predicate pointed

at in the task is, we have acces to the grammar (i.e. to

all rules with factor function/case, to the synt. networks,

to the case networks , etc;)

The first question the system now asks is what other information

in relation to the predicate in the current TKB-task should

be communicated.

A list is made of these information tuples and then the list

is split in two parts. One containing tasks to be scheduled

before the present task and other tasks to be scheduled after

it, and each sublist is internally ordered. This scheduling

process is perfotmed on the basis of the networks (recall here

the transduction relation defined in relation to the completion

networks) and the rules on order. Because the respective

tasklists (before/after) are used as pushdownstores, we obtain

the right paths in the networks.

-iii- sending through information

Although the newly made tasks may be other TKB tasks,normally

information is sent through to the new tasks in the form

of features (For TKB-tasks in the fourth position) E.g.

when going through a case network specification (AND BY

OBJECTIVE) may be obtained as side effect of a transition in

the network for a particular case (cf.government rules). This

feature is sent to the new task introducing that object.

- 2.73.-

prodtJction

When performing the taskbuilder actions for the task

of the object, we will introduce a functionword 'casesign'

for the by feature, etc;.

-iv- Lexicalization tasks

When every job has been performed in relation to the

TKB task under investigation by the taskbuilder, this task

is turned into a lexicalisation task itself, i.e. all

relevant information is grouped according to the format

specified. Then all tasks made are placed on the main

tasklist and the system starts investigating the first

task on top of this list.

(b) The dictionary specialist.

The dictionary specialist scans the dictionary in reverse

mode. Earlier we had a word and from this we searChed

for the information tuples related to this word. Now we go

the reverse way. To optimize the process, we have pointers

from each (concrete) predicate to all relevant words and further

to all subsets of a given function. The rest of the search

is performed by the match processes of the feature calculus

which work in both direCtions anyway.

- 2.74. -

production

2.2.3. Example

Let us now give a short example of a production process

for the example phrase 11 A very urgent letter" , in other

words we realize one piece of the semantic structure in

particular:

01

PRED QUAL

I
RESULT WRITE PRED

OF%WHAT PROP URGENT

MOD

I
I

OF%WHAT PROP VERY

STEP 1

First we make the initialization task pointing to the

01 node itself:

l. <TKB , !il, 01, NIL)

STEP 2

The first job in the execution 0f this task consists in

computing the function , the predicate and the viewpoint.

The answers are straightforward function: norn.obj (because

we have an entity introduced by a predicate), pred: write,

viewpoint: result.

Next we make a list of depending information items: features

and qualifiers. For each of these itmes we investigate possible

functions, yielding determiner for feature undef and

att.adjunct for qualifier with predicate PROP (because it is

in adjunct of a nom.Obj).

- 2.75. -

ARGS

o.f"!i!'what

I
01

production

Investigating the networks and the order rules in the

grammar we find that a tasklist of items 'before' contains

the determiner and the qualifier with predicate urgent.

The next step is to construct a lexicalization task for the

nom.obj its f. All these tasks are then put on the tasklist

and we get:

3 o <i.EX, DETERM, NIL, NIL , NIL , ((UNDEF))/

2o <TKB, 2, QUAL, NIL>

lo <_LEX,NOMoOBJ , WRIT, NIL, RESULT, ((SING)))

(Notice that for functionwords the lexicalisation task

could be made immediately)

STEP 3

Now we proceed by investigating the first task on the

tasklist. This task is a lexicalisation task. So we go into

the dictionary and we find there the word 'a'. The

remaining tasklist now looks as follows:

2 o (TKB o 2 o QUAL o NIL >
l. <LEX, NOMoOBJ, WRIT, NIL, RESULT o ((SING)) >

STEP 4

The next task is again a taskbuilding task. We make a list

of depending terms. This contains one modifier, for predicate PROP,

The function of this modifier is adv.adj (modifier of an att.adj).

We know from the grammar that an adv.adj comes before its att.adj

Hence we put the task to realize the modifier node on the 'before'

list. As there are no other items, we construct a lexicalisation

task for the predicate in this task. As final result we

get:

- 2o76o.-

production

STEP 5

3. (TKB, 4, MOD, NIL>

2. (LEX , ATT.ADJ, PROP, URGENT, OF*WHAT , NIL)

l.(LEX, NOM.OBJ, WRIT, NIL, RESULT, ((SING)))

The task on top is a taskbuilder task. We look into

the structure but we dGn•t see any depending nodes.

Therefore the only thing necessary is to construct a

lexicalisation task for the modifier. The function is

adv.adj; the predicate PROP and the viewpoint OF~HAT

Resulting tasklist:

STEP 6

3. <LEX, ADV.ADJ

2. (LEX, ATT.ADJ

l. .(LEX, NOM. OBJ

PROP, VERY, OF;IWHAT)

PROP, URGENT, OFJ(WHAT)

WRIT, NIL, RESULT ((SING)))

We execute the remaining lexicalisation task which

yields as output•A VERY URGENT LETTER 1
•

- 2.77. -

§ 3. THE IMPLEMENTATION

l ~ ;thM chap;teft we pftel>etd ;the de:t<LU~ o 6 ;the CJJmpuJ:M imp.l'eme~;ta;ti_o~

we have e@i>:tJwc:ted 6oft the paMM fuetLMed in ;the pnev.i.oUJ.> ehap;ten.

l ~ a 6-iM;t Mctio11 we ivwwduee a 11umbM o 6 aux.U.ia~ty ftoutinu

which ;toge;theft con6titll;te a .i'.i.b~ 6oft ~;t pftocel;i~g i~ FORTRAN IV.

In a. .6e.c.ond .6e.c.tion we. come .to .the. J..rnpleme.n.ta.:Uon o6 -the paJ1.,6eJt

iUe£6 °
l11 a 6ma.i' Milia~ we give the Muti11v., which compuJ:e ;the

6u~c:tio11a.l', eMe altd MmMtie ;tJtue;tuJte ouJ: o6 6"-~ta-1' paJttie.l'el>

M eompuJ:ed by ;the paMM.

§ 3. THE IMPLEMENTATION

3.1. Introduction to the implementation

3.2. The implementation of the parser

3.2.1. Auxiliary routines

3.2,2. The parser

3.3. The computation of the structures

3.l•INTRODUCTION TO TRE IMPLEMENTATION

The programming language FORTRAN IV will be used here as the formal

language for the representation of the algorithms. To computational

linguists this may come as a surprise . It is well known that

FORTRAN IV is a very 't.ough' langupge for linguistic applications:

no list processing, no easy s}~bol manipulation, no recursive

programming. The reason for taking FORTRAN wasSimply that at

the time the investigations started, no other language was

available on the PDP 11/45 we are using in our laboratory. Although

we later on managed to implement a LISP interpreter system,

the working space of this interpreter soon proved to small for

the kind of programs we will be dl.scussing.

This restrictedness of memory {32 K)was a second major decision

factor in favour of FORTRAN. It is necessary to write

highly efficient programs , especially as regards memory

requirements, on such a small machine as a PDP 11/45.

The choice {or rather necessity) for using FORTRAN has the

advantage that the programs will be understandable by a large

group because FORTRAN IV is the most widespread programming language.

Also, the p~ograrns can be implemented all over the world because

FORTRAN is available in practically every cornputer centre.

The first thing necessary however to be able to use FORTRAN

suc<:::essfully. for linguistic applications is the i,ro.plementation

of a number of functions and subroutines 'V'lhich complement FORTRAN

with list processing capacity. The discussion of these functions

and subroutines is the purpose of this introduction

(l) List processing in FORTRAN IV.

List processing involves a way of representing internally

in the machine all the information about lists and about the

atoms contained in them. Also we need ways to input and output

lists and atoms and to perform operations on lists. The first

question we deal with is the representation preble~

- 3.1. -

list representation

Representation

A list is a number of cells linked on each other by means of

pointers. It follows that we need a way to represent the

cells and to represent the pointers. A cell contains three

parts the atomflag (AF) ,a place to store the car of the cell

(CAR) , and a place for the cdr of a cell (CDR) .

If We now organize three vectors, respectively called AF, CAR, CDR

and let the parameters of the vectors be the address of the eel~

then we have ' not only a way to represent a cell I (by a

triple AF(I), CAR(I), and CDR(I)) but also a way to point at

cells, namely by the parameter: I. In addition we can address

each part of the cell seperately.

Example:

The list (A B (C) is graphically:

then the FORTRAN representation will be

AF CAR CDR

l. f'J A 2

2. f'J B 3

3. f'J 4 f'J
4. f'J c f'J

Note that the representation of NIL (the null list) is ¢.

- 3. 2. -

list representation

Now for ~ we need (i) a dictionary in which the atoms are

stored, (ii) a base register, i.e. a unique cell that will be

used as unique address of the atom and (iii) a property list

on which at least the printname is stored.

For the dictionary we will also use a· list structure, based

on the principle that equal front parts are stored only once.

E.g. the atoms AA, ABA, ABAS, ABAD are stored in a structure

with in the cars single characters:

base register

of AA

"' base

register of ABA

of ABAS

base register of ABAO

Notice that on each end of a path there hangs the base register

of the atom made up by the chai;.acters of that path. The calls

in the dictionary structure and all base registers have 1 in the

atomflag (AF) of the cell. All the others have ~. This is

needed to keep both types strictly apart.

The property list is a special list of pairs (property, value)

~hich is stored in a condensed form. The property list hangs on

the CDR of the base register of the atom. The first item is always

a pointer to the printname of the atom. After that comes a special list

of cells where the CAR contains the property and the CDR t.he value.

- 3. 3. -

list representation

So a complete FORTRAN representation (except for the

dictionary) for the list (A B (c)) would be

AF CAR CDR

1. ~ 5 2

2. ~ 6 3

3. ~ 4 ~

4. ~ 7 ~
5. 1 ~ 8 base register

6. 1 ~ 1!11 base register

7. 1 ~ 12 base register

8. ~ 9 ~ property list of

9. A ~ ~ printname of A

10. ~ 11 ~ property list of

11. B ~ ~ printname of B

12. ~ 13 ~ property list of

13. c ~ ~ printname of C

of A

of B

of c
A

B

c

In the current implementation we have 3000 cells available. The

AF is declared LOGICAL.U ·data type and the CAR. and CDR as

INTEGERlt2 All three vectors are placed in a comrnonzone.

Note that as a consequence of these options all pointers either

to lists or to atoms are of INTEGER!i<2 data type

With this representation in mind, we can now turn to the routines

which perform the input/output and processing.

Processing

In a list processing system there is normally a so called freelist

created at the stBrt. When in need of a piece of list structured

memory, one takes 'cells' from this freelist and when these cells are

no longer needed, they are returned to the freelist. The creation of

this freelist is the task of a special suhroutine !NIT. After this

subroutine is called, the system is ready to start.

- 3.4. -

list processing

The pointer to the freelist is called !FREE and available in

a comrnonzone called /IFREE/~

Next we need a routine for input (RLIST) and one for output

(PRLIST) . In addition we have a program to plot automatically

tree structures on the plotter. PLOTLI is the preparation of

this program.

For doing list processing, we have a routine for taking cells

from the freelist (NEW) and one for returning them (BACK)

Lists are copied by COPY and erased by ERASE.

A pushdownstore can be simulated by using the routines PUSH

and POPUP.

Work on the property list is performed by PROP and GET.

Routines which hang new list structures on already existing ones

are ADD, APPEND, and ATTACH~

To check whether we are dealing with a list or an atom, we use

the predicate ATOM and LIST.

All rout.ines are grouped together in a library called the

FORLI.OLB library.

Before we start a discussion of the routines in detail, we give

a detailed example_of the operation of one single subroutine.

This may help the reader in reading and understanding the other

ones. Let us consider the subroutine APPEND (see first its

definition on one of the following pages) . We consider APPEND

in connection with the following main program:

l. IMPLICIT INTEGER (A-W)

2. LOGICALxl AF

3. COMMON CAR(3~~~) ,CDR(3~~01 ,AF(3~~~)

- 3.5. -

list processing

4. Il RLIST (l,I,l)

5. I2 = RLIST (I,I,1)

6. CALL APPEND (I1,I2,J)

7. CALL APPEND (J,I2,J)

8. CALL PRLIS" (!1, 1, 6)

9. END

What happens in this little program is this. First we

read a list from a device with logical unit number 1 (e.g.

the card reader) starting with the first character on the card.

The list is pointed at by Il.

Then the system reads another list (or an atom) on the same line

and sets a poirter !2 to it. By calling two times APPEND we

then add the second one two times to the first one.

E.g. if we read 11 = (A) and 12 = B then after the first

APPEND we get (A B) and after the second (A B B) . The result is

printed by PRLIST on a device with logical unit number 6 and

from the first item on the next output line.

Now let us trace exactly what happens in .~.PPEND. Given

(hypothetically) the following (simplified) FORTRAN representation

after RLIST (in line 3) of main program) :

1.

2.

3.

CAR CDR

¢

3

4

Il

beginning of freelist

Notice that we leave out AF indicators for simplicity.

Now we enter APPEND with Il 1, !2 =Band !3 undefined. !FREE = 2.

First we take a new cell from the freelist. CDR(l) becomes 2 (line 6)

put 12 in its car: CAR(2) becomes B (line 7), note the provision

for exhausting the memory in line 8, I3 = 2 (line 9), !FREE

(equal to 2) is advanced to CDR(2) = 3 in line 10 and finally

CDR(2) = ¢. This yields:

- 3. 6. -

list processing

L

2.

3.

4.

CAR CDR

A

B

0

0

2

0

4

5

Il

J, I3

free list

Then we enter APPEND again with Il = 2, I2 = B, I3 yet

irrelevant and IFREE (in the commonzone) is 3.

First we take a new cell from the freelist CDR(2) = 3 (line 6),

put 12 in the CAR(3) = B (line 7), set 13 equal to the new

cell 13 = 3 and advance 1FREE = CDR(3) = 4.

Finally CDR(3) = 0.

This yields:

CAR CDR

l. A 2 Il

2. B 3

3. B f2l
4. f2l 5 freelist

5. f2l 6

From this example it should be obvious what complicated list

processing activities are going on in the computer when we

come to serious programs such as a parsing system for example.

To trace the analysis of one sentence in the detail just provided

is an almost impossible thing to do.

Now we discuss the routines that make up- the library and thus

forrn the groundwork for the further implementations. The routines

are appearing in alphabetic order.

- 3. 7. -

list processing

ADD

parameters: I2, Il.

Il is a list and I2 is an atom or a l~near list

of atoms.

operation: After execution of ADD, each atom of I2 ~s added to

Il if and only if it is not present yet.

example: Let I2 = (C B A) and Il be

Il will be (A B C) .

Let Il = (A B C) and I2

A B C then after CALL ADD(I2,Il)

D E F then after

CALL ADD (I2, Il) Il will be (A B C D E F

code:

0001
0002
0001
0004
0005
000b
0007
0008
000~
0010
0011
0012
0013
0014
0015
001b
0017
0018
001~
0020
0021
0022
0023
0024
0025
002b
0021
0028

5
2

3

4

SUBROUTINE ADD (12,!1)
IMP~ICIT INTEGER (A•W)
~OG!CA~•I AF
COMMON CAR(l000),CDR(l000),AF[30~0)
NIL • 0
lF!l2 !Q,0) RETURN
FLiG : 0
IF(lF(l2),NE,Il GOTO
L • 12
J • It
!F(CAR(J),EQ,L) GOTO 4
!FICOR(J),EQ,0l GOTO 3
J • COR(JJ
GOTO 2
CALL NEW(!)
COR(J) • 1
CAR[!) • L
GOTO a
FLAG •
~ • 12
L • CAR[Ml
GOTO 5
!F[FLAG,EQ,0) RFTURN
IF!COR(MJ,EG,0l RETURN
K • COR(KJ
L o CAR[K)
GOTO S
ENO

- 3. 8. -

list prm:::essing

ATOM

parameters: Il an atom or a list

operation: ATOM checks whether Il is a list or an atom and

returns a truthvalue indicating that.

code:

(1~)~ 1.
~oW2

lilme3
'/li~~4

~V.l05
(~:('r016

~nv-,8

ATOM should be declared LOGICAL in the program calling it.

NIL is considered to be a list.

l rn:tCCI\. FII~JCfJl11'·l J\f!'JII'l (!J)
T~--PL,..j(li i.•'IT~r~E~ (A~W)

1_1lGlC~L•i Af:.
f:'cJ,-.;~1;_-,.,. 1 ,...'lj;o{ .:;1~ ''./') ,rri~(~tM"'O':) ,t.F'(~~ ·;-:n)

t.ff'it: = .PAL;::.t.
1FfAI="(t1l.f7:',.1) Al!l~':. .TI-:UE.

E IJ(,

- 3. 9. -

list processing

A~ PEND

parameters: Il, !2, I3 with Il a pointer to a cell in a list

!2 an atom or a list, !3 a pointer to another cell

in a list.

operation: APP.END creates a new cell pointed at by I3, hangs it

on the CDR of Il and puts !2 in the CAR of the new

cell.

example: Given

then

code:

0~~1

00~2
~VJI!13

V; \'I lil .:.1

~~~~ 
Pi;?) 016 

~~~1 
f-101i'lt~

001 'j
001~
~e. 1 .
!":~ 1 3

~~'"
0~15

,
1th-Hb
~017

~ I2 = B and Il

after APPEND (Il' I2, I3)

!ll (i:)

I A I ~1 \) kl

5l.!8PntJTlti~· !\I-'1-'U~n(tt ,{~,I3·1

t~PLJCT'f INT~~ER r&-~]

LnGJCto.L•l M'

with I3

C (''l!~H1 :J ".! (A '.l (3 ll C' f>l) , t I) t,> (1; 01'~) ~) 1 6. f. (3 (11 :·H~ l

~0M~0i~ /lFkEf/ l~RFf

Cr"~fJl): tFPr1:-
CAPtlF0~t:t1 : 1~
TF lTF<Jt-f.~i~.y,:'~:!1 r;nTtl l
T .1; :: , J !-= !-' t: ":_
lFRlt :: C:'1;.; (l f Rt~.l

C.l'P (1 ~ l : ·li
·~tTqr.;.·-~

w~'!'Tr:'('-,, ~l

l

2

F"t!1-< :fiT (tl., '~Tn~t~r;~ f:):I--!AlJSTH• JN AI-'PI,-:N11")

C ill. L e.): J T

l PJC

- 3.10.-

1·1st processing

ATTACH

parameters: I2, Il with I2 a list and Il a list

operation: After the execution of ATTACH, a copy of all elements

of I2 is added to Il. I2 remains available for further

processing afterwards.

code:

~0~1

~~·2
~?-!i'13
IJ~~-4

e~0S
~0~b

00~~

!..~0!'1!9

-~II
·~12
~r!l13

0~1~

'~Qitb

00!8
f,/)(!1~~

0~21
~~?~
!/IQ'1?3

~02~
1~025

vl~~b
~~~21 

0121~8 
~0?q 

~~~~ 

~031

~~~? 

5\I~ROUTrr~F ATibCH {!2.,!11 

Ti-lfJLICrl lr\1 H(.;f=!-/ (A••'!J 
L0h1Clll'*1 6F 
r:('li>.1:"1i)N (:fll~~·",t~~·Hi'),(:I'H.((~;J;"~[11) 1 A~()':Wrt1 

~n t = 1,., 
IF fli?.Ul.C'!1 ~ETI.J~~ 

J : lt 
c Gor~ f.~o (IF L.T~T 
~ r•cr~RUI.tO.''li.l onrn 

J • cn•o1 
r;arn 2 
• = r? 
TF(AF.(l!I),.~L.:.!) f~I1TO ~ 

C ATTAC" t.JST 
3 J~(K.~~.rlJL} ~010 Q 

1F'(CA!.t(K1.,:-(J.~J!!.,_1 .;QT(' ~-

CAll '-IH, ( Ll 
r:nRrJl c L 
J : l-
tA~(J) : (';:Ji.,~(~.) 

b K = co~ri(J 
s rn o :~ 

Q CDR(J) : r"\1 Il 
RF."TUR~-l 

C ATTA.r;rl AHH 
5 tALL NE~(kl 

r~•cn '' 
CAR(.._) :c !? 
PF; TIII:!H 

- 3.ll. -



list processing 

BACK 

parameters: I, a list 

operation: BACK returns one cell pointed at by I to the 

freelist. It is not allowed to use NIL as a parameter 

of BACK (this is usually the sign of a severe error 

in list processing). If so, the error message 

code: 

~~~~ 

~~P·?
~~·!
~001/,j.

~0.05

t:'!IZII?Ib
0~~R
~00q

~el1 (1

•J 0! 1
~01?
~~!3
21;;,1u
0~1~

@~lb

"NIL IN BACK" is issued and processing continues.

c THF

u~-

1 I

~llf~;.U)!Ill'.J~~ l:<.o\r,l\ (1}

TMPLlCTT 1' 1 T~!:f~ (A~~,
L;1GIC·'L•l t.f·
r:n~·,·,1 n 1 cr,.~r~·~rl?;),(nr.("Z:'~;\!i".),AF'(.3•.~>;r•_,

co~~~~' II~~F~I JFP~f
O::,I)HkOI.JlJ~-l": H4CK Wf_TliRNS. I"!N~ Cf.LL TrJ THF- F-REE"lt.ST

tFC[.fQ,01 ~Oln 1~
C()R(ll = TF~tf
CAO(Jl • ,,
AF'(IJ = V·
IF'Rr;; F ::
T = ·~
~ETV'•
wwnr.c~.lll
FO~~~T (lW, •NJL l~• ~&~~·)

F N~'\

- 3 .12. -

list processing

COPY

parameters: I,a list

operation: COPY creates a new list structure equivalent to I

and returns it as a value of COPY.

code:

f'.J!tiW1

~~~~ 
~~~~ 

0~~·

~~·~
000b
0~~8

0~1~

0~11
Q! ~! ,_ i?
0Vl3
0014
0••s
0~17
00\q
~0?0

~0~1

0~?<
~~?3
0~;>·

~r?5
t:?IC~j;Jh " • 0 ;:>7
0MP
·~1~
0'Lil
0032 ~
0~:t3

0~'"
0~'!>
00H
0~'q

0~··
0~41

HH(ra.~ f'"tltiCTHHJ r:OPV(Il

J;t.,~PLtCli [N1fGHi: (4.•\>J)
LU~Ir.AL~t1 6~
ra~'<~Mc~) r ~~~ CJ~~~r1 J. Cl'l-! r ~Vov.'Q':), ll,l' t3V~flj~1 '

r.npv : '
fF(I,!Q,o) hFTU~N
IF(AF(l),F~,!l RUIIP~i

J ' 1
r HI, tiE. td PnS. l OLL ,.,fqPO;>l
CALl "n·rcorn
1Ct1 = Cr·Pv
)f tAF(r./.R(J)l,ErJ,Il GQTD ?
TF(CAJ-U1.~·Q.rq GOTO;.
CAll HEo'l(K)

CAR(T(.D) s: I<

C~LL PLIS~flrO,PD2]
CAlL PUf;H(,T,PPSl
Ttn = C.AP tlCIJ)
J ;; [APfJ~

GrT~ I
CAR(jCnJ • CA~(J)
J : t:'f~f"(.ll

l.F fJ.F:t:.\'1 r;tl'O '
0LL bPPc'··r t!CO,~,!C(l)
G(IT(] t
CALL P!lplJP(lFO,P~?l

CAt. L POPIJ~ (J, PDf>)
TF(J~fQ.VJ ~~f!JWN

,I = rGk{J)
TF(J.fQ.~) ~010 ~
CAL~ APrfNI' [JCn,0,JCn)
r..oTO
f: t-J 11

- 3.13. -

list processing

ELEM

parameters: Il I I2 an atom and a list respectively

operation:

ELEM checks whether the atom addressed by Il is in the

list addressed by I2, if so the result is set to 1, else to 0.

~l?l~l

·~~2
~~~~ 

f!.CiHHI 
u~~s 
{.r100t'l 
0~~7 

n~~q 
~~ 0 t ~ ? 
"~ I 1 
'~0! 2 I 
(-101 a <; 
0Q!1h 

00J6 
~~~q 
(:10?~ 4
;)~22 ~

~023
il10?4

t•JTE_r,i::·\oil F'J~Jr:lfQ!J ELEr1(11.J?)
plPL!C!T pJTHFR l'"f!J
L~G!C•L•I AF
cn~Nnr 1 CAP(3~~r),COR(~~~~).Af(300~1

E'LfM = p
n • 12
l~(AF{Tl_l.~_"j•~l !';()Tfl 1

W~JTE(~,?l ·
FOQMAT (i'!., 'F!j./ST A;;.>t;Utv;F~JT' l"'f F:l.f.M SHOUL:l.l HE A.TCl~')

PFTIJ~t-J

!F(AF(!~),E(~.\) r;rHP lJ
JFrT3.t0,0) ~tTli~N
JFICII(f!).EQ.Jil AOTO J
T3: C:.!jP(T~~J
r,oro ~

JFrl3.•<c.IIJ ~P""
f: L E"·' = 1
!ollTU~N
Fl--Irt

- 3.14. -

list processinQ:

ERASE

parameters: Il a list

operation: ERASE removes all cells used to represent a list

structure and returns them to the freelist;

code:

0f~l

~~0-
0~~:1
0~-4
00~5

~@06

00e1
Q!ttl C': 9
~~11

0•\i'
ii'V11_ .1.1

~Vol•

"'~~ 1 1
~~!8
Q'l~)l q

0\?!?t'
0021
0~?2

e~n

00>~
00?~

0~>6
0 til, 7
00?q
0~1~['1

atoms appearing in the list structure are not removed.

$li~PQcJTJ>Cf f:kASt (1\l
JMPL!CIT JNTf~~~ lA•W)
LllGICAI.o\ AF
COf1.1MQN C:AP(30ll'V) ,CI1R("5t~[?,r;,) ,td' (3VH~~,
COMMON IJfRff/ lFREE
~H. L :: r,~

C "t::RASt:" REMOVF-S ALL LH l3 IJ~Eb TO j.O't_Pi-(ESF:r-Jt A I. IS1 STI-"'UCTURE Q,NI) RETll~d·..:S
C THFM TO THE fR~rLlSl • ~O~EOVER ~lOMS APP~A~tN~ J~t TH~ LIST ~T~IJrTLI~~ A~~
C: NCJT J::lf MQV~,fJ

lF(Af(l!J,.~f~.Jl 1-?f.TUPfo.,
1 f r l 1. • E fJ • ,,,) ~ E T lHH:
CALL NtWIP•1Sl

~ TF(lt.EJ.l,.~J 1~010 1
TF ((A.t{CApfi11,.FI~.1,_.0R.(r:At-'fll1.EQ.01) r.on1;?
C4L~ PUS~fTl,PO~l
1\ • CAP(!))
!':.11TC, ~

;o T : ll

T1 • CO>:(f\l
COP(]): !fHf~

CAR(!) • ~
AF(l): l<1

TF"H : I
r;nro ~

CII.LL P0Pl1P(.!1 1 FI['1S)
yr(l1.t:u.I-ITI.) i(llli~H!

r::cno 2
t' rJ n

- 3.15. -

list processing

GET

parameters: Il, I2, I3, with Il an atom, I2 an atom, I3 an at·orn or

a list.

operation: GET returns the value I3 of -the property _I2 on the

property list of the atom Il.

code:

If Il is not an atom, an error message is ProduCed:

"FIRST ARGUMENT OF GET SHOULD BE ATOH". If the

property I2 is not on the propertylist of I3, 13 is

set to NIL.

910rn1 f'!.J~R,JIJT'p,p G~T (t1,1;;'1,t~1

e'ild~2 f1·1Pl.i(~l 'fNTF·~F..: (4 .. ~·1)
~~(.1!3 t0GTC'-I~*l Af-
~1k(10f..i (>J!ul~r);, C.A~(~O"(II),CI"I-'{3:-~CV'd,Af-(~~"li1~i)

· c CHEr.'(w~lF:'fYF~' T1ti=-. P~t'JPttJTV 1r.; AL'-'f'AnV Tt-:t-h'l':
~0~5 ~JL = 0
0C'I06 tF(AFfYI1.Er.'.1l t~I1TO t:)[r'l

),f.1Q~8

~~'l·JI~ 25
?'l:zJI~

~)l~\1 Stil
~?' ~ 1 ;;.
·ij ?l , 3

~(711:,

l'h·ll t-

•·1 1'1 8
:':':', q

"G:1.? 0 1 i,
'1 ·~? 1
·: ~'\.::-()

,J>-'TiF:r..,,,~c;;1

;::_;,.l:~Ai (\J;, f'FTJ:.'"'T ,\R(~U~-1p·r r1F r~~T SHOi.JLf) '1f t..TUri•)
r ttL t. r: ~ t i
J 1 = 1 ,
T1 = rJ~•"'(.ll 1
fF(CO.:>fJli.,E.IJ.~ilL) r~OTI1 F
Jt•r,.(.IIJ
l.F(r:fl. .. - rr .:.~,(.. 1\1 l.'jt. J?) r,,,,.r-; t~~-~.

rs fq'.~'"t
f _-,. :: C I)~ (r:: A;~ (J J) 1

>< ~~ f 'J :0.' r ..

r ~,: r,

- 3.16. -

list processing

INIT

parameters: none

operation: INIT is called at the start of any program using

code:

00~1

~0~-

0~~~
~0~4

00~5

00~b
0007
~0•e
00~9

0010
0011
001?
~0'3
001•
~015

001b
0017
~0i8

the FORLI library. It creates the freelist by linking

the CDR cells to the next cell.

~U~"O'JT!'if !~IT
t THE SUBRDUTJN! JNIT C~!AlES T"E F•F•LIST

T"1PLlCll PiTF(;'E~ (A.•lrll'
LCr;lCil.L•I t.f
c:o~~"<~"~fW rAQ c1~~v~~~l I C:f"!R.C~N'·~l 1 AF C:SQ!r~~n

COMM(Jti jlfkEFI !FJ.'~F:

C tpfATE Fo~!Ll5l
DC 1 J : ' , 1 'i ~IQI
At-:'{!1 = ~~
oouJ • 0
rootll • t•t
J z: I +1~1{1~

.6.F' (,]) •!?'

CA•(Jl • r•
l Cf"R(JI !!ii ,T+l

DO:? 1:1,4
~ r.oo(!l = "

TFoeF. = 5
'?E.T\.IM'(I
E "~I"

- 3.17. -

list processing

INPUT

parameters: IBUF, JZ, DEV

operation: INPUT is an auxiliary subroutine for the read-routines.

It consumes one piece of ihput for the inputdevice (DEV)

starting from the IBUF-th cha~acter on the input line.

A new inputline is read when necessary. INPUT returns

in JZ a special code if the piece of input.is a

punctuation mark, else JZ is the base register of an

atom. INPUT constructs the necessary bookkeeping cells

for atoms if the atom is a new one. INPUT calls SCAN

to decode the characters and LOOKUP to consult the atom

dictionary.

code:

0£'.t" 1
(i!~r~?

01(,~01~

1"01!1ll
00fi5
0~•e
~0•7

~!?11718
~~.Hi~ tl

01!11 t-1

~011

P! !{) t 2
~~14

0~1&
e (il t B
QIQ11q

~0;> l
~022
~0P4

~~2~
et0?b

r.

SUBRntiTftJF J>HJT(!~U~,.Jl,OEVJ

TI~PUC!T !>IH Gf.R (A-Wl
LQC.1CAL,t H
!NTEG~q lsTQ(~~),~CAN
LnGit:"ht•l ~l~l~·J

lOC:lcH.•l ot,'fS'l
C' C ~ ~1 C1 ~; c p.]:.: { ·5-l~ (!: 0) , C (l H (3 t:'J ~ ~) , b F (~~ r1 V1 ~ .. , l
cr~Mr1N /~RT~ITPWJN,RLA~~~,F!PST
CDM~n~ /STWl~/ 5TR]N(~~]
('IAlA J.LENJ';c-·/

NIL = ~~

c 1l corJTPnL
C READ ;J~~~ RllfFF'"' JF rJl{J ONE IS E~HAL)STFI)
1 H(!BLtF,Lr,!LE>J) r,CTO 2
28 TF(DfV~Nf,0) PFAnCn~V,3,FN0:?0) (STRTN(ll,T=·t,lL~N)

I'CDFv,FI~.~) CALL 1~'
~ FORMAT (8~A1)

lff)PPIN ,E~.11 WR!T!(h,hl (SIRIN(!J,I•I,!LENJ
6 F(i!O'"ltT (1(, fl.0A11

tFt~TR!IH\I,F 1i,ALF(4?)) r.Ofrl <"
!BIJF • ~
!~UF : lf,,:IF +1
JF(STPli'jil,I~IIFl.E.~J.AlF(i)) t;OTC

- 3 • .18. -

li!:!t ·:p.rocessing

00?~

~0?~

~0~1
00~?

00n
Ql0~5

•037
003G
0000

~~·-00A3
0004

~~oS

0~"b

~~07

00ae

·~·Q
0~t=:~

0~~1

005?
00~3

00~5

0057
~0~~.
00~1
0~b3

0~~~
00H

f."!r,;lil-1

01"U
0 (t, 7 ~~
0P7)
l"l"n
0e1"

0075
~e1.;
111~71

·~·" q'l i2l !:llf~

~~-~
~083
0085
0~R7

0~'""
00PO
00q!
00°'
0~C)il.

c

c

c

c

n!conE c••w•r•F•
J • SLAIHJ•UFl

SENn TO VoP!OUS •U~P6RTS
!F(J,GT,.I) t;OTO 4

PUNCTUIT IO'·
.Jl • •J
~EH.l~N

c 21 ATnMs
C [A) [HtC~ FO": Nil
4 !F(J.'E,\41 '-''TOP

TF(STO!"CIRU~ttl,N~,AlF(~l)GDTO !?
JF(STRJN(!BUF•~l,NE,AlFI\7llGGTn \~
JJ • Bco•fteuP•3J
tFI!J,G~.Il n~TO I?
.JZ = 171

!BUF • l b\iF +e
Rnu""'

C (B) Al'OMS ANI! hUt-·~F.~~

C P!~EPAF<E" FO~ Sfrp.:.p>!f: P 11";;' Cnf)F!'l t:.Tn~· ·11'1-di CI<'E/J.lF I. ~1F1~i r.F·LL (tZ1 Fr~ C·ir·,.':tJLTlr<r:"·
C THE nT(fTON,~Y ALS£1 rUMPUTE THE ~~Gl~POJ~T OF Tf~f OltTJrlNA~Y

1 2 ~ s 1
!STR(W) o !

CALL NE.~r(Jl1
TI."'J = (J/tri1+\.

C LOOKUP ~y ~TG~lrJ~ THf CG~~ I~! 12 ANrl CALll~IG TH~· LnOKL!P SUARO!.ITl~t
cr)R(TIJ = t:~

A o•OZ1 • J
AF(llJ o \
CALL l(l(1K\lPtfr·~lZ.~IZ)
l F r J l • F·r~ • l"' 1 r; l.1 T 0 1 A.

C TF NfCESS~Qy ~FAn ~~~~ RIJFFl~ f"QR ~~Wl [f1AkACTt~
TF (!<luF,lt ,IU"l r.nrn o

tF (nfo ,J .~:E • ,.,,.. ~.;·FAT) (D~ V, ~, f ~~!1=io'~~l (51 ~d t·, t l) .1 = t, H.~ Tl.l-)

TF(fJE"V FQ.t•"l ~ALL ttl
TF(lP,dl' ,.f\J,I) wR!TH~ 1 el (S1P1N[l),l•I;JLEtJ)
yFCSTRPJ!\l,FfC,ALHUPll r.nT~ ~0

tf3UF :: r.;1
q l~Uf = lfl.rlF-' +1
C IF fli;.~IET<.!T Jh p,Pl•1 J.c; Al\.H·1 rltt.H11TFR (;.f~TO E~!f') !"JF .a.TOM. El...&F Gr'"l 0~• WllH Cfl!'...:
C SULTAlTON 0~ Thf rtCTJn~~A~Y

J :. ~f::fH·i(l~IJF)

rFrJ.LT.~~, r;oto p~
!(!Ill it .,q

.JFt~.~T~~~l GGTU 21
I~TP(n = (
GOTO il

C END QF ;tn,·,
I~ !BiiF •)PIJF •I

CALL 8ArKtlZ)
!FrC~P(JZ).EO,,,lll GOTn \20

C CHECK w~ET~fk PA~F CELl or ~TnM W~S ALRf~OV I~ nJCTTO~AHY EIT~E~
C !MMEQPT!:I.V ;s Cl)k OF l.HT CELL OR AS P:REI,U.~~ ~··~I' CELL
C l·F N~T ~A~[~~-~ rtt.L F~~ fMqE~OJNG FOR 8A~~ CtLL A~O FOR P~JNTNAM~

121 J!=JI
Jl • n'' Llll
TFfCAR{J7).Fq.NlL) RE1U~N
IF(AF(Jl).~~f.i·Tt.) GrJTO 1?e.
tF(CAk(CAF(Tl.l.1.~"<1 1-::.~~ll.) r,;rJlt'l 1.0?1

jl • CHI,J)l
'!FTWP.!

t~7 !F"(AF"(Cr'I.((Jzll.E:Q.~~) r;QTn ti!t
!FiCAo(rl;wrJ11J,N~,•IL1 GCTO 12!
J< • cr;,ld 11 l
PETI~IrHJ

- 3.19.-

list processing

C E.L~f ~AI<E ttr" r.FI.L6
00QS 12~ [ALL NEwill
00•• J • cnP(J\1
~rno1 CDR(JII • T
~eos CD~Cll • .J
00oq CILL Nf•IJl
01~~ CAR(!) • J
01~1 r,oTO 13
0\12 12~ CALL NfW(Jl
~1~3 CD~IHl • j
0!04 !3 AFCJJ • I
01~5 CAR(J) • ''
~~~· JJ • J 
01~1 rALL :<E1tfLl 
01~·8 CDO(Jl • L 
~too CALL New[J) 
~~~~ CARfLI o J 

C CODING fO~ PRJNTN~rF

0111 15
0112 .14
0113
~II• B
~~~~ 3'! 
01\b . ll 
01!1 

0118 3~ 

~w 
0122 
0123 
01?• 
0!25 

L II 1 
AF(JJ • ISTHLl 
L . • L +t 
TF(K•L) ~~~~"1,32 

RETlHn' 
CAOCJ) • !STO(I ). 
~ETLH~~1 

L • l +~ 
JFf (!<•C+1 j .F'·~,V'J 
CILL ">~(Cl 
CnRfJl • C 
J • c 
GOTO tO 

E (3) P.ATOMS 
c 

!"IE TURN 

C (41 ERROFS ANt) f'd!l OF <H.o 

011' !8 CALL ••c•clZl 
0127 RETUR~I 
~12~ 2~ J! • -1 
0120 OETURN 
01~• >1 W0ITF(6,25J 
01~i ~5 FORMaT (1(, ·~rn~L~~~TH FtCEEVS ]0 C~A~ArTE~s~.) 
01~~ CALL EtlT 

- 3.20. -



list processing 

LIST 

parameters: I a list or an atom. 

operation: LIST checks whether I is a list or an atom, and 

returns a truthvalue indicating that. 

code: 

0CiJ!"1 
0~1C'I2 
~0~3 

0004 
•o~s 

~~·7 

LIST should be declared LOGICAL in the program calling 

it. NIL is considered to be a list. 

t,nt::J,rAL Fi.lhlrTfnN LTST (11) 

1.JlG!CAL'*1 b.~ 
rtiM~O~~ CA~(~~~~J,coRC3~~~),AF(300~l 

tlS.T ~ f"'ALSF. 
iF· r ,, r d l ,,,,.~, lt n•. '~"f. 
0Nr 

- 3.2t.-



list processing 

LOOKUP 

parameters: ID, IZ, JY 

operation: LOOKUP cohsults a dictionary (ID) to see whether 

information in a cell (IZ) is present. If so, 

the point in the dictionary is returned as JY, 

else the dictionary is extended to deal with the 

new information. 

code: 

00•1 
9'~H:>2 

00(1 3 
lj!l-e':Jo!l 
QIJiilS 

('}1 til fJl h 

e0o7 
C'lfil:f\~ 
t'llf) 1 ~, 
~01 J 
<;'~~ill 2 

~) rq 1.1 

rn l'l 1 E:l 

0'' 17 
NIB 

\11[,2:::1 
~0~1 

082?. 
~~~3 
00~4

·"':fl?~

0'll?7
~~?8

~0?9
°F,~0

~;·~~
vqrq,
... .,~ni.l
.;hnS

'fb~7!~7
~Hn8

~0lq
1il01J~

In addition there is a check whether the space

for list cells is not exhausted. If so an error

message is issued: 'jSTORAGE EXHAUSTED DURING LOOKUP".

S•.l"iRI:lUTJ•·!F L.rtrH(IJP(Jr,tZ,Jif,
T~1DLIC'IT friTI-':r~f,~ (A•I'J)
Lnl::,ICAL+1 AF
COM~O!·! CA~[~P~~],rnH(~~~~),AF(j000l
(,O'H,It)q ;H4FEI TYR~E

r·JI L : V·
c (1) 1. no• .JP

1 Jj.-:1Cf)t<1 (l!il~!:i),.N1L) f,C•Ttr 7
~ JS:TI'l

1!1 = cn~;(l'il
J II : t I)
r~rAFfTr.l.FiJ.~l JY = tAR(l~'

~ 1FrCAk!JTl.''"·c•Rri7ll r•nrn :1
r" • r v

3 TF(JY.•'.!~ .. Tr!) (,!)1'0 ~

C (~) r~~~Af,.: Nf.:;.: t:~.-,Efl~l!'.-r.
q r~G(TS1 ~ JFR~E

_O.F(fF'RFfl : ~

CAI:O'llf!"f-"FE,: 1~"'~

tr1 : (Fr;€~
IFrtF~~·~r.F.f.!.3('•i~ .. ,l r.t'~TO t::'l
TF~Ff: ('fl~({FW~!~}

C {~) t"'PP-Ht (·!C" C~"ll-- rH= f1TC1II"Ji'.q~oRY
1 ~DQ[I~l ~ lZ

T I I ~ I z
C:)l·dTill = ,rJ:

Tl: lFl-'~1--~

TFfTFi·'~.::·f ,~·l.~l~~~~k') t~l'ITC' t~
I"'c>EE_ ::i .!';(lfRt~"\

crll<' {!i") : ;_>

.] y :: 1 i)

C (4) F~RCi,;-S

\ol i-~ J.1' 1": {. 6 , 1 1 I

FCI'-li·1AT (lv 1

C'LL ft!T
F: 'll)

'SlCJIJAGt: pt~a~l~TFU flU~tN~ t.fl[IKUP')
- 3.22. -

list processing

NEW

parameters: I

o~ration: NEW takes one cell from the freelist and sets I equal

to this cell. In addition it checks whether the memory

space is exhausted and if so an error message

code:

~i?J~l

00~2
~0~3
~004

C'IC'I~5

00~~

'-'\ZIQIA
~(1!11Q

Ill~!' til
001!
il'81.2
CHll 1 3

~0!4
lltrzl \ 5

"STORAGE -EXHAUSTED IN NEW" is issued.

.l;t.1 ~qnurr~:~ Nfi·Jfl1
Ti-I"LICl'T f_t>lTF~E~ (A•.i•J)
L!1G1CIIl«1 H
cr~;.o~~1C1N ca~c:H1.f'L\l ,f.IH\ t.'~lilV~) ,AF(_-H10Vll
rD~~(IN /TF~~f/ ~~~Ff

C THE SUr~k(1liTJr·JF 1'-<E:.~·· Tdkf':"i 11Nf rFLI. F~lJ~ THI:. ,.:R'F~I.,J.'-,1'
TF (!FRE.f.'.fi'J• ~·~~~~-·) r;crli 1
l : 1F'f:i~E

lFRt:F: Clll.ff!l"~f:F)

C:J)Pft) ; (1\

~~~ T t...HP·J 
1 ~~~tT!=_(b,~) 

~ F\l~iHT Ct), •sTORAGf;: F.-~f~AI_)cql:l) TN Np-W•) 

c•cL on 
r:~~i) 

- 3.23.-



list processing 

PLOTLI 

parameters: Il, I~ K, L 

operation: PLOTLI writes a· list Il on a file on disk: FOR004 .. Dl\.T 

in a format which can be· consumed by the PLOT program 

It denotes a value for the. size of the charac"ters of 

horizontal lines and the space between the leaves. 

This value is equal tO I x 0.25 ern. So, if I is set 

code: 

0001 
0002 
0003 
0004 
0005 
000~ 
0007 
0008 
00!/Jq 

to 1, the size of the characters will be"0.25 ern which 

is more or less the normal size. K denotes either 0 or 1. 

If K is 0 then the tree is n·ot centered, if K = 1 the tree 

is centered, i.e. the lines from dominating nodes will 

end at t.he middle of the bar .connecting the dominated 

nodes. L denotes either 0 or 1. I·f L is 0 then the 

leaves will 1 hang• right under their dominating nodes, 

if L = 1 then the leaves are plotted on one line. 

SUBROUTINE ~~OT~ICI!,I,K,~) 
tMPLlCtT INTEGER (A•Wl 
LOGICAL•! Af 
CO~MON CARI3000),CORt300~l,AF(3000) 
CALL PRLtST(!I,!,4) 
WR!TEC4,1) l,K,L · 
FORMAT 1312) 
RETURN 
ENO 

- 3.24.-



list processing 

REMARKS: 

1. Files from PLOTLI are written on FOR004.DAT so do not confuse 

this with other output on this file by PRLIST. 

2. When all structur~s to be plotte~ are proces~e~ by,PLOTLI, 

one should call the CLOSE subroutine in the FORTRAN program, 

in particular CALL CLOSE (4) ~ This is needed- to 'close 1 the 

files, i.e .. add an 'end of file symbol' to it. 

- 3.25. ~ 



list processing 

POPUP 

parameters: I, Il with I an atom or a list and Il' a list. 

operation: POPUP sets I equal to the contents of the top cell 

code: 

Ql~~l 

e0ri'l~ 

?.0?13 
el0~4 

>0~5 
e:!l'~& 

~0~7 

IZ)IiJVI9 
0 17; 1 !71 
!71 f:"' t 1 
V1e11_ 2 

c 
~~13 
;<[;14 

<015 
00!6 
~V11 
ere, 1 e 
~~ ('! t 9 
!1 tl i' 0 

of a list Il and then removes thiS cell from the top. 

This is done by transferring all information from the 

second to the first cell such that· the value of Il 

remains the same. 

-~\li,;:·,LI'Tt!~F- P11~UPfi,l1.J 

r~PI.lt!T !~T~~f~ {A·'~] 

ln!~lC4L11.1 Aj:.-
cu:-ILIIJ', C I~P f ·a.~~~~) ,l;l).,._ {3t·H('i'1 J, tt.F (~i10Vr) 
C1"1i"'ltl! J{f.R~EI tft?r:F 

T : Co<l((!l 
TF ( r:11r~ fT 11 • ~~~ ,0) r.nft': 
I?= \;,~.~rJ1J 
i0>(1)) < [Oi<[!,>) 

CAO!lil • U01!"1 
4FT111 : .\HPl 

RfM(!Vf- _;q._(.Jl.:: r:f:'LL 
CI'IR(Tt?) = JFk~E 
01'(12) • -
.. ll?J • J 

TF"~ft .= 1' 
QF:' fiJRc.j 

Ct. Lt.. '"C"- f:111 
t 1 = ·:'1 

fr,!f'l 

- 3.'26. -



list processing 

PROP 

parameters: Il, I2, I3 with Il an atom, I2 an atom and I3 a list 

or an atom. 

operation) PROP appends the property I2 and the associated 

value !3 which may be an atom or a list to the 

property list of atom Il if and only if the 

property is not yet on the list, else the old value 

is replaced by I3 without warning. 

code: 

~'2111'1 
\l,QI(i'l? 

~ 1;~(..13 

17 .~ ~" 

''HJ 115 
[-1/.)~b 

00~8 

0f.H11Q 
i.,i.'11 0 

;~t'!, 1 
·~,1112 

-~!5 
1?. (-\ 1 c; 
0~1~ 

~018 
~,01 q 

If Il is not an atom, an error message is produced: 

'FIRST ARGUMENT OF PROP SHOULD BE ATOM.' 

.!;UAR(lUTPH=: P~i;~(lt,I?,t:q 

[~PI_(rTf I~JT~G~R (~~~) 

LOt:tr:c.Lid .c.F' 
(' [J~'1lJ-"J C 1.1¢ r 30-.1111 , C I'H1 ('3~ c'H·~) , .\F C ~t~V1P l 

C CHE(~ ~~~t~~~ T~~ P~tlPF~lY 1~ &LRE~DY fHF·~~ 

~~rL = ~ 
T F ( 6 F ( T t 1 • "It " .n f, :1 T (1 1 
";":JfF.If>.,~) 

'i Ffi~r~Af (1)', '~iR~'!' AfJ!~U~~F 1 .;T I'JF PROP SriUULC H~ ATOM') 
I":' AU_ t: 1::11 
J 1 : 1 I 
Jt • c::-.1(/ll 

t~li'l lF(Ci);...:(T11.f:(~._I'-JlL) f,(.)"f(", fiA 

Y 1 ::i C: f\ ~ r .I t 1 
IF(Cf1~·(1"':AP(Jl}).~Jf;.J?.1 r,n'!"f' fLd~ 

C !T 1~ T~o~f_l..(f' 

tnQ(r,~cJ,l) = 11 
!;1-f: T ·!" \ 

C lT 15 ~.~·r T ..-tl='r 
~~Jii20 t~ 

<>·~?\ 

r: A I, i ! f;" 'to ( l l 
r Au_ ~pnf'!.!') r .J l. l, 111 

cqo::'2 
r.~ :;.1?, 3 
;i:·~ ?t.l 
!~\·)25 

tAi<t:T) = To? 

C'.Jf:.''(l J = tt 
IJ F" r :,1 L> ••· 

E :>.J (J 



list processing 

PRLIST 

parameters: INP, BUF, DEV 

operation: PRLIST prints a list or an atom. 

INP is a pointer to a list (i.e. to the first 

element of a list) or the base register of an atom 

BUF is an integer value denoting the position on the 

outputline from where the system should start printing; 

if I2 is ~ a line is left open and the system starts 

from the first character on the next outputline. 

DEV is the device on which the output must appear, 

if DEV = ¢ the outputline is constructed but not printed 

out. This is of use in extracting the printname 

of atoms via comrnonzones. 

The result 6f PRLIST is that the whole list structure 

pointed at by INP is receded in alphanumeric characters 

and transferred to the device. 

remarks: l.If list notation is impossible, dot notation is used 

but only at the point where it is necessary: 

E.g. given (A ( B (C. D))) , this will be 

printed as (A B C . D) . 

2. When the value of BUF is greater than one, all characters 

on the outputline are blanks. One can use this feature for editing. 

E.g. suppose you want the following as output: 

THE NAME IS : JOHN, where "the name is:"is in the program 

and John an atom referred to by the variable name,then the 

output can be obtained by the following lines of.rFORTRAN: 

code 

CALL PRLIST (NAME, 14, 6) 

WRITE (6,1) 

1 FORMAT (1H+, 'THE NAME IS :') 

- 3.28. -



list processing 

code: 

~001 

@0~.? 
00~3 

00~4 
00~5 

00~·· 
0~~7 

00~8 

~~~9 

0e1~
0011
0013
0014
0015
0011
0~18

001•
0020
00?2

00?~

0025

0027
0028
0029
00J~

0031
0032

~ e, 3.~
0f130

00~b
~~3~

0040
00a1
0042
0043
0044
004h
004~

0~··
0~'<'1
005!
~0~?

00S3
00S5
~05~

SU8ROUT!Nf PRL T&Tfi•P,HLIF 0 DEV)
tMPllt".:JT pJf£6ER {4·~)
lDGIC•L•! AF
lOGICAL•! sr"JN
LOC.JCAt.•l Atf (So)
CO~MON ISTRJN/SfRJN{ij~)
C0~1·10N CAF·(~I'Jili:I]J) ,CI"'R('I;~(~~c;,) ,AF(:!t~~~l0)

QATA lLEt'/7(111
C THIS SU8Rf11JT!f\1E P~lr~TS A \..1ST Pr'lJNTf;D AT MY INP tlh.l f- l';flllL~ l'AI~L•:11 ['\-'.~
C FROM THE PQ$1TION rr~lllCATfM BV BU~

NIL • f
Tfi.LIF ~ ~L1F
IF(~UF,LE,IJ bUTO 40~
D(t ~~1 r : 1,l3UF"

401 STRJN(j) • 4LF (\l
L.lr?112' lf((OEV.En,l:,l,OR,(!HUF",~IE,~llGOTO ~,~~,?

wR!TEt1J~V,4~<1
4~3 FORMAT (lXI!')

4~2 !! • r''P
IF (!RtiF,FrJ,,l) !Rt,1F· = 1

rouT • 1
C TOP CUNT~OL : SE~ WHETHER !~PUT IS oTOM,N!L, OW L!&T

!FfAF(!tl,E~.I) GOlD~~~

tF"(ll.£:-Q.~n r.nro 21ih1
C IF LIST CPEATf PfG CELL ON TQ~ OF L!51

c

IOU I • ~
I = 1!
CAl-L ';U(!l)
CARfltJ : I
CAll NEe< (POSJ
GOTO ?

C "--ORJ-1A~. C()~JTHOL

---------··-----c
3
2 I I • ~n'()IJ

ffl1.~t~.i'ITL) !..OTI'J 11!1
tF(AFfJ!),fo,l"l GUTil 1
!F(CA!i()l),r;E,~) <;OTil"

c
C St.C'T,IOI\i 1 PRp:r_n,(, lHt. AT(H'lS

c----------------~--------·-----C GOTO ~~INT~AME CELL nF ATOM, UECOnE T~l~ P~lNlNA~E A~ln ~~llE IT D~ T~~ OtJT•
C PUT8UFFEA (!TWJ•l

~~~ It • re•tltJ 
!.'Rf\1 = 11 

1~ 11 • CAR[P,NI 
lAEG = !81_1F" •1 

II !f(!AUF+l,LT.!LENl GOTn II 
IF(DEV,Ne:,r•J ~~~lTt(t'IEV,b, [!~H"'·PJ(ll,I~l,tl~f:_r;) 

b Ftd~~H.T flX, 1C,L.~Al1 
I BUF = I 
(;Q!Ll I 5 

\4 ST~l•Ct~~Fl = ALF(Af(JIIl 
1? = C' 0 ltll 
tF(Ii?.~C.J.V') t"r1r0 1~ 

!8UF : lPliF + t 
JFfl?.Lr • .t:,;~1 r;ort! 10 

- 3.29. -



list processing 

~0SQ 1RUF ~ l~UF •1 
00~0 !2 • !2 • ((l<'lll'<•) • ''"'") 
00bl 16 ST•JN(18UF] : A~F(l?l 
0~b2 !F(CO~(!l),fO.•l "QTO I? 
00~~ II • COR(ll) 
00&5 l8UF = I~0F +l 
~0h8 GOT" ta 

C END OF ~fpM OH P-AtOM I ~L~O R!.ANK 
00b7 12 !BUF • l~IIF +1. 
00h8 STR\~(lRllO\ • AlF(l l 
0 •• , !F(l~UF,GT,JL••J GOTO II 
0071 TRUF • 18UF +I 
0072 IFI!OUT.E~.Il GOTO IIR 
001• GOTU 110 

c 
C LEFT P•RENT"fll& 

c ------------------c PUSH POINTER Tn rURRfNT CFLL INQ SfT CURR!NT CELL ~&UAl TO LAR • IOl LEFT 
C PARENTHESiS IF fMH!UDIN& N01 OUE TO IN ATn" 

0075 I !F(CIR(IIl.tO,NI~) GOTO 2BP 

0017 
007" 
0~80 
0082 
0083 
0085 
0086 I q 
~087 

CALL PUSH(lt,~OSl 
!FIAF(c4~(!1l),f.Q,\) (;r)IO !!7 
!Fll61JF,li,TLE'J) r.DTO IQ 
!8UF • li'IJF •I 
!FID!V,NE •• ) •~!Tt(Q!V,.) (STR!N(I),l•lt!RUF) 
!BUr = 1 
STRl"(l~UFJ : ALF(2) 
11:3UF = l~t!F +t 

~~BA I!T 11 • C•"rT\) 
00A9 GOTO 2 

c 
C RIGHT PIRt•THf9J5 
C-····-··-·-·~···--~ 
C POPUP POJ~If_O Tll CUkRENT CELL ANO AllD ~!Gt'T PARf.NTHr5!5 If E•;1tDLl!NG IS 
C NOT nU~ ro M' AtOP.1 • TF THE PUSHi'l!,H-Hi ~TfiFit 15 EMPTY GOTO fNn 

~0·1 llq CALL POP~P(l!,PDSJ 
00QI JF(cAR(PDil,EA,NIL) GOTn 3~0 
0~03 !F((AF'(CARI!l)l,f;:t;,\l,OR,(CA~(Jtl,f.l,,tJ!ll) GOT0 \!l 
0~QS lf(l~UF,LT,ILt• I GOfC i? 
@~4' rsu• • tR,_,F -1 
~~91 IFfDeV,NE,rl ••lTE(DEV,.l (ST~IN(Il.I•I,I~UFJ 
~~~~ 18UF = 1 
01•1 ?2 ITRIN(IBUF) • ILF[11
t:l1P'I2 TR(.JF = ll':\i.IF +1
01~3 18 H(CDR(II],fll,'!Ll [;tJTO 110

C DOT
r !F I~ T~E CDR THERF I~ A PntNTF~ TO IN 1TOM •E Ann • Cnr

0!~~ If[AF(C!Ci<(!l)),efl,NlLJ G~TO'
01~7 IF (!OUF.~T,!LE~l GOTO ?'
01~9 !AUF • IA'JO •I
~!H\ tF([JEV,Nc,0) "'"lH(rEV,b) (STi<!'li),l•ldBI!F)
0112 1RUF : !
01!3 21 STRlN(IfiiJF1 • Alf(<;5)
01!~ STRJ"!rAWF+ll • •LI'(I)
0115 !BIIF - I8CP ·~
011~ GOTO 3

- 3.30.-

list processing

C NIL
0117 2~·0 lF (lBIJF+?,LT ,Ill;>!) r;OTO 21~

~11 q revF = liluF -1
01?~ lFCOEV.~E.~) ~~JT£(DEV,b) (5TRJN(JJ,l=1rf~UF)

~~~~ l\0 ~~WfNri~UFJ • ALFl\9) 
0\?U STRJN(JRUF+ll • •LFib) 
~125 STR!NOi<lJF+~l • Al.F (I 7) 

~m 
0128 
~130 

01~1 
013?. 
et33 
01!~ 
0!3b 
0!38 
0139 

STR!N(IRVF+<l • ALF(!J 
reuF- = r~Hlf- "+il 

JF(l~UT8~Q.11 ~[1TQ lt~ 

GOT 0 .l 
C END 
3~0 STRI'(l~VFJ • ALF(J) 

!PLIF • l~l'F +1 
110 1F(FL•GJI0,!1 RtTU"'' 
5M 1~VF • ji;IIF •I 

!F(OEV,III;,rl ••TT~(O!Vo~l tSTRJN(!J,l•lol~UF) 
!8UF • !BIJF +1 
RoTUR" 

C ERROR 
~ Wkllt(b,Re1 
'18 FO~rH.T (ll, 'lRI-!E:'Gl!L.ll; PH'UT f'UR"fRLIST(POS$1FILY P.H?T r:F 1'1 fCT!lHHtR¥ 

•l , ' 
RETURN 
F t-lfl 

- 3.31. -



1ist processing 

PUSH 

parameters: I, Il, with I a list or an atom and Il a list. 

operation: PUSH creates a n·ew cell on top of a list pointed at 

by Il and sets I in the CAR of this cell. 

code: 

~~~~ 

0~~2
~~~3 

Ql ~ \?1 IJ 

0er-<; 
c 
c 

01!0b 
0~08 7 

r. 
I?J~VIQ 

•0,) 
l?(,q,., 
CHY 1 f. 
0014 
P~H 5 

c 
00H 
(tli?' t 7 
~@H 

0~10 
~0;>0 

0e?1 
00~2 > 
0~23 

00'!a ~ 
0025 
~V"2t1 

the value of the pointer itself does not change 

during PUSH, because actually the second cell becomes 

the nev1 cell and all information on the former first 

cell is transferred to this cell. 

SU~~'l'1UT1Nf F"l.JSH(t,T1l 
tMP~TCJT T~TFG~~ (A•W) 
t_!"!Gl(·\1.,*1 AF 
CQMr1nf! CAp f'_li0\1'\'A) r ('D~ (3t~Hii), AtF (31!H'r1111 

C0Mh0~ lrr~FF/ 1FREF . - . 
THlS ~l!RROUTI~·f- CRE::ATt:S l Nf-W CELLO"! TOP t:F A Lt~T Tl AN[) STr!.lt--::, T Jr-.' 
T"E oO- IJF T.<TS CfLL 

JFri1.~(~,~, G010 3 
!2 = 11 

T~ANSf~~ lNFO~MAl!UN OF ~JhST [~L~ lU NFW C~Ll 
rFfJFRH.,f.r·,,,3t'.t'Jif'\1 r.nTn t 

11 = IFRt> 
!F"~E:E ;:: C!~'<'rlf~EF) 
~Frrtl = n.rT~, 
r••<£J11 = u'tl21 
C:OI.f(ll): CDR(t(') 

STCIR~ NEtJ p.:fOi!j.,'rt4lHH! HI TOP CFLL 

AF(J~) :a p 
CAP(!<') : 

co•tt2l • n 
It • !? 
RETU~ 1 J 

WRl'Tf:(b,?l 
FOf''"-1t'T (t)_, •srr.~->r.nr:. tV~!AU . .::OTF[; 1N P 11$H•) 

CAL.!, f-')1 
C"'tl ~~Fl .• , r T,) 

t;r"r-TCl 7 
ENO 

- 3.33. -



list processing 

RLIST 

parameters: BUF, IBUF, .DEV 

operation: RLIST is an integer function for reading lists and 

atoms. 

BUF is a pointer to the position where the reading 

should start. 

IBUF is a pointer which results in the final position 

after executing the function. 

DEV is a code for the device from which the system should 

read. 

The result of RLIST is that all decoding and storing is 

performed and that a pointer to a list (or atom) 

is returned as result. 

The following conventions hold for the arguments: 

1. If BUF is equal to~, then a new line of input 

is consumed but the line is NOT printed out during 

reading. 

If BUF is equal to l,a new line of input is consumed 

and the line is printed on the output device (LUN: 6) . 

If BUF is greater than 1, the system starts 

reading on the latest consumed line. 

Whenever a line is completely processed, but more characters 

are needed, the system keeps reading new lines from the 

input device until a complete list (or atom) is found. 

2. IBUF is set to the final character used in the RLIST 

process. So, with IBUF we can keep on reading on the same 

line if we take this as starting point for the next call 

to RLIST. 

- 3.34. -



list processing 

3. DEV indicates the device from which the 

input line must be taken. 

if DEV =~ a special subroutine called IN is used 

to fill the characters of the intputline in the 

comrnonzone STRIN. The user can himself define 

the way in which this filling in is performed. 

If DEV is greater than 0 the relevant device should 

during taskbuilding be connected to the logical 

unit number specified in DEV. 

Remarks: 1. Blanks are ignored if not meaningful 

2. Superfluous right brackets on the last inputline are 

ignored but if you keep reading on the same line, an error 

message will follow: 'TOO MANY RIGHT PARENTHESES'. 

3. A lack of right brackets will make the system look 

for further brackets and therefore consume the rest of input 

lines. Then a message will be issued: 'TOO MANY LEFT PARENTHESES'. 

So, a lack of right brackets is a fatal error, in that it is 

noticed only when all cards have been read. 

4. The null string can be representedin the input by NIL 

and (). NIL is the only atom that is present as soon as the 

program starts. (The integer value of NIL is ¢). 
5. Each character that is given as input is coded directly 

into an integer. Characters which are not in the ALF vector are 

not accepted, a message 'UNRECOGNIZED CHARACTER' is issued. 

6. An important (but difficult) question is the fact 

that there is a fundamental distinction between the FORTRAN 

program and the variables for lists and atoms used therein and 

the users' specification for the atoms and lists, a distinction 

which is not so stringent in LISP e.g., due to the QUOTE-feature. 

Clearly the bridge between the two is the RLIST function. Therefore 

any atom that is used as an entity in the program should be read 

in by RLIST. 

E.G. suppose 'NOUN' is an entity which is being referred to in 

the program, then we can write 

NOUN = RLIST (l,I,l) where NOUN is on the card. 

From then on the variable 'NOUN' (in the FORTRAN program) will 

refer to the same object as the atom NOUN in input/output. 

- 3.35. -



list processing 

code: 

~~~2 
~~~3 
00~4 

0~05 

~~~b 
~0~7

~~·8

'~0~q

~01~

0~11

001<'
0014
~~lb

·~!B

~et9

17102(1
0~U

•024
0~25

~~-· 110""
~~20
0'10~0

0031

l~llEf.f~ FU~!ClTr:JN RLJST (HUfrlntiF,n[-V)

c
c (IJ qAor
c --------

JMPL!CJT INIFGER (A•W)
I.DG!C4L•I AF
L8G!CAL•I 'lF(;bl ,ST~JN
CO~M(IN 1 ST~tN/ ST~TN(A~J

C(l~"''l"'".i { Ap("'l?::.~lfl) ,COR {30~1-?1) 1 Af 017!~P;)
COMMON /P~]NIJPRTN,RLANK,FT~~T

nATA 1\Lf/ • •, •c•, '' •,•A•, 'E', •x•, •n•, •u•, ·~··· •c•, •o•. •r•_. ·r~·
•• , H • f , J , , , K I I , L , , , ~1 I , , t-J, I • p ' I • (~ , , , j:;' , I , s ' I , T • I , v I I , \'; , • ,)" , , , y , ' 'l • '
.. 1 7) I 1 1] I 1 1 ft 1 1 I ~ 1 I 1 iJ 1 1 I I; I 1 I f., 1 1 I 7 I 1 I 8 1 1 1 9 I I I !I 1 1 I 1 1 1 I :f. I I I / I I 1 • I I

*'+', •"'•, 'J •,'>', '<',': •,•;•, '?', , .. ,, '='• '•'• '•'I
C FQ~ CONT~~LIN~ THF I~PlJT A ~UFFERPO!NTE~ (IALJf) ~~ LJ~tD ~HlCH POI~T~ TrJ l~E
C FIRST CHPACT,~ TO 61' PHil, lBUF lNIHAllV ALSn ~EC.IJLATE., THE PHINTFUG
C (JPRyN1 WHJCH IS ~!T TO 1 IF THE !NPUTLt~t IS TO RE PijJNTEU OUT,ELSt TO ~

~I IL • ('('
!8Uf = HU<
~LIST = ~
!Frt~u•,GT,ll GOTO ~~~
JF(JAUF,fG,0l JPRIN=0
!F(IHUF,!D,Il IP~!N•I

18L)f = ~·
C DECOOE THE FIAST !•PUT ELFMENT , IF IT l~ A LEFT nR R!GMT PA•FNTHFS!R
C WE ST 4 PT PRncE~SI~G FlJ~TH~R, ~LSE A~ ATG~ IS GTSCOVfRE~ ANn WF JMME
C: O!AlTELY R~l!l~~~ \.-.ilTH Rll~T A~ PrJJrHf..~ T(l THE. HAS!": CtLL OF Ttl~. AlUM
1~~ coLL J~PtJf(!~IJF,JZ,nEv)

!Fr!l,ED,-IJ r.orn'"
Jf(Jl,LT,Ol GCTQ I
OUST:JZ
RE.T1JRt~

C WHEN THE F!AST FLfOENT !S I I.FFT PA~ENTHES!S ccnnt • •3) AN tR"OR OCCil~PtiJ
C ELSE ~IE CRE.tTF /!-_ ~-E:I-< TIJPCELL AI'-!('! t;r)ff' THF_ C0"-4HiTL. P(ITNT

l IFCJ7.E~.·3l t:nt~ ??
~ALL Nf>'(RL!S!l
r4LL >~b tiLl
!R = r•L.ISt
GOTQ 11

c
c CZ) r--1ATN P.~O(~RAtvo

c ·-----------c A NElli ~-LFt1ftd t:"; TA~~N FRfJ,.. T 1 ~t" lNPIJT
?~~? 7 CALL 1NDIJl(J~UF,JZ 1 0EVJ

0~B

·~15
0~3o

C CONTRrlt P[1]\IT
c •••••••••••••••••
C SEND 1[1 ~i'Cf!Cl'l Fi'R AH'"o OR LCFT 0~ RJG"TPA~ ~FPFNIJ!NG n" TH~. RESULT
C OF •p~F'Ulf' • JF P,'P!Jl f"'I:SlJL_TS IN •1 (: FJJO ClF' FlLF) .H1 Fh'QnR nrCll~f<Et)

JF(Jl.r;T,.:,l) f,f;Tf': 11i'l
1.1 J • J?+4

G!'"JTrj (1J,5,-?•n,J
c
C SECTION 1 ATD•S
c
C WHEN THE ITOM IS ''II , FIRST STOO> ·I

~017 ~ Jl • •I

- 3.36. -

list processing

C. IF T-..E CAI.f UF THE C1JI'.,Jr..!E"JT CF.l (1'-o:) IS f~:F-lTV \<Jf:: r:b."- HH·Fnlt.Tr:L~- ST('I-!E ~·~~, t.T
C ELSE: A N~~ Cfll MLJ5f Rf ~1Af':F.: , At~!i T!.-lf:N THE f.fol'-l !"; ~T[!J.;lr:[l
r: U-!OTE T~E Ph!I)VysJnri F()R !<jiLl

00~• 1" IF rCA" CI'J .f~.'l'. l r.nTQ '
~~JlH' rF'(CAq(JR) .~L.i,.-J l rA~(7P) : ~·

~0a2 raLL ·~Ew{Il
~0a! cnR(lR1 = r
r1~a~ IR ~ t
"G•S 5 CA~(IR) • Iz
0~4b GnTO 7

c
C SFCTJO~ ? LFFT PA"f'l"~SI~
C WHEN THE C~~ 0F THF ~l!P~F~T Cfl TS ~i0T FMPTV ~~ ~lRST CkEATt ~ N~~ l~l_l ~ ·G

CHANG tT O~i Ttlf Al.t-.~ADV ORT~Jt-,Fn LIST
0.J47 3 tF(CDR(IO).fQ•''lll GnTO ~
C'I!Zitll1 'rFrCil<:;>(lf-').F.n,..t, CAR(IF', = 01

0051 CA~L t•!•CIJ
eie+S? ~OP(TRl = T
0~53 I~ • I

C THFN/ELSE WF F-U,r,f• _THr-- CUF<'t.'E:t-T Cf:-:LL ON !l (THf P>J.5~f"ltli<JN~T(rl"~-l__., C~F.tllt /1 Nf:'~

C CELL A~n H6'~G TT IN Tt~F CAR ~F T~~ CUPR~~T CFLI. -• 1H!S LA~T CFLl IS
C T~E ~~W CURf'~NT CfL

-~~· & CALl PU5~(JN,JL)
~8~~ CALL NEW(I)
n~st:- CP.~(tln = r
0~57 TO • I
005H GOTO 1

Vl05q
~Q!br'!

{,~~6-2

00b4
~0~5

~?1~7
PIQi6~

Qit11~9

0~7VJ

0fJ71

!'1~1~

~~73
911/17"
~1~":75

l?!"l77
~1~:,7P,

~079

~~A~"
~~.JIA t
e0a2
~~)A 3

~1<8•
•08~
0~8b
1 ~1218 7
,,~86

0089
r:'j(llql"'

c
c
c
c
t;
lj

c
r.
c

c
r.
c
Q

c

SF.crroN ~ •r••r ~•ktNTHcsrs
tlDSE THE l PiT rlOi,i,"-J (= ~.Ill !N CPR OF' CURRFNT r:F.Ll ..) A~r:" PO'"'IJP. FJ.l()t-1 ll,
THE FHifNT~r(Tn :,IHf~f fi~E JN~}f1)11!1\iG START~I1• hl(}T~ TI-lE P~(IVIS!OI\.i

FU~ NIL

END

CiJR(TP) : '~1
rrrr~(~(lloi'~.~r,.~.:rt~l rwro 9
TFrCA!~(lR).En,-tl ~ARCI~l a ~

C~ll PfJPIIP(I~, !l)
JFCCAR(JLJ .NF..N!L) G0TO 1

JF THF PIJSHnn~~ 15 E~PTV WE RFACHrll TH! FNn OF A t_TST •Nn GQ RAC~ TU
THF: !";6Ll Tf.JG f.'t~nr~1Hd1

K • "LIST
Q(llf • CAo[ALIST)
cAll 'lA(K(K)
CAll.. AAC"llll
~f'IIJ'-'t~

!N TI-IF.: C68f Or; ~,!TL Af; (} THI.-: LfLL DUE' T'C: {::!"i~Ft;11l~Jr~ 1~ '\fTURr-Jfl' TO THr:
FR!fL!IT o•n •1 15 51UR!n IN THt tAR nF THE NEW rUWRf~T C~Ll nHTAI•ED R¥
POPPT~-JG liP Fi~flo·1 TH~· PiJSHDO~N

"-ALL R'C~ CTRl
t:All Pr)PUP(tl-i,T.!-)

CAP(!RJ • •l
TF(lW,.I)F~Q[.T!;fl GPTC 7
CALl BAO lll.l
CALL B•CI(QLJSTl
~FTU'i't-,

C(3) EOO~RS

c --------
?r'J WhJH (0,~1)
~ 1 ~J~~A.T C1..-,•r-qs.Sp-Jr; r:qr;Hf PAr.jF;NTHF:~t'<•)

ChLI. F'<fl
WfiiH 1o,n1
F()Priii.T (t~. "I~T5foi!N(i t.f~T Pll~fNTHF.S!-S•l

Pt.L cqr
WRJlE(~,~c;l
t="U'.'!··liT (t:r:, 'r-~-H::,. f!F FTLF I!URIN(';_ INPl1T•1

RL!ST • ·'
RfT1J!;I!-1
f~IO

- 3.37. -

list processing

The library of list processing routines contains also

a number of routines necessary to plot tree structures

on the plotter. These routines, although very interesting

in themselves, will not be discussed here, partly because

it is a superfluous feature, partly because they make

extensive use of the special UIA library containing routines

for using the plotter.

- 3.38. -

parser implementation

3.2. THE IMPLEMENTATION OF THE PARSER

We now start with an explicit documentation of the implementation

of the parser. As every programmer knows it is always possible

to make other implementations for the same problem or to construct

programs in other programming languages. One of the things we

want to do in the near future is to implement the parser in

another programming language. This is to say that we do not

insist on the present implementation nor on the programming

language being used, although it must be said that the system

works now very efficiently. and very fast.

The presentation contains three parts. First v1e discuss some

auxiliary (but task oriented) routines such as the

consultation of the dictionary, the implementation of the feature

complex calculus and the implementation of the completion automata.

These routines have a general character because they are called

at several places during the program.

In a second part we discuss the programs which constitute the

parsing system itself. In a final part we provide all details

on the routines for computing functional structures, case

structures and semantic structures.

3.2.1. Auxiliary routines

3.2.1.1. Storing and retrieving linguistic information

Because we are experimenting with a rather small computer,

we need to store the lexicon and other kinds of linguistic

information on an external storage device (a disk) although

this slows the whole process down considerably.

We will solve this (largely mere technical) problem as follows.

We assume that linguistic information is always related to a

particular atom. E.g. in the lexicon the information sequence is

associated with a particular word form, a syntactic network is

associated with a particular keyword, a case frame -is associated

with a predicate, etc.

- 3.39. -

parser implementation

As a consequence we organize the file on disk in such a way

that via an atom we can retrieve the information relevant for

that atom. Note however that we assume there to be only one

sequence of information for one atom .

The list atoms is stored and retrieved on the basis of

a hashcode which guarantees fast lookup. Because we want

more then one language as 'working language', the language

is a factor in the retrieval.

The routines for creating dictionaries and for retrieving

information from them will now be discussed in some detail.

The implementation is largely due to L. Bamps.

INI

operation:

This main program initializes two files on disk. One for

the information in the dictionary (INFO.DAT) and one for the

words themselves (WORD.DAT). Then the files are filled with

blanks. Space is provided for 5000 information items.

code:

0001
@002
0003
0004
0005
0006
0001
0008
0009

0010
0011
0012
0013
0014
00!5

LOGICAL•! ~L
DATA BLI' 'I
CALL ASStGN(4 1 '!NFO,DAT',0l
CALL fDBSET(4,'UNKNOWN'l
DEFINE FILf. 4 !5001,4!,U,IRECJ
CALL ASSIG~(3,'W0RO,OAT',0l
CALL FOBS~T(!r'U~KNDWN'l
oEF!NE FILE 3(7qqJ,I7,U,IRECJ
!0•~

DO 100 1•1•7993
100 wRITE(JoJ) (BL,J•1,31l ,!0

no 1~1 1•1•5001
101 WRtTE(4'tli0,(8L,J•!,80)

CALL EXIT
EflD

- 3.40. -

parser implementation

CRE

operation:

This main program creates a dictionary by reading the

atoms and storing the information about the atoms.

code:

~~~\ 

~~--
~~~3 
0rll04
~~H~5 0,,.b
~0•7
V10~f;

VJQ)rl!9
~ti)' t'l

··~ ll [~12 2q~

~013 qq

etrnta
~~'" q~

'-~Ott>

~l[/.1 t 1
~~':1P.

~·~ 19 2~·

~c2'l
;1022
~0?3

~025

0~2~
~e28 1f'l~
~l?I?Q

VI\IJ '3 1
,_,0~i? 97
~033

0~~· ?0?
171(:)~5

003b q-;
0~37
00~A

17i040
0~·1
Vl0a? 21.
(71\)'1/J.IJ

00ns
':·~IJb
~1C'-'7
Q.\ij~P. ?20

I_Or,t(Al.il ~DF-'0(31/'i),TA,W(IRI)I-I(j~'),TAH,HW(?.),I3L

UJG!CAL•, lfAAI":t(P,i':':)

!= !H_j l V il. U' f._ r-1 (1 A , H W (1))
nATA. rH ,~ 'I
I)AT6 N!ll_ J,;>l
CALL A$.',],~~N(~,•wo~n,!jA1'',[:'n

CALL FUt\S~T(!,~U~KNOWN'l

nfFJN¥ flL~ 3(JQq],17,U,I~fCl

CA~l A~Jtr.~,(U,•l~JFn,I1 AT',0)
LALL ~-n .. :-5!-:T(..a, •:_n.:\(f\,1 0 1•-'~-1')

DF..F!r·!f: FJI.E 4(1::iV10'1,1Jl,U,T~EC1

~EAM(1,qq,~Nn=~00)W(JPO,T6
FD~HATC~,-1,~1)

~R!lEl~,q~lTA,\~U~n
~OR~A1'['~~.~~.A1,5~,30A1]
rl ·~' (11 = t•r ~~ R !) (.:! 1
HW(2l=,UR<.'U1
JAO=MQIJ(lA,74~~]

Tlln:Ta.n-+'
IF (!Afr~r;1,7qq·_~ll~D•t
QtAD(]•tAnJWOkiJH,TAH,lNDH
JF(WQQIJf~(lJ,E~,HL)~O TO?~~

fJU 112!~ I=t,3?1
Tr(•·!nRI:"'H{!·I.Nt.\.•!!1Rn(JJ)Gl\ Trl ~~it~~

Ci1NTTNUf
Tf'fTA.~F.tlH)t.Q T~ ~~~

WPTT~ (,.,,q"7)

FOI-1~-1A1 ('+•~J

TNn,: r~trl~
q(A!'J(t,t:~q)KAAf~T

~f.' I T E (to, , q ~) {" A. APT f J) , 1 = t , P. ~' J
FiJ~f1al (~0·,~~A1)
~fAD(••Tt>~rlt) Ir-II)H
lF'p;AI\Rl ~B-?1) .~r-~,qL~r~O Tn .-Ji?.!·l

1 ;,lr"~xi.l: ... yAI)

l.rtq ff (IJ' lt-t!)X)lNI"J0-1 1 (i(AHiT(J) 1 !:1,81'))
TF (!NliH.L1.(·1li~O Tl: ?.9,;1
t::IEA!l (1.pJt-!(JH) trTI)I.'~
"J~'11J.: (l!'l;,,r)H)~-IlJL

Jl.ii)rl::!oJ[iJ.H

1':-t; TO ?tt~
,r(t1~11H.~T.~)GO TO ?~Cl

- 3.41. -

parser implementation

~:+lj)~~

00Sl
~~~? 

""53 
''il5 Q 
1i>055 2~~ 
{110151'1 
,,~, 7 
r~o.:; s 25~ 
r~05q 

V!~bll 

Mb) 251 
~M2 

00b3 
0mb" 

0~~5 

iil~h 1 

0~~~ 
1]1~-, 7 ~) 

V'Hi71 

i~J/17 2 '0rl 
r,lli'1J3 

R E-_ AD l ~ • o:; ~: ~ 1 ) I t 'I) L 

TNDv= l~H'L+1 
l•l"' I T E l ~ ' l "' il): 1 1 ;>.J D l , ( ~t: A A J.! T (! ) t 1 ~ 1 , B ~ ) 
rr~r:·»;:JtJnL•1 

r;rJ T!J ~~1 

W P I I ~- ( 1.1 • 1 Nfl l l l N () H , (!>..A ART ( 1 l , 1 = 1 , e, t'l) 

Jr-l["rX::lNf!H 
Gf! TC 2k-~ 

R t. /1, u ( .;.j "5 ~!~I 1 ) I ]\1 [j ); 

p.>();tU::]tiJ.:l.l•l 

1•!1·1' T T E (3 • 1 A 1 1 ) W i J R! l, T (1 , T r,J !_l X 1-i 
y;-,1r,'l.:lttP_X.+1 

J.;!tf!(J(1 ,q'l)!(b.AFT 

-.>l~·lfE(b,Q5J (K:A.Af1l(l),l:t,An) 
I~.if':I!H:-Tbn 

f~ rKAAAt-'Tf~·'),.FfJ.i=\L)l~JP'I(H•INJJX•1 

r,oJ ,.,. T T F (.:.: • 1 ;-l t") v 1 l N D ~ ~~, ( K A.\ R T ( ll , 1 :: 1 , ~~ 0) 
tFrlo".~:~c.~n,,..,v. 1 .t(.l.l""iL) r~nrc1 ~51 

iJ.Hil!f"(LJt~C,OJ(I\l)lNUX 

Grl rr, 2'40 
C:lli"·JT t_r.JU~ 

E ,·~ f+ 

- 3,42. -



parser implementation 

SEARCH 

parameters: Il an atom 

operation: 

The integer function SEARCH consults the dictionary on 

the external storage device to find the information associated 

with a particular atom (Il) for a particular language (TA). 

If no information is in the dictionary an error message 

will be issued: 'LINGUISTIC INFORMATION MISSING FOR :' . 

This is a fatal error. 

code: 

00~1 

00~2 
001~3 

0~0" 

~~~5 
0~0F,
e~~7
0~r,B
~~~9 

0~~' Vr 
001? 
00!3 
~~l<l 

00\b 
0~!7 
0<.l! 8 
00!9 

002~ 
0~21 
~0?2 

0~~3 
0~?~ 
002o 
1(1(~;1'8 

0e~9 

003" 
0~31 

00l? 
0~33 
0~30 
00~~ 
0~ns 
M~O 

0k~f.l{;j 

0~41 

0~42 

INTeGER Fll•cT!O~ SFIRC" ll!) 
!KPLTCII TNIE~Eh (A•W) 
L L1 G I c Al11 1 s T ~ _t N ( 8 0) , \i.J (Jio11) ( ~" ~ 1 , H w ( 2) f \N f) R ~ H (:~ill' I T e. I~ , T A I ~ L 
~~IJJYAl_~NC~ (JA,H~(t)) 
COMMON Jl•D/ IND~ 

C0t-1M('!t,1 /TAl T.A 
co~MON 1 sr~t'JISTRJN 
!JAr• Rt.I)H J 
CALl GFT(JI,•I,HIRCHJ 
IF(SE~HCH9~E•~) RETURtl 
CAI._L p:;oi,.TST(lt,t,,-!1 
f'lrJ 1 U·_H: 1, ·5((1 
!F"(~fRPifi.EI•l,F(l,RLJ r,nTn 2 

t WO~D(L~~l) ~ ~TRtN(LEN1 

~ Do l J = L.f~J.~0 
1 'IQ~D {J) : BL 

HWfll="OR!lf?l 
HW(,?):\<r!Jt.l!i(3) 
.JAO~:MOD(!A,7ql.}~) 

f.l.f.d0 I/dr::=fAI1+1 
TF ftAo.r:T,rqq3)1~0=1 
QEAP(!•IAn 1 wn~o~,TAH,JN1lH 
TF (l•JORNd11.Nf 111 tH,.)Gr'l Ttl IHJl 
CALL P0LJoTrl!,~1,,) 
L<l~ITE("',"') 

l.i ~fliJMAT (lH+, ~L-T~rr.UtSTtC Jl-lf:'(JRhAliON l"llSS!NG FO•~ : 1 ) 

CHL ExiT 
4~1 rJo ~V'I2 r=t,,£:;, 

lFr.'!Qiil!)~(ll,hlt.wnRI)(l11G(l T[) 47h~ 

402 rm1r1r-.1UF 
lFrTA,Nf,TAH)G[I f(J a~~ 

_T~,IrX:}NnH 

5EA~CH = Rt!Sfr0,1,r:1) 
CALL. Ph-'LIP(Jt, .. \,SF,_Af.?Cri) 

R[H.lr-:ti 
E. >JO 

- 3.43. -



parser implementation 

IN 

parameters: none 

operation: 

This subroutine fills the STRIN-vector in the comrnonzone 

for consumation by RLIST by reading items from disk. 

This is an auxiliary subroutine for the SEARCH operation. 

0001 
0002 
0003 
000~ 
0005 
000b 
0007 
0008 
0009 
0010 

SU~ROUTINE lN 
LOGICAL•! STR!N(~0),8L,TE~T(80) 

COMMON J!NDIINDX 
COMMON 1 ST~IN/ STR!N 
OHA 6L/!H I 
REA0(4'tNDX) INDX,TEXT 
0Pti•t•80 
STRlN(ll • TEXT(!) 
RETURN 
END 

- 3.44. -



parser implementation 

3·.2...1. 2. The implementa:tion of the feature complex calculus 

To implement the comparing and combination of feature 

complexes as defined in chapter I, we need routines for 

computing set interpretations, doing truthlogical interpretations 

and combinations of features. For this purpose we introduce 

the following programs: 

EXT 

parameters: GOAL (a feature complex) 

opera·tion: 

The integer function EXT takes a feature complex GOAL and 

returns the set interpretation as value of EXT. 

explanations: 

Due to the recursive nature of the set-interpretation, we 

will need pushdownstores to stimulate the recursivity not 

present in FORTRAN. 

The first phase of the program consists in decomposing the 

whole feature complex into minimal units, where a minimal unit 

is an atom or an operator. Two pushdown stores are used for this 

PDl to push the minimal units upon and PD2 to run through the 

list structure of the feature complex. E.g. 

after phase 1 the feature complex (AND (OR A B ) ( NOT A ) ) 

becomes: 

A 

NOT 

B 

PDl A 

OR 

AND 

The second phase of the program takes each of these minimal units 

from PDl and evaluates them. The result of evaluatiOn is stored 

on PD2 and if results of previous evaluation is needed, it 

is taken from this pushdownstore PD2. 

E.G.: 

- 3.45.-



parser implementation 

( 1) A 

NOT 

B 

A 

OR 

AND 

PDl PD2 

I 
( 3) 

B 

A 

OR 

AND NIL 

PDl PD2 

r: (5) 
((B)) 

((A)) D 

NIL 

PDl PD2: 

(7) u 
PDl PD2 

(2) NOT 

B 

A 

OR 

AND ((A)) 

PDl 

(4) 

A 

OR 

XOR 

PDl 

(6) 

PDl 

- 3.46. -

PD2 

-----

end 

((A)) 

NIL 

PD2 

w 
~ 

PD2 



,I 
I 

parser implementation 

code: 

-~i-~~ l 

~l"lli112 

e OJ en 
-t IH'Il~ 
~- (., ~ '5 
til0f)!b 

J~07 

~0~e 

(~ :]l ' :;; 

~,~I 2 
0011 
~V; 1 " 
(H'. 15 
l;'l~, b 

·~ "j 1 1 

~0~~ 1e q 
~·-~~? 1 
zr,~?2 
,,~23 

~1]21.4 

(·~- J? ') 
::tl'?':J 

'!0'' 
;~·?l?q 

-,: .. :~31 
?ern?. 
(~(;j ~ 3 

;):?!~ ., 

~~'3q 

~~UI 
0~"11 (J ~ 

:)',045 

;3~tl7 

.I!~JIJ ~ 
·,hHiq 
~~'lsv 

-'-H'51 
,.,~~t' 

t:IITEt,!~~oj r-u-~r:lliH·,; E•l(q'lt..L 

H',~l!Cl r l\lTE.GE:w lA•X:) 
l~)GlCt.Lj~;\ AF 
Cni>'!A!_l'-' CAW~(_!·~:l!'),C:""Jf.<(3'}_"~1,AF(3r'_;{lrq 

li"l!.lf"~r'" /1 iir:,/ i.I';J 1 tjP 1 'l 1D 1 f;f1T 

F- iT = ~~ 

r ::::: ~,..,:.1. 

fF(r;i'JAL.~·J.o•J RtT\,q-~ 
C FEA.i lr'€ r.lMi->1 __ 1=.:. T5 4TO:--I. 

JF(~~='(l).~t:.1_1 i,tlftl IH., 
C/lll. JE •(t_'(n 
Chi~L Jf:•i(;.;) 
r.~~.,c~-.r,.: ~ 

r:t.wn-) ::: r 
pi-' TIJR'·~ 

C FtAl,_IQE C0~~-~f~ f~ LIST 
C P'H~" t 
r. (•I::'C!l""' 0 rl·)~ F~ATI_I~r Cllf'I~;LEJ. A~ .• , PL:S;; n·" P~·1 

\11?! I'.:All- '·'~e'(F'n\l 

fALL ··f··cR:l?1 . 
2 !F((t,FICAI-fl)'·t.·-~.1).r•"-!.(r_rrr.J(!1.t:·q.;)J C1!1T,, t 

CliU F~J.;;;~,r 1, Fl-,?) 
!:Cb~fl1 

r;n 1 · 1 -~ 
r:t:.ll.- Dl __ ~t•(C~·o.J(l),PI'Jl) 

;??. 1: (J .. '-(!) 
rF(t.~.~.·'-1 r,rnn _t. 

G r-·liJ ? 
~ ]~rr;:.-~r:.--~~;.J.f-'· .• ~'1 t;eTr:; ~ 

CALL P0r'l 1 P(f,~112) 

r.:i,:J ~~ 
11 r:au .. ;.l,_~-,,.,rr,Pnt) 

C P~:ASf ;. 
5 r~·rcnf.-(i'IJl),t'.:,c~, r,nTiJ ~:?~ 

CALL ~(1Pt~~(J,P~11 

C SENQ 1( PtLfV~~T Pl~T 
yF(J.j:i-!,J:) r;UH· q 
1F~J.t~,:.':r'Tl (illlf_l p~ 

C ,o. T 0~-'-

r. NIL 

T F ( I • ';'_ -J • r_. ~~ ) (,: 1 i ~ 1 1 
J~=' r,;.,::::'·~f,' .. ~J r_~L·, , t 
n= ( J .i7~~.-·:~-q 1-rP1 1'~ 

L!otL ',,f=' .. i{ 11 
C lt l_l '-'F'k (I_) 

\ i.:;, C T l -:: I 
(~~P(I __ ) o; ) 

C4LL P 1J~-~,r1,~r-~l 

Gf'T- 's. 

!?.0':i3 q C~lL ~'~.l!=l~f?,Pt•-'l 

~~ ,, , s 
,,~ v' ~;. b 

C NOT 
t q 

t. I] i-1 

1 t 

r. ~· l ; 1 • .., 

(" t."' ( !;I.--_,; ~ 
r.r'l · c.. 

I /1 r·'-, 

: 

Cll. L 'f d l T l 
f'. : I_ 

- 3.47. -



parser implementation 

L"Q1'59 
~:716~ 

0~62 
f,~Zl~3 

1liQ'!b5 
~~b~ 

0~67 
00b~ 

,~~~9 

(?ii~7P' 

~~71 
·~7? 
r,~73 

0075 
o0H 
~~1~ 

~~79 

~!'18VJ 
,~~81 

T~82 

1(1~·8 _'3 

~084 
fJi;il85 
,!1;1P.b 
.-:,~PH 

~089 
~[oq 1 

~~92 
M93 
~l}lq£1 

''095 
iJ'~97 

~~9· 

~0qq 

2'1(}1~~ 

~101 
~I~? 

~1~3 

l? 

123 

rall DQ~LiP(J,P~2, 
Tl-' rJ.t-:c.J.!~) r;01') ~ 
f :::; (O.io?(P;J?1 

T~(_t.~::~:.:,.i71 r.cnu ''-~ 
J I : 1 
LJ : CAF.(J! l 
I 1 ~: -1 
Fl: Ct<~~(T11 

-~ ;: r;:_·,p '( ( r; _,) 
Cb.l-L r,PPfrlU cr.,~,~) 

C.AlL L\l"~1"J(f"T ,S) 
11 = (.[,~(]1) 
JF(Il.~,t-.'l') r;(_ITQ t? 
J1: Cll>'(Jt) 
IF(Jt.Nf.v.l r~i r<: 1r~ 
CAR(r-Ht,?) a: (11~(1.,.1) 

CA-LL i::t;A(_.iC_(Ll) 
r;OTIJ ~ 
r'h~(Pf11?) :I 

(~OTO 5 

CA~ (PI)~) = J 
r~nrn c., 
CALl POP\,p(L.,Pf'?J 
lf- (L.t~, .• l•) bi;Tr· o;, 

1 .: c;,,~{Pr;~) 

Tf(~.trl ~-,) ~;!'Tr '?.' 
(Al.L PU~I'!(r:;l!fi(U,L) 
V.::~C-1!..-rJ) 

!'>~Ll4 >..o.CK(l) 
T : il:. 

TF f].['lf.:.-J t~<lfn -;11~ 
Cll.,..(PI:?) = L 
r:;rqr_! r;: 

CAl.L ~OF<I.I~ (fXf,Pr:?l 
rALL AC'I'. (1-1!_,1) 
C<~LL H..;rPr~~) 

j:;Jf: T U"" 
'E:>Jr, 

- 3,48, -



parser implementation 

MATCH 

parameters: SOURCE, GOAL two feature complexes where GOAL 

is a set-interpretation; 

INFTR an inference tree 

operation: The integer function MATCH computes the subsets 

of the domain (given by GOAL) which evaluate to true for the 

feature complex source and returns the set of these subsets 

as the value of match. 

explanations: 

MATCH works on the same principles as EXT except as regards 

the evaluation procedure itself. 

In a first phase the feature complex is decomposed in minimal 

units and stored on the pushdownstore PDl. The other pushdown­

store PD2 is used to assist in scanning through the structure. 

The second part is the evaluation itself. Here we make use of 

a special subroutine MAT.CH2 that checks whether an atom is in 

a subset which is itself a part of the feature complex GOAL. 

The whole process is repeated for as many subsets as there are 

in the domain, and the subsets which result in true are 

accumulated and returned as final result. 

The code for the truthvalues is 1 for true and -1 for false. 

code: 

~!21~1 

~k,~2 

:.qQ!~ 

0[;-)~t.j 

:110~'5 

~'lill~b 

t'/lz:l/'7 
liHi:t~ij 

0k10'1q '.1?1 

'MHl 
c 
c 

~·~I 3 
~014 
0015 
~1316 
~01€1 

~020 < 
~022 
010?.'3 
oilft.l?LI 

PHEGF:R F!.~NtTJCH. MATC'I1 (SrJIJRCE,G04.l, 

J~P~!C!T p.<TFI;Ew [A-n 
LOGICAL.-.t eF" 
t:nM~'•10i~ l ~R (~-'":'~rt~), tl"lR ('30~!i'l), AF (_,(·~~·)) 

cn~Mil'w /.LnGfbNQ,Q~,-OR,Nnl 
CALl. '·'f'dJM) 
.•1 = j !cl 
ot : G~J~L 

TF r~o: .F·<,1:·.l r~- ~ , .... 
tFrw:,,!E.'') 1 11 : r:~P(!o:) 

PHAH (11 
OECrJ!APrJsF~ ~FATiJkF. r:OfvlPU:i f>.r-,n PUSH fiN Pn1 

T : ~·1 1 JkCf 

C.Alt.. 'l.!t.:_·.•l I Pf!t) 
CALl.. ~..,17/J (on.:!:l 
IF (1 EQ ,,;) ct!Tl' II 
TF!AFlJ).F!I.J) r_~Olfl i.l. 
!F((H(r6RTJl),EQ,!),(,Ii,(!,o",~)) GOTll 1 
f:t~.LL Du:-:,brJ,PII?.J 
1 ~ r:t..~(t) 

Gfl!J ;> 
- :1:49. -



parser implementation 

"""5 OLL PI I~~· f (. A"" ~ I J 1 ~·I) J I 

~rli?b '.;l l • cr• c 1 1 
0Q!?7 l F (I , ~IE • .[c) (~ 0 1 (1 ? 
~~?q ·.~ t F" { CAp ( ~" u' J • t r~. /: 1 r:: I)T r,l <; 

0~31 CALL P n P u ~ f I• f' rJ ~) 
~~ 32 f!.IJ r u ?? 
~0B 4 PLL PUS!'"', (1, ~(, t J 

c PH .aS~(?) 
~~34 ~ TF rent.· fr:'r!,) .~c,l.V:) r.; r·, 1 r; IV 
~~~· C:AL.L ,PliP!ip(,J 1 ~[1) 

c S E ""r; TO ~ELf V t~.~.il ~· /lt.fT~

Ql!tJ37 yF lJ.E.•'::.V.) GOTO q

0•H tF (J.E~.I,'rl l ic ll T rJ 1 ~l
~~•I tFr,J.f(~.o.--1 (,err. 1'
0~43 r F- r J .. E. Q • p ,, r;) .~, r.11 I") 1"
f!','il45 Tf fJ.F:r~.•:!PJ !'"-,rJT{' 1 3

c ATOMS
&II~~ 47 CALL f'· \J ~_, ~· (;~ t.. T C H 2 (J , I "') , Pi ,
91QllJA GOlO <;

c NJL
(.,(~4q q CALL P'JbHr] ,Pi'2)
~~5~ h 11T I'J "·

c !\iOT
M51 1 ,, tf"'(Clq~(Pf• ~ l • .,: ,'_,. }) } I~ 11 T r' tl:l

~053 CAR(Pf.l;l) = t l).r· (j.jr-~r:> 1 •• ,
0~54 r.[f(' <;

C OR
~~55 \1
0057

lF((J,k(l-'i~•?J.,f:·,,r~i f'-1:T~1 ~:-·•

CALL pr,~iJPrl.~ni)
005f
Qlt::!bfi.'.

~~1;1

00H
~0b4

~'iJbb

\fl~h7

1M1~q

007V\
~07?

00H
0075
~~n

0078
00H
!l.VJA~

(71 ~18 1
~082

~M3
rt!I{JA4

f>:l~fH:

~rJ87

~'08q
C711C qk•
00Q1
0(!1Q3

Qle!GI'J
009b
0Q'Iq7
00GO
0t!?!0
~~~~ 
17' lr;>? 

c b."! f) 
! ? 

,IF {L.o.:•::•.,l 1 r-.t,!-· (Pr·;;l : l 
r;r,Tr"l S 

T F ( C P ~ l ~ rr ;J 1 • f- (,J • 1,~) f1 n. T n {_j ~ .. 

!"ALL 11 ih'UF (L, f'l.'(') 
lF (L .• fi:•, .. l) CAP(Pf:•-'J : •t 
r,r-• T'J '; 

tF cc~~·rr·u~) .f-u, .. ~) r:r:-rn lli~ 

CALL P(~r·tjPIL,Pfl2} 

TF(L,fr.•.l1 r;OHi 33 
l F rCA. I-I I F; !' 2) • ~ ( , t ) G (; T Ci '; 
L4R(P~l?) a .. j 
r;rnn s 
JF{C!rt(f.'.'?),tr~;.t1 r:;ptn ~~IJ 

ill~(PO.'J: 1 

(~r~ro 5 
4r, .. h-rTE.r!:'!,ll1) 
a 1 j::(~~-.~lt-.T fh, "lJ~J\"F~-LLr:rrpt«l~f! Fr;ATl.!~E cr:r•Hq~JAT!\J~J p1 r-1~.TCH TE~T") 

~o~TCi-! : -1 
G-"l T( 31 

:!In 1r: rChf. (f-' 1 .r;t).f.~~.r-:,) r;r-ro f-i;?~ 

(L.ll Pm'dP('HlCH,Piie'1 
IFrCtY(~I·?).H~r/') r.r~Tti 4-(~ 

C ACC:ii·~L·Lt.Tf- rE:Sl't T~ ANI! Er.rn 
·~1 ibLL Ht.r K fPt1?1 

CALl~ cq.(:~ 1_Pr·l J 

1Ff'·:~!._TCH.t.-:J~tl l/JLL !I.DP~_·t·lf' (l~'l,jK,lM) 

~" = r:: ~-j ~ r ~'" 1 
Tf ( !< ''P_ ·~1 VllrJ ?r., 

2'5 ! .. lr:.,c~: = ·.:1 
JF ((';l-.l (r) 1 ft'•'q ~~T!I~'r,l 

"'\AT C: H : V} h- ( t-·,) 

c 11 t L. rt or"- r t,•l 
-~f Tt!t;-"-1 

J: ! J f) 

- 3 0 50. -



parser implementation 

MATCH2 

parameters: J; IK with J an atom and IK a linear list 

INFTR an inference tree. 

operation: 

The integer function MATCH2 checks whether the atom J is 

in the list IK. If so, MATCH2 is set to 1, else to -1. 

code: 

2!!2!~1 

!i:0~? 
0~1713 

0~M 

~n~~ 

0J~~ 

~"' ~J, 1 
.J00Q 

0011 
~~13 

I}! rAtS ~ 

i/l!'ilb 
I?' Qi 1 7 \ ·~ 
eote 
(ilL) t 9 II 
~0?! 

~~?2 

INfE~E~ ~lJNCTJC~ ~ATC~?(J,IK.I~~T, 

r•PLfriT J•TtG~O (1-•) 
LC:;t['Al*' t.~ 

COIH1Ur~ C.~'-i(~,>.IJ(lll,r::llR(3W"lq,<\FLH~I'II0) 
MhTC.CJ2z.,.t 
K = r~r. 
lFfK.~~.?) ~Gl0 t1 
tFCCAO("J.f~.J! G,Tb !<' 

TFrlt.JFT .fi."'•'"'1 fW"Tr:t 2 
IF(C!{n$S(J~CA~{kJ,l"">JF"T).r· .. ~.i7') r.OT(l tY'I 

K = C:""l!..:(k.} 

r.;nrn 1 
rHfC'12 = 1 
PFTUR'\! 

TFCJ.··;f.:.~J 1-H:.lur.<~· 
r;r)rll 1r,.. 
~ 'Ji! 

- 3.51. -



parser implementation 

C,ROSS 

parameters: SOU and GOAL both atoms, 

INFTR an inference tree. 

operation: 

The integer function CROSS is an auxiliary subroutine for 

MATCH2, it computes whether two atoms can be related to 

each other on the basis of an inference tree. This is done 

by running through the inference tree (with a pointer LI) 

using a pushdownstore (PDS) and by setting flags 

at relevant points during scanning. 

code: 

0001 
0002 
00~~ 

0004 
0005 
000b 
0007 
0008 
00,09 
00U 
1'1011 
0~12 
~013 
0014 
0015 
00\b 
~017 
001.8 
0019 
0~20 

~021 
0022 
~0?3 
~~24 

0025 
0026 
00?7 
00?8 
1'1029 

3 

4 

1 

INTEGER FUNCTION CROSS ISOU,GOAL 1 1N'TRJ 
IMPLICIT !NT~GER(I·~l 

LOGICAL•! AF 
COM~ION CAR(30~~),CD~f3~~0) ,AF(3~~~~ 

CROSS ·~ 
c•LL NE~< tPDol 
CALL NEW (Lil 

s • L l 
t,!.R(Lll •!NFTR 
!FCAHCAR(Llll,NE,ll GllTO I 

!F(CAR(Ll),EQ,SOU)GOTO 2 
Ll •CDR !Lll 
IF(Ll,NE,~lGOTO 3 
CALL POPUP(L!,PQS) 
IFIL!,NF,~JGOTO 4 
CALL ~ACk(Sl 
RE TUR~I 

CALL PUSHIL!,POSJ 
Ll•ORIUJ 
GOTO 3 

CALL POPUP(! 1 POS) 
JF[J,EQ,~l GOTO & 
!F(CAR(CAR(!Jl,fQ, GOAL) GOTO 5 
GUTO 2 
CALL ERASf.CPOSl 
CA~L ~ACK (~l 
CROSS •I 
RETURN 
ENO 

- 3.52. -



parser implementation 

COMB 

parameters: Il and J whexe Il and J are both set interpretations 

of feature complexes 

operation: 

The integer function COMB computes the extensional combination 

of two feature complexes and returns it as the value of 

COMB. 

This is done by using the ADD subroutine which adds all 

atoms of a list to ano~her list, if and only if the 

atoms are not already there. 

code: 

~00\ 

r0~2 
~0~3 

~~04 

~0~5 
~~0b 

~~08 
N~9 
~~II 
~~12 
r~n 
0~\4 

0~ I 5 
~017 
~0!8 ' 
~0~0 
~~21 

~022 

0~2 3 
0020 
0025 3 
0~,26 

~0n 2 
~~28 
~0?9 

0030 

T~Tf~E~ FlJNCT!ON COMB (11,J1l 
tMPLIClT INTfr,F.R p .• w) 

L'HilC~L"t AF 
roMMO~ CARr3~~0),rDR(~~~0),AF[300~) 
C(JMH : [J 
IF (J),fQ,"J •ETlJRN 

Cf>>i'l = J\ 
!F tlt,Hl,0l R~TlJ~I~ 

oLL "'"' tco""l 
C = Cot-~R 
tr = c 
.I : J t 
IF fJ.fr1.,Jl) GfJTiJ ? 
T • 1 I 
IF (l.E~.0) ~rJrQ 3 
F • C"Pr (CAQ(!Jl 
CALL 1\!)r; (CA~(Jl_,Fl 
CALL 1\pp.::.r.irl (r..~,C1 
I : C:IP(f) 

Gi'J1 •) !1. 
.J:CU!o\(Jl 
GOT[) 1 
C0"8 o CI:·~I!Cl 
CALL '1.hCKrTCl 
n ~ Td~''ri 
END 

- 3.53. ~ 



parser implementation 

3.3.1.3. The implementation of the completion automata. 

We use transition networks at various places in the 

whole system to control order restrictions. Let us now 

discuss the procedures that are able to consult the 

transition networks. These procedures are located in a 

subroutine called NETW. 

(i) input: 

Recall our conventions for representing transition networks 

in the form of list representations. A transition network is 

a list of quadruples: (al,a2,a3,a4)where al is the start 

state of a transition, a2 is the resulting state, a3 is the 

condition for the transition to take place and a4 is the 

symbol associated with the transition. 

al may be one state or a feature complex of states 

a2 may be one state or a list of states 

a3 is a feature complex containing features 

a4 is one single element or a list of elements. 

A transition network under the given conventions is the 

first main piece of input information (called NET). 

The second main piece is a triple (CON, STAT,RES/ where 

CON denotes the condition for a transition to take 

place (CON is the extension of a feature complex) 

STAT denotes a state (or a set of states) 

RES denotes possibly a symbol associated with the transition. 

The idea is that if CON is NIL, RE:S is the condi·tion for 

a transition to take place, so we can perform transitions 

both on the basis of the condition itself and on the associated 

symbol. 

(ii) output: 

The output consists of two things: 

(a) A value for NETW, the call name of the proceduie with 0 or 

1, denoting that no transition or at least one transition took 

place respectively, thus we can immediately check whether there 

was any result. 

- 3.54. -



parser implementation 

(b) A list of triples (called OUTP) ( bl,b2 ,b3) with 

bl the resulting domain of the conditional feature complex 

b2 a new state (or a set of new states) 

b3 the symbol associated with the transition. 

So we come to the follow,ing program: 

NETW 

parameters: CON, STAT, RES, OUTP, NET 

operation: 

The procedure is a Straight forward list processing actiOn 

computing the states and the features according to the 

specifications given. We introduce a flag (FL ) to indicate 

whether the condition or the associated symbol will determine 

the transition. A pointer (INET) runs through the network. 

First a match is tried for the state, next a match for the 

condition of transitions. 

If successful a new list (L) is created and attached to the 

OUTP(ut) list via an APPEND operation on the S-pointer. 

coC.e: 

- 3. 55. -



parser implementation 

00~1 

(11.,1?1.? 
!JI·~Hil3 

0rJ~a 

~~~5 

~Y'"'tl
~~~1 
00~9 

0~ l. I 
~~12 

~~\3 
~~14 

~~15 

~01b 

0~18 
~019 

~0~1 

~-?2 

~~24 
~0?5 

00?7 
00?6 
0029 
~030 

~032 

00B 
0~H 

~0J5 
\111{!3() 

c 
I 

n 
ll 

I~!1E.GEP. ~~JNCfiOI'J ~~~TI~tr.n~J,ST.o.l ,i:?E",r)IITP,~·~·r, r~J1 ,f'IJNT~tl 

l"Pl-!CIT !"TfG"R (o•\•IJ 
U'~GICAL1111 AF 
CO~M(H•.i CAP(~(~\1·~1,C8~(31-'1?1')) 1 A.Ff3W.1~) 
l\l F 't i-1 z 1A 

F'Lc llJ 
IF(CON f~ 0 1 ~~•1 
l~(FL.~~.r.A~n.~ES.Er3.~l~FTlJ~N 
lNE::T : 1\lt_T 

r>LL ''F • rnuTPJ 
5 : f_)IJTP 
r•LL NOI!Sl 
OO(!SJ = .<;TAT 

CHEC< wHeTH~R CJJND!I!DN !5 SATISFIED 
TF (lf\!ET .~CJ.!-~, i';OTr'J l\11 

IRES •0 
tFCFL,'''.n r.orn, 
!RES= <14Tr;h (CA"I(OR(r[JR(CAR(JNI;T)))l.CON,Fl'NTH.) 

r4Ll POLIS! (!RES, 1 1 6) 
CALl. PIO!t_ T ·"T (CON, 1, Ed 
!F(lRF~.r.:n.121) G!"JTI') 15 

r.nro ~"· 
5 IF(OE$,NE,C4A(CDRI(nR[~OP(CAR(!~ETllll)l ~OTG 1• 
C C"EC• •H~T~cO oT4T< IS SATJSF!~O 
2!71 ~IST&T;: MATr_:H((:_AP.(CAJ.i(PlF.T)),IS,I~lT) 

CALL P~Lt$T (N5TAT,1,~) 

rAl.L P~llST rtS,l,h) 
1F(N5TAl.F~.~l G0TO t5 

C A~D NEw T~IPLE TO OUTPUT 
CALL Ni'''lLl 
tALL APPE.ND (S,L,Sl 
'-AR(I-l = IllES 
CALL A.PPf~lr) {L,r:AR(~il~(CA~(lfJE"T))),!) 

!F[CDO!C~~(CDR(CAO(I•ETJIJl,NE,~J 

* CAl-L APPPHl (I, CAR (C~R (COR lrno [CAQ (!NU 1) l l J ,J) 
15 !NET •CGO(!NtT) 

GOTi1 1 
C ENO 

Vl~iJ fl1 1 PI IFtCnf.f(OIJTP,,t-~f.('A) r,aTn 1\ 
r4LL ~ACK [OUTPl 1104?. 

004-S 

~~·· 11 
~045 

~04b 

r!r,:'!rJ7 
0008 
~0·9 

I>ETURN 
t • CIJ~ (llUTP) 

CALL BAfK(nulP) 
1'-IE'TWI:l 
OUTP • 
RETt!PN 
F.NIJ 

- 3. 56.-



parser implementation 

3.2.2. The main program 

Let us now consider the main program of the parser. 

It performs the following tasks: 

(i) Initialization 

This includes 

(a) Internal initialization of the list structure memory 

and of the files on disk on which the dictionary is stored. 

(b) Initialization of the variables which are needed in the 

parser. In particular we input all terms which will be common 

to the programming system and the user. 

(c) As soon as the reader has given the language in which 

he wants to work, we also read the grammar, the syntactic 

networks and the relevant inference trees. After that the 

system is ready to consume an input sentence. 

(ii) Preparation 

Then a request is issued to the user for an input sentence. 

For each word in this sentence the system consults the 

dictionary and creates the initial particles according to the 

conventions we discussed in the previous chapter. The particles 

are organized as described earlier 

(iii) Send to parser 

When the initial particles have been made for a given input 

word, the program control shifts to the subroutine who actually 

controls the pars~ng· process, namely the subroutine CONTR. 

(iv) Send to semantic structurer 

When all input words have been consumed in this way the 

program control shifts to the routines which extract functional 

structures, case structures and semantic structures from the 

particles which cover the complete input sentence. 

code: 

- 3.57.-



parser implementation 

~~~~ 

~~!'\~
~~~~ 

~~~· 
~0~S
~~~b 
~~~7 

000E

OIPI~q

001~
0•11
0~1~
~~n
~11'1(.1

0!015
0~1~

0~17
001B

c
~etq

~0~~

~0?1
0022
Ill~?~

0~~4

0e.2<;

0~-b
·~?1
002b
0f·~q

0~3!i"o

·0~1

0r•2
0~,,

pl(ll~t.J

0@'<5
e'f'll3b

0~37
~fl'R
~0·q

Q!0t.lt'1
~~at

~~"2
O'r;1t.l'3
~0"4

00a~
[l!~llb

00H
0fJitJH
~~(-1/,P~

00~~,

~0~1

~0<;?

~0~3
0~r;;l.(

~0<;~

JMPLJCJT INTEGEP (A•I)
LOf.ICAl•l TA
LOf.!CAL•1 AF
C~M~~N ;JF~FF/IFRfE
r(l~MnN /V~(T/ VFCTC3~),~"RnS
c:n~\~1nt~ /l~iFTRF./S:VNT~F, SE~1lRE, F Ut-. T~E
cnM~ON/~DntSVNAfl,VF~AAL,tASEl

r:0"'1r><~C'IN /C:OQ[1 L Orjo:;, h'IJLE, .~E"FDPF:, AFTFR, THUF, F ALfiE, tlrJf"'lr;. T, FUt-,,r, H,,
..- SVr-1N~i,FPAt;f 1 D~JfC 1 Lit-l~A,Pj:(E.f)JC

C~~~Qtl tcnn~/ MI1~ 1 Ql,AL,A~JU
C[lMM\n~ /l!''VF.:~; INVF~,t-!STfiTS,L.I'
cr:f-IT-~CJI• ll.CC.I At-,•n, OF 1 l[)R 1 r.,;nT

r n r-> ~~ n r.J I C r·1 ~ F I CDr>~~ C 3 r,, l. r.~)
[QMMCN tFf~l Ft~,TR
CCJt~MO!~ /TA,/ ,A
C.tH-'IMON/F'[lS I Pf.•:',, PitS?
C('~"-H.)t,l /I.' 1 vU?R

C'C~l'-t('1"1 rAR(~t'l[!~(l'l ,C.nR(~~IlQ\) ,AF(30Q!(?!l
CHl. !>'IT

RFAfl ~Y'~RDLS

C~LL ASSl~N f~,'WO~O~OAT' 1 0)
tALL FDHsErc~,·wN~NDw~,.,

nfF!NE rl[~ '(7093,17,U.!R~Cl
C6.LL AS~q~~;(4,'"H-'FO.nAT',t1)
!':All FDf)~F'l (fJ, 'UNKNOW~J''
f"of,Fl~·!E FJLF 11("5~~.ifll 1 1l1,,(!,T~'EC)

TR 1: 0
"ll • ~
CALL r.j(l•!(PI)t')

CALL tJf\o'i(pt'lf,?)
conF.s = ~LJ:iT UJ, r,?.)

T[:f'J!JE' ~: rnnFS
'~DPF = CAP(ICt1n~l
L<lc• • cARr~n•rrc~nEJJ
~lll.E = Cti,!<;(Crlj.;((NJ(frO(lfl)1
R~FnRE = t•Prtn•rrnMr~n~crcrr!J!ll
AFT<P • r.Ao ((DO (CfiP (CDR (Cn• (!COne)))])
tronF • rn•rcc"rro•rcnR(rooc!cDn!lllll
T~liE : tAR(tCn~f)
lltll)f:T a CA~(tl'lf-:lTl':NJF1)

ADJII • CA"rcr~(CnR(1C[11Jf'lJl
FIINC'" = c••rcn•rcnorcnertcnnFJ)ll
08J~C • r•R(tn•rrnRttnR(CQR(TLDrElllll
trnnf = tnP rr:i1P (CCW (CC"1Fo' (r:t'H~ OCOnf) 1)))

FNA'1E = r4P(ICI.lilE)
SVN'.Iff : CA~(CI'IRftr::_tiLJE))

.61'.!11 : COh' fCI~P f(!_l~ ('[Cnfl~)])

(11";; CH'((r'IP(CI."'~U:nR(l('(l[!f_J))'
)(f!P, = l':td' ([11~ (f.!':\P (1":1,11-' ((',nj;((lL[l['F),)) .)

TCO!)f.' :;; cr,r..1 tr:I:RfC:CI-l(f':t!P(CC-R(TCOr~EJ11')

N~T = rA~rJrnnfl
PRFDTC : [6~((nRrtc0DE))

lHif-'IA = ('1\l;;i((I!I'!CI)R(tr.(lr'l~)))
"oD • rA«rr,.J'tCt'"Ccrwrrcot•UJ1'
D1. 1Al : CAPICDP{C"P{r~P[rnfl{lC!'~~)))],

TCpOE • cno(CURIC(>OICDRICDI(JCOGE111•J
FIN = CA~(JCO~~)

- 3.58. -

parser implementation

~0St>

~0•7
0~5e

~0'9

~M0

~0~1

00~<
0~H
~0bA

00"'
006~
~rn&7
00f·.Pi
~0&9
0~7"
0~71

~e12

~~7 .~
007"
fi'~7t.,

007b
~~77

0078
0~70

ew1s~~

~QIP.l

008?
~~·l

~-·· ~0R?
00Ab
~e·• 1
~0R8

~0·~
M91
~r-102
~~·,q -:J

(li~Qr..,

@~)Qt,

0~0il

Ql t?l ~)(~
t'11 ~ Vl

01~4

TRACE • CAO{CDP(!COOEll
IJNOO o CIR([G•(tn•(lCOn!]))
GPAMMA : tA~(C~R(CnR((nH(lCODF))))

~'••fl• caRctnnccn•ccnR(~I·•rrroneJJlJJ
tCnDE ~ tnR(f~ij(rD~(rn~(r~R(ICnO~)),)]

~VNT~ ~ tA~(lCOD~)

SEMT~: r~~(C!,RfTCOnF)l
Fu"CT•• CAR cU•R (CilP (IC<'DE) J)
VEPBAL : coN{rOR((!J~(COO(lCO~llll)
FEAt • CA.([ilW(tnR(CDOfCD•flCCDElll)l
!CODE: rn• 1 c•R(C[A(CCW{CO•CIC0n~)Jlll
A~G : [fl.J:". cirL•J EJ
PP5 = CA~fc~Q(tCODfl)
~~~ST~=tAP{rJ·lh(CO~(ICOliF))l 

HV~L = PLr~rr~.r,21 
HyPP 11 HvPt. 
VER8 : f.;~ J5T(V', [,21 
nl r .s r = f: L r _, r t ll, r, n 
WPTTE (f,, 1:7•'~~) 

l0P~ Fnk~At (1~/1¥,•w~LCOh~ TO T~~E PARSt~n ~¥RTf~ 'l 
WRlTElf., 11/l(illl 

1r"~~Ql1 ~(1!-lt--IAT (1-t/1'!, 'Sf'FCHV THE LAN(;U.A~F') 

!1? OEA0(\,\11 TA 
11 FO~~~Al (Atl 

0 ~~ITF (~,11~1 TA 
0113 F(!PMAT (1-r:, 'INPiJT LAr.'!';IJAGf-.' :',At) 
~ READ T~tE G~Ar~~~ 

.J = ~ 
~~AM ~ ~fARC~(~~A~IMb) 

tr; : GRAM 
t z CA~[GP~~-·-) 

L ~~e rn 
J • J+l 
CALL Pk[JP(rAPtl),RIJL[,J] 

13 l•L•l 
~<=Ch"'~cn 
If'(AF(Kl.:--if:-',1) 1\: cr_lPV(K) 

COMfrJ,I_} : r 
1 F ( ( n b' r 11 F.(~. L·' l r.Ln n 1 ~ 
' = nJ, nl 
r.o r o 1 :3 

1t; JF"(Cf_)h fG~<'>lr"'l,trJ.V•) t:;uTCl ~h'l 
I';RA!'1 ;; (f:";;;.f~'·h't.M) 

r,OTQ l? 
ll fiLL EAo~F<!~I 
C R~A~ THF ~!fTW~~~~ 

~lET~ : ~PA~rHfHfFOREl 
T~ CNF.'lS.~f:! .. ~ll l~OTO ?~ 

li'IP- = AF-Fr.1~f 
~I ~5 ?3 
01•~> ?\ 
~I~' 7 

I~-~ : Nr:rs 
(ALL Pi-ilr_lP(C!i~(CAP(H-:1),Lt,H,Cr"<Fr(CA~-(lfo.!))) 

Tr.J 111 Cf)i-:(H.J1 

~~·~ 
~I HI 
0!!? ?b 
•11 ~ 
011 11 

TF flN.t.1f. .r.>~ GPTLI ~1 
TF (LA~.f.;J.AF n-.Rl r_;r1TrJ ~7 

~IEfS : sE~RC~(AFT~~] 
l.b~ !: AFTF~ 

tF (~ET~~Nf~0l GOTO ~~ 

- 3.59.-



~II b 
0117 
~II~ 

01!9 
01?•' 
01?1 
0122 
01?! 
VI?" 

0125 
0\?e 
~1?8 
01?9 
0131 
01~~ 

01 "" en" 
011~ 
~1'9 

A lUI 
~I•< 
01•! 
0\.U 
0145 
01•• 
01•7 
!l!1tlq 

At•<; 

~~·~ 
01~.'7 
~!<;6 

~!<;Q 

01H1 
~I hi 
0,)~2 
~~~:1 

~)f"4
C!J1f-.5

parser implementation

C PfAQ INFfQ(NCE T"tfS
~7 SYNTRe • SEA"rH lSV~THl

SEMTRE • REARrH (SfMTR)
FliNTRE • SFIOCW lFLINCTR)
CAL~ Nf.(NSTATS)
CALL, toE> (L Ol
CAL~ >JEl·J ('1STATS1
ioJRlTF (~, 1 t~0.:?1
FO~MAT [lY, •GIV~. tNPUT SE~T~~CE•1
~I[!RDS = t"':

C SENTENCE c~•Es TN
JNP o R~JST(~,lrll
lF!lNP,PA,,J Gnra ~50
! c JNP
TF!INP,fN,TRAC~) TR o
tF- c lNP,E-r~.u~mrn .,.~ ~ r
lf((Jr.JP',Er2,,TRACE) ,1"1R, (!NP,EQ,\Jt-11)0)1 GOT!1 .!·il
ItJ~P = tNP
TF(JNPP,f<l,~l GOT~ 55'
J o 5EARr"(CA~(1Jl
!F(CDP(JI,fq,e) GOTO a0

r • ro•lll
r.rro ~'
CONTINUE
I'R! TE (h, I ~~'31

10~3 F~OMAT (\Xt!1 1 '1N:')
CALL PRLl&Til~P,\ 1 hl
lf(T~,E~,(l WOJTE(~ 1 !1"041

~~~4 FO~MAT (1~, 'C(INFlGURATlf1NS P• THE SHTE'\P•c~:'l 

045 TR • I 
C TAKE. !'JE"W Wt)kO 
~· WORD • CAPIJ~PPl 

WtJROS 111 wowf'IS +1 
wRln C6,1MJ 
Fl)RMAT cntt'l 

0 
f1!~? 

0 
D 
ntr7~~5 

CALL PRLlST (wn~n.th,~, 

WRJ1El6 1 1~~~1 Wfl~D5 
FtHH-1A, fP~+, "I<IIJR() t·l~ :",!~) 

CALL GFT(WO~~n,-t,JMn~F1 

lF(IMnPF,f0,~1 GOTO 55~ 

c 
C cONSTRUCT T"lHAl HRIJCTURE 
c 
I) HRllF(b,f~i"lll 
J")tli\(,1. 

I 

c 

FORMAT (1._, '.I. n .. ·JTTAL. P,t,RTlCL~-'5 I') 
CALL Nfh!K) 
I~LJST ll l'l., 

CAP (K) :r;:: t1,1\1Pf1 

r.ALL 'EW(L l 
CALL ~••t•n (~,L.•l 
CAR(Ll • f.ARI~VPI) 

ON : l 
HYF' -: C:b"'(J.iVPil 
CALL PRnPf~(l~rl,~YP,L) 

HYPL : cn~f.IYPI.) 

FLAG = l·' 

FIIR FAC" L~'lCAL I•Ff1RMAT!f1N LINE CONSTRUCT P•PT!CL! 

- 3.60.-



parser implementation 

~l'h 
O(b7 

0!~f 
OI7V 
et71 2 
0172 
~ 17 3 32 

017' 
e 17" 
0177 ~ 

0PA 
0179 
~~e~ 

~~~~ 
~!A2
•t•3
0!Rn Q
0!8~

0!Rh
0!87
0j~Q
01°~'! '5
~191
rto;>
eto3
0194
01o~

~!07

0198
~199
~2~~)

FIJ~·'C = (:At.·rct.h(l~t":~F))
TFUN = I?

!F(AFtFLI~!Cl.f(J.1, G[)TO 'I

1FU~I = f-U"''C
Fli\IC a CHHJFUN)

!fUN c COR(IFUN)
!F (FLAf; ,FQ,I) GOTO 3

FLAG : !
GO T(l IJ-
tAll f-)F l·l (L1
C'AtlL 4P~fi·ir:, (~~',l.,K'I

rA~(Ll : rAP(WYPL)
Cl t~ = L
~VP c CARfHVPL)
CALL p~nF' Wf_1h'U,H'(P 1 l)

H•PL = r~oCHYPLl
rAll APP!;NO ((,CAR(!MO~F) ,L)
CALL N~W(Fl
r:ALL APF'E~>Jn (L,F,L,
!f(WOROS,FQ,Il GDTD 5
CALl~ ~Uf,H(~, TIJVf~)
CALL rJFCi(J)

CIO(F) : l
CALL ~PPe:Yfl (F ,l-;(l~nS•1 ,f-·1
rr·• !Fl = n'
CAll GET(~lJ~IC,RLILF,l~)
TF (!~,f.w,•J [,t1TQ 'i5CI
~~1\ET : ~~

t."-i!:T =~
CAL~ GtT (FUNC,HEFONE,NNETJ
C~LL GET (FU~It,AFT~~,ANfTl

c (A) wnpO

0213

~215

02!~

02!7
~21P

02?<'
0?:'1
~2~3

If(~ORnS~~Jf,t,AN~,NNFT,Nf,~) C4R(J) s CA~(N~FTl

CAlL A,PF'f:~ll' (J I lfi0RO, ,))
C 18) ll·iFOOMATIQIJ SF.rlll"rcrf

CALL ~.IF,i'(!)

CALL 4PPEt,O (J, !, J l
C (ll HV•OTHf~JS

CAq(!l : HVo
C (?) FUNCT!Of,i ~.JAI'<'F

CALL APPENn (!,fiJNC,t)
C(3) STATe OF fUNCTir• Fno AFTFO TAANSIT)~NS

CALL APFEND (!,0,Jl
If (ANfr.,t.JE,r-~) CAP(,n : CAH(Ar'F;i)

J : J
C (a} STATE 1~ CASf ~~ETwrJP~ (UN~NDW~~ ~FTl

CALL APPEN~ (T,0,J1
C ADJUNCTS

TFrtOMFf1R,?),f 1l,n~JECl ~OTO ~
C('5) ~·ltTfF!NAL ff;,qlihF cnMPLFX * rJIJA.L-non-uNor.r CHAhlACff1-.;J~TTC

1 '' • co•· ICQR rro• r c11o rn•· r Ji'lrr"F 1 'J 111
CALL fl..PrE~1 n (J,tr,n
CAll APPFNn Ct,CQ~F[!R,q),J]
IF 04.~-u.:~>~l r.oro Q

I-" = CA~'{tl~l
IF" £11.1 EG,0) r~nlo q
TF (AF!!Ol,FD,\,n~.CAP(!IJ,tn,NDT,nR,CAR(!I),fQ,

- 3' 61. -

parser implementation

~2~9
~2~~

•231
~2B
~n4

~<'~b
0237
02V
02J9

e~4~

~2•1
02l.l~

~~·~
~20b

~2•8

~2··

~2'51

IND,C'R,CAf'(J4l,EQ,OO,OR,CAR(I41,E.rJ,,OPl GnTO ~

CA~(J) : E<l(CAf<(CQR(lO)l)
r.oro q

C ORJECTS
c rsl ~YNT FE ,T creno
b J o <XlCCAR(C0f'(C0R(CDR(rCo(CAR(!MORFlllllll

CALL APpf,r, (!,J,!l
C (b) SE" FE.AT co"•LEX

C•SE • CAR(CM~CCDOf(DRfCAR(JMOkFlllll
J • SEARCW(CA•(CD•(CAR(!MCOF)lll

7 !F(CAR(CAO[.ll),f~,CA~El r,OTn R
J • CI'P(Jl
1F(J,NE,~1 GOTO 7
WR!H(~,p~~l

~~~· FoRMAT (IX, 'MISSING CASf IN F~AME 'l 
GOTO 90 

~ CALL •PF~Nn (!,EH[OR(CDRCC.F(Jl)ll,!) 
C(7) CASE (UN~Nn•• VET fiCEPT FOR ADJ[JNCTJVE ryHJFCTSl 

C~LL APPE~n (1,~,11 

c 
9 

11 
n5~7 

c 

lfrTR.EW,!1 CALL PRLI!T(CIR(CA~CLl),!,~) 
TF(!FuN.~F.~l GOTO? 
JMDRF • CCR(TMOAF) 
TH!MQ~f,r<F,N!Ll GOTO 
VECT(OORDSI • COR(WLIST) 
IFIWOR05,E~,1) GOTn It! 
WR!Tf(b 0 S57l 
F(HHHT (1X,".lT. M~RGJNG") 

C START PARSH"G 

c 
CALL cm1H 

~?52 II! 
~2~· 
~2~~ 

TF (CD~ rl'JPFj,EG,•l (,OTO !~ 

TNPP • roAIJ•PP) 
r,n rn 5~ 

~21:ib 

0?07 
~2'8 
~259 
02" r-
0?f-\ 
12l2~? 
~2b~ 

~?~• 
02b'5 
~2~7 
0?~~ 

~2~9 
~?71 
~27? 

~273 
0270 
~no 

~?71 
~?78 

~2P~ 

~m 

02~" 
0285 
02Rb 

~2e1 
M~s 
e?F.9 
029~ 

0201 

~~·-

c 
C COMFllTf 5[MA•Tit ITRUCTUES 
I~ FlNL • VtC1 (WI)RI)S) 

HyP(, • eypp 
T : ~ 

WRlTE ((ql(~(~) 
at~(fl F'(!j:(t-1AT (IX/1'< 1 "Fli~I('Tt(1NAI .. A,~l[1 rASE-: !;T~LICTUkfS :'} 

CHL CLIJHI~l 
q:l ~YF • C:Ai'(F!'Jll 

F!AT • CAorrn•(HVPl) 
CDNF • Cl>l< (COli leVPl) 

9~ IF(CAN(COO(CAO(CONF)l),H!,Ol GOTO ·~ 

r • cOolr•orr•RccnNFJll 

91 

r.ALL fUI,(T] 
IFr!,Fl,0J r,mn qr 
T = T+1 
CALl. U';(l I 
Cf."iNF : (t!Pfr(H-JF) 

TF'fCO~JF .f.or~.f!·) f~OlO <11 

r.nro ·~ 
Fl~1 l : ('J~·~'(F1~ 1 L) 

TFfF!Nl.~f.~} ~!JTO q3 
IF (T,EIJ,~l Wfi!1F (o,,S!-.J 
FORMAT r .. l' ,•r• ST~UCTliRP FOR 
r:o~1l PJUF ' 
TR = 0 
WRTTE(b,5~51 3~00•TFPEF 

(~!Vf:N INPllf') 

Fr)PMAT (1¥/1• 'l'-1 fMt1R\' C:f.ll~ LFF"T~'II.I) 

CALL (LIJSF("I 
CALL aSS1~N{4,•J~Fn.~AT',C, 
CAll Ff)f!SFT(t.I,'Ufo,.II(NO~~~') 
OE'l~E FJlE U[50~1,41,U,TR~C) 
r,nrn 3~ 
ro~tTI~~uE 

- 3.62. -



parser implementation 

3.2.3 The general control structure 

CONTR 

parameters: none 

operation: 

The subroutine CONTR is the actual control program of the 

parser. It takes two configurations and sends them to 

the subroutine LR which performs the linguistic processes 

(computation of parsing predicates and creation of new 

particles). 

The subroutine operates on the basis of a tasklist and a task 

is a configuration in a particle that is to be investigated. 

The main program places the initial tasks on this tasklist 

{called INVES) and whenever new particles have been made 

(by LR) they are placed on the tasklist to see whether new 

combinations are possible. 

CONTR takes one configuration from the tasklist. According 

to the principle that a particle can only merge with particles 

bordering on its domain, CONTR scans all particles depending on 

each hypothesis node of the word immediately before the domain 

of a given particle. When these particles are not locked, they 

are made subject tothe linguistic processor. Moreover a pointer 

is provided to which part of the particle the other particle is 

supposed to be rr.elated. If the particle has been processed, we go back 

to the tasklist to seeff there are still other particles. 

The final part of CONTR contains the procedure to attach 

configurations to the relevant hypothesis node and to 'lock' 

a particle if told so by the linguistic processor. 

code: 

- 3.63. -



parser implementation 

0~~1 

~M2 
0003 
00•a 
0~0; 
000& 
00~7 

0006 
0~~9 

001~ 
0011 
~012 
0~1 3 
'·01 ~ 

00!5 
00!7 
001e 
00!9 

t?l0?2 
0~?3 
0~?11 

~0?~ 
0~?7 

0028 

~U8RaUTJNE CONTR 
lMFL!CJT !NT~GEk (l•O) 
cOG!CAL•! lLF(10l 
LOGICAL•! lF 

. COMMON CA~r 3 00~l,COR(J•o•J,AF(30~II 
COMMON ICO~fl COMF(3~ol"l 
coMMON 1coot:l LOCK,RULE,BtFOR~,AFTER,TRliF,r-'ALSE', 1 1H)fT,FUI\!ctl~, 

* S¥NNET,FRAME,~8JfC,UNMA,PRE~JC 
rnMMQN/JNVES' !NYES,NSTAT.S,LO 
tDMHON /V!CTI VECT(30),wnRDS 
(nMMQ;'-J fill VERF;I 
co•MONIFOS/ PnS,POS? 
COMMON /!F<E€1 !FRfE 
ntJ.T/1 ALF/ 1 6'• 'R','C', 'D', 'E', 'F','~', 'H', 'I', 'J'I 
S • NSTATS 

n A • Iii 
C TAKE TASK FR0t1 TASKL!ST 
I !F (CAR(!NV~Sl ,EQ,0l GDTO IO 

CALL POPuP [(ONF 1 INVES) 
~TPLICT 0 CAR(CONFl 

0 
D 
01~1 
I) 

0 
Ol~? 

D 
C GET 
2 
0 
~ 
n 
01~7 

0 

n 
0 

n•nR • CAO([DR(CDNF)I 
A. : A+t 
""TTE(b,Pil Alf(A) 
F£'l~MAT (tx, '(",A1,')'1 
WRITE(~, I"~) 
FOPMAT [1X,'*•** T~Y TO EXPAND cn~lFl~U~ATION :•] 
CAll PRL!~T(STOUCT,S,bl 
O~YCL = vFCrfn~O~l 
WRJTE(~,\~ll OWOR 
FOP~AT r'•• ~V CnMBINING IT WITH CCNFI~ nF ~ORO ~R.',I3l 

T I • r. 
P~P11CLE5 ~ORDERING ON !NV~STIGATED CONfiG 
DHV• • CAR(OHVPL) 
T 1 = T t + 1 
fALL P~LISTtC~R([JHVP),~?,~1 
>JP!TF(o, 1011 Tl 
Ft"l~M6_T (11~•, 12, '• FOR HYP(JTHESl.S : ') 
T2 :r: VI 
ncaNFs • co~rcn~rnHvPll 
nCONF = C~P(O[ON~S, 
JFrc•~rcA~r8tO~F11.Ft~.LorKJ ~nro 1qq 
I o CAR[COO(CAP[CDP(CDO(CAQ(nCnNF)))))) 
J • CAP(COR(CIP(COP(COAfCIA(CONFJ)lll 
IF[!,~Q,VE•B.AND,J,!~,~fRMJ GOTD lo9 
T?:T?+-1 
"OJTE(b 0 103) T1 1T2 
Fi!pfHi.T (3'11: ,t-2, .',l~,•.•,• CO~.JF"lh.U~ATI(_JN :'") 

rALL PRLliT(rAR(OCONF),a,b) 
T 3 = 0 
l~(CAP[CARrnrONFil.EA.PR~DIC) ~nTD ?II 

C CALL LJNGU1STJC PRCltf.%0R Ft•R U:Ff TO RJC,HT raMR!'!ATJO~ 

t) wQTT~(f.,H'I41 

01~1 f80MAT (~X '•> FROM lEFT TO O!;HT') 
tALL LP((tlNF,nCONf,M,rMR(C~R(CnNF111 

.;!~U C:ON-Tp;u~ 

C CALL L!NGIIJ~TJC PROCtS~fll'i FOR R)I;HT TO LHT cOMp)tHTtr•N 
C FOR F:ACH "~lGHT•~rJST ND£"1€ '' l~J THF STHliCTUf.-E:. 

- 3.64. -



parser implementation 

~03Q 

~035 
003b 
~037 

~0H 

~~·0 
~~"2 
c;,~a~ 

0044 
A04b 
0047 
0049 
0~'i~ 

~~51 

0~'i2 

~0'i! 

~~'i4 

~~'55 
~0'i7 

0~58 

~V)59 

~~·~ 
~e.~2 

00~] 

~0~4 
~01,5 
00b7 
~0H 

0069 
~0H 

~071 
~ru 

0074 
0075 
007b 
0078 
00H 
0080 
0~RI 

D 
0!~5 

!07 

"~lTftb,!V.5) 
FOR-AT ('i~,'c• F~OM RIGHT TC LEFT'l 
I • CD~(CAP(O(ONF)) 

POT f\1 111 J. 
1 : Cl1~(1) 
rF (COR (Jl,,E.~l r,QT~ 19• 
tALL PPLISI(CAR(PO!Nl,?9,•l 
n • n +! 
WRITE(b,lr~l Tl~f~,T! 
FrJQt-1AT ~1H+,7)',!2,'.',I?,'•"•J?.,•. FDR Wr"lRt"' :'1 
CAll LR(O[n~!F,Cn~·F,t,POJN) 

IF(CAR(PDS1,.g,l) ~oTn 199 
CALL POPUP(t,•nSJ 
CALL POPUPfPOIN,POSil 
TF!T,tW,0} GOTQ 1q~ 

r.nro 2~~ 
196 iF(CAR!C~or!1),tO,O] GOTO !97 

T • CDR(!) 
CALL PUSH(J,PnS) 
CALL PU,H{POIN,Pn~~) 
T : CAR(l) 

PO!N ~; 1 
r.orn 2~1 
!F!CDR{CCnNF5l,E11,0) GCTn 1~2 
OC0NF~ : Cf·RfntO~FS] 

r.oro <tH 
rn"TI•·IUf 
TFICnR(OHYPLl,FY,ml GOTO I 
oHyPL • CORfMrlYPL) 
r.nrQ ? 

C HTor" ><ESLII, T )'Jr. PA'<T!rLF.~ H'n LOCK 
1~ NSTAT& ~ S 
I? tFrCARt'·'ST'JS).c.rJ,•l GOT~ 13 

tALL POPlJPrJ,~15l~T8] 

co~.1F = J 
~~yP • CDR((OFfCONF)1 
T • CDR (NHYPJ 

11 1 • en!'(! 1 
TFCCOPfl),Nf,(;} r;oro II 
CAL.L APPE>111 (!,J,JJ 
r.nTo t?. 

13 IFICAR(LMJ.FQ.~) PfTU~N 
CAll PIIPUO(!,lOl 
CAO(CI~(J)) • LOCK 
GflTO ~~ 
cNn 

- 3.65. -



parser implementation 

3.2.4. The linguistic processor. 

LR 

parameters none 

operation: 

This subroutine performs two main tasks: 

(i) The computation of the parsing predicates, and 

(ii) The construction of new configurations when merging 

two particles. This first task is further subdivided in two 

main areas (a) the execution of the parsing predicates for 

adjuncts and functionwords and (b) the execution of the 

parsing predicates for objects. 

After the necessary preparation (such as getting the relevant 

information pointers into the lexicon and to the syntactic 

rules) we start computing the parsing predicates. 

When considering the whole set of parsing predicates and 

in particular and in particular the domains for which they 

are defined we come to the following scheme: 

(i) predicates for adjuncts and function words: 

(p-function-of-hea~ 

p-position 

p-synt-netw 

p-concordr------------------\ 

p-sern.feat.adjuncts 

- 3.66. -



parser implementation 

(ii) predicates for objects: 

p-taking-obj ects 

p-objec£-position 

decision 
p-sern. feat. objects}--------!~ function. -
p-sem.netw 

For the investigation and development of the system at the 

current state of knowledge and on computers which do not 

allow parallel computation (except by sequential simulation) 

we decided to implement a sequential instead of a perceptron 

like control structure, that means: we apply each predicate 

after the other one and as soon as one predicate fails 

we abandon the idea of merging. We stress that this method 

will fail to account for the various points which were given 

in favour of a perceptron control. Nevertheless the sequential 

control structure proves to be extremely useful in research 

for the grammar, i.e. the strict contents of linguistic 

knowledge~ we want to know precisely how far the linguistic 

information goes and where it rejects. 

We found out that the following flow of control is most efficient, 

that means the fastest rejection of a possible merging by 

as little as possible of computation. 

(i) for adjuncts/functionwords: 

- 3.67. 



parser implementation: 

f 

p-positio 

t ue 

tr e 

if 

false 

se 

p- functi on-oy-----.....':.':.:_:.:._ ____ _J 

fa e 

t ue 

tr e 

- 3.68. -



parser implementation 

for objects: 

~ 
positio 

tr e 

f 

-sern-net 

t ue 

lf 

p-sernfeat 

alse 

false 

false 

false 

- 3.69. -



parser implementation 

A deviation occurs for objective adjuncts which follow 

the flow ·of control of adjuncts except that instead of 

the p-position predicate comes the p-object-position 

predicate. 

Similarly for adjunctive objects, they follow the control 

structure of objects except that instead of the p-object-position 

predicate, the p-position predicate is used. 

Now we give some comments on the computation of the 

predicates themselves. In principle each time a predicate 

is true, a message is produced,and when it is false 

another message is produced and we return back to the 

calling routine CONTR. 

(l) Networks 

We prepare the call to NETW by (i) getting the networks 

and (ii) constructing a special list format for the function 

which acts as condition of the transition. 

Then we call the routine NETW which ,performs a transition if 

allowed by the data, and filter out the result in the main 

routine. 

(2) Function-of-head/position 

When the networks have been unsuccessful we check on the basis 

of the grammar itself whether the function-of-head/ or taking­

objects rule and the position or object-position rule respectively 

applies. If successful we proceed, else the linguistic 

processor returns control to CONTR. 

From now on the parsing predicates computation is performed 

in two separate parts: 

(A) ADJUNCTS and FUNCTIONWORDS 

- 3.70.-



parser implementation 

(3) Syntactic features 

If the grammar prescribes agreement we fetch the relevant 

feature complexes and send them to the MATCH routines. If the 

result is false, control shifts back to the CONTR program. 

Moreover if the grammar prescribes sending through features 

to the head, the relevant preparation is performed and the 

features ate sent-through by means of the subroutine COMB. 

(4) Semantic features 

Finally we do the semantic features test for adjuncts 

which iS mainly located in the subroutine FRAMES. A 

complication arises in getting the relevant information in 

certain verbal constructions where the semantic features 

test is performed on the subject of the verb. 

If the FRAMES test is positive we go to the second main 

part of the LR subroutine: the construction of new 

information structures. 

(B ) OBJECTS 

(1) Surface case signals 

For objects we perform after the order/relations environment 

tests the tests of surface case signals. To this purpose we 

compute the relevant surface case networks by means @f viewpoint 

andfunction . Then we call the NETW program that consults the 

semantic networks and delivers a (possibly empty) list of 

triples syntactic features/states/cases. 

(2) Semantic features 

Finally we compute the semantic features associated with the 

case slots found by the surface case processing and perform a 

match with the sernatnic features associated with that word. 

If there is at least one case for which a match is successful 

we construct new configurations. 

- 3.71.-



/ 
I 

parser implementation 

II. New configurations 

The construction of new configurations is a complex book 

keeping task. 

(1) Changes in the subordinate 

First of all we make a copy of the configuration of the subordinate 

and change the information resulting as a side effect from the 

execution of the parsing predicates. 

(2) Particle superstructure 

Then we construct a copy of the configuration of the head and 

attach the old configuration to the new one. This is a quite 

complex process. Not only do we need to add information about 

the domain, e.g., but we also have to look into the structure 

of the head configuration if the subordinate is not 

attached on the topnode. This is done by a subroutine 

NPOINT {to be discussed soon). 

(3) Changes in head configuration 

Finally we make the changes in the information of the head 

configuration as specified earlier. A special procedure 

comes then into operation for verbs, in particular 

we reverse the usual head-subordinate structure. This 

turns out to lead to a more efficient semantic structuring 

process and to a more efficient representation for the rest 

of the parsing process. 

code: 

- 3.72. -



parser implementation 

00~1 
O,l0l"? 
ti'IQlr ~ 
00L,.,4 

00•~ 
0~N' 
0~~7 

~~~~ 

0~~·
!ZlPIH'
0~1 l
0~1?
00H

c
0~!~

~~15
~01 r.
e•t7
00!M
0~1·
~~i'~
00? l.
~0~2
0~?3

0~?·

~0'~
~0?k

00?7
~~?8

n
c

~02q

0010
~0~1
~~~'32 

Ql(p: ~ 
c: 

~@3~ 
0~1S 

c 
~03~ 

~037 
c 

~~3F 
(IIO'I~'t 

c 
~v_"l.ll?i 

0~1: l 

c 
c 

0~42 t 
e'04Q 
~l::i~H 

c 
0040 
00~V· 

~!Jf:lROuTrr-lt LP(t-.IC:CH1F,ncn~~F,F.POit-'' 

I>'PllCIT HqEr.fR {A•n 
LOGICAL•! AF 
COM~OrJ CAR(~0 1'~J,r~~r3~0~),AF(3~0~) 
C(J~~ 1 i'J~1Jl-0~ 111 NI;. 1 L•l( 1 XO~ 1 Nr'T 

C 0 ,~~~ u~.! I~ ~-'F T ~-' F-./5 Y N TRf., ~F:~1TRE 1 'F \J~T ~ r 
COMMrN ICn~FI CO~F(3~,,~) 
cOMMON 1 cOnEI l.~CK,RULf,REFnPE,AFTFP,T~UF,'F~LSf,UNOfl,FUNCT~·, 

* SY~N~T,F~A~~,OBJFC,UN~A,PREDlC 
C~MMON/tNVF~/ JNVES,NSTATS,LO 
rO~'-~ON /F='l~i/ FJf>..l,lR 
Cl•••o• 1 JF•FF/!FREE 
C:fHWOf'.J lf::('lf12'1 "1i..H' ,QUAL, Ar"'JU 
cnMMQ~ 1 ~nn 1 S¥~AFT,VERBAL,CASE1 

jNJT!Acl7.~ rH 1Nr,1 lNQlCATCPS 
OS~M :: r, 

Gf:T 

GET 

GI'.T 

GET 

GET 

( I l 
( A l 

(61 

HlF.v.1S : 171 
PES a:: &'! 

r'!SVN : 0 
p.J = Qi 

OUTP 111 V't 

TCASE • 0 
NSF~. : ~ 

1\l~VN : ~~' 
(':~Af-1 : 01 
f..l E' [tJ s ;: ,:>: 

CASEST = 111 

SfVP = ~ 
nLI =: (7.' 

1\lPf $ 111 ti· 

~u • t 
~FLfVANT l~f8~~~liON POINTERS 
NSTAUC o cnRirAR(NCONFl) 
SIRUCT o C••r"CCNF) 
DSTRUC • CD~(CIMIDCONF)l 

CAL~ GfT ICARIDSTRUCl,CIRIC•RICUR(ORTNUr)ll,OHVPJ 
CALL G!TICAo!PniN),CIP[CAR(lDR(POIN))l,NHVP) 
LE~ICON ~~~FrJ~MATTON (0/N·~E-T) 

OFfAT o r•P([nRCDHYPll 
NF~AT = LA~(C~R[N~VP]] 
TNFGRMATlflN SE~UENCE (0/J•INF) 
nl~F: C&R(Ci)R(0STRUt)) 

NINF o fA~ICON(PD!Nll 
FU~JC:THHJ rO/N•HJNC1 
nfUNC a:: C6~rtrR(0lNF)) 
t,IFli~~C = CAR(fl"'r-:(Nl~F)) 
~VNTACTIC Rl'Lc (OII·RULFI 
[ALL GETr~'FL!Nr,~UL~ 1 NRULF) 
CALL G.T{nFu•t,kUL!,OAULEl 
Nf1'~rJO"'It 8 
GF:i NfH:O~~«' 

IF(F.Ffl.(.i,) CA~L Gf_T (NFUNC,r,EFORE,NNfT) 
lHf,Erl,J) CAll GFT (NFUNC,AFTER,N'lFTl 
TF (~JNET .~r. ') r..QHl 2 
GET SUH 
IF(f.E~.~] ~~STATe ~c~R(t4H(NCO~F)) 

!FIF,FO,IlN~TATE • C'O(CnR[CD•IN!NF))) 

- 3.73. -



parssr implsmsntation 

M52 
(71'?! '5 u 
~055 

c (C) 

~~~' 
0~~'7

~0~B

0~~9
00b~

~~b t
crol

~0·~
~~b3
0~b4

c (E)
~0~~

~01c7

~0~-~
00bq I I
0~71

007 ~

~073

~07" I~
~~75

0
0
010~

n
0

~0H 300
0~77

0~7q
00~1

c (~)
0~A2 2
00B3
0~~?

~0P7
etQlpq
00QI
00Q:<
0~q·

00QS
~09b
00Q7
0096

0
n 101
c [!)

01>~ 3
0!~2

c [! l
01~4

0US
0Ub
~1!i'IA

!HNST~TE.Fa.V') N~HTE • C~R(NNET)

TNFTR o CIO[CDRlN~FTII
NNfT • ~AR(COR(CQP(NNETill

PoFoi•E !~OUT FQN NET•
CAL.L Nf '·' (CQt!O,J
OLL N!cr()1

OR(l) • OFc";C
CAR(CONDI • T

L • 0
J • N5TATE

CON~Ui.T
T s NfT~(tnNO,NSTATE,L,~,N~ET,lNFTR,fUNTRF]
C'Li. fRASf lCOND)
TF{l.E~.~~ C.OlO <

FIL. TER
CALL NEW(,EWSI
L = NE-\.>JS
I • K
rFrt.EQ.01 ~oro 12
c•LL •noCc••rrn•rcARtll)l,NE•sl
I • CDR(!)
r;OTO 11

~e•s = rn~c.•~·~l
CALL BACKil.l
CALl. PRL!ST (J,.3~ 0 ~)
WRITE !&,1·••1
FORMAT [\Ho,7•,'SUcCf5SFUL TRANSTT!rN FRn••J
CALl P.~UST (NFWS,~I,bl
W R T T E (t- , !I rt ~~ l
FORMAT (\i~+~7~,'T0 THE tlEW STATE(S) :')
IF (F .Ew.ll "'EV:S = NEWS
JF (F.E"I'J,I) ~·!EWS • I?
GOTU 3
FU~cTIQN OF HFAO I POSITION

PD!i J1 0
!F!COMF(ORiJLE,~l.EQ.O~H"r.l POS • COMF(NRULE,~)
JF!CDMF!ORt'LE,3l.NE.oBJFcl POB • cn~FC~Mt'LF,5l
!F(POS.Ew,~) r,nTO 10~1
TF(F.EQ,0,Atin,POS,FQ,A~TERl ~010 10r1
IF(F.EQ.I,AND.POI.!Q.~EFO~!l OQTO IP~\
(ALL NF" (Clif:(ll
CALL Nn' {!)
CAQ(l) .a: i'~rtiNf::

CAR(CO~IG) • I
loMATCH[COMF(DRULE,I),[OND,FUNTNt)
!Fil.!O.~) GOTn ~~~~
wRIH[o,l~\l
FO~MAT (8~, "SUCCESSfUL nROER AND RELATIONS ENV1RON~FN1 TF~TS')

SYNT FF.ATLIRI'S
!F (COMF (ORI'~E,3l.EO.O~J~C) GOTO b
TF(COMF(0RliLf 0 7l.Nf.lRUfl GOTO 35

Gn F<•ll'"'s
NOD• o c••Ccrk(COAfCDP(CoP(NI•fllll)
OFEAS = CAR(CrRtr.DR(COR(C~R(OFEAT)))l)
TF" lH: (QF.EAS, .F.-: G. t l f,r!HJ 3t
!F (CAR f~FfA~l .fQ.H'O.OP.CAR(OFfAS) .Ell,OR.OR 0 fAR(OFFAS)

• .~.fJ.xrli:;:.QR.,rA~(lJFEAS, .E.Q,.NOT1 GOTQ 31

- 3.74. -

parser implementation

01 , r.~

011 I

~112
~\ 13
0\l'i

3!
c (! !l
11
11t03
D
0

n

nFEAS : CA"(0fEA~)

CDNT!NUf
MATCH!Nf.
W~!H (b,\~3)
~nRMAT (S~,·~~TcH THE FOLLO~t~G

c>Ll P~l TST (t'F~IS,•,&J
CALL POUST l''~i•M,~,b)
P.~S 111 ~.AfC~ rL1F-'EAS, Nf1fHI,SVfo.!1Rt-)
!F IRES,tQ,>J ~OTn ~~·~
CONtiNuE
~.>IRJTE (b,1C1!?)
F('IR~~AT (E\),•Rf-SLILTHIG ll('lMA,N:•)
CALL PRLJ~T (kES,~,~l
fi.ISYtl = J.lf ~ ~~~~

~117
~\19
~121

01~3

C (I!!) sENu•yt<p[;iJGH
35 TFI(OMF(DRULf,~),N!,TRUEI ROTC 4

IF (OfS,'•t.~l ~!OS : r.~PY(RFS)

n
0!0&
0
c (u)

IF (RfS,~D.~l R~S • fAR(CnRICOP(CORICn•CNINF)Jl)l
NSyN • COMR IE~T(CARICn"ICOR(CDR(CO~(CnR(OFtAT)))))JJ,Pl'l

,JRTH (ool~bl
Fr'lRt-1AT (e-:.:,•t..:F.:w FEATURE rnMP\..f.J:;•)
CALL PRLIST (NSYN,A,Ol
SEMANT!r F~AIURES TEST

4 IF. (COM~·(n~Ulf.,C)) .tr.J.~' GOTCl ~

01?b
~1~7

CCI) SUn~ P•FQRMAl10~1 SE9111'~1CES

l"''F~_A'!' z:: ~;Fr:.AT

~~-~
~!?q

0131
01~<'

~n•
01~5
013b
0!'7
013~ 41
0n•
01U\
~!IJ2
~1li3

0145
~l4b

~IU7
0!U8
~, ..
01~~

01'1

~~-~
~153

0
D\07
0

c
C!Bl
c
c (!)
~

bl

TI'-ITNF r:. NTNF
T ~IPULI:. o NRULc
TF (OFIW(.,'Jf ,VEI<BAL) GOTO ~!

SU8J • CAO(C~R(COR(COR(STRUCTll))
TF {CA"ICORf(~R(NtNF))I,N!,FINl GOTO I~M3

CALL GET (CAR(SU8J),CIR{CARfC~R(SURJl)J,!NHYPl
JNFEAT o CARI[nRf!NHYP))
TN!NF o CAA[CnR(SUBJll
r:ALL GET (CAR(lNFF:ATl,RliLF,JNRULFJ
J • 0
!F (COMF C!NRULE,21,oG,CIBJF.CI t •

: CAR(COF·!Cn><fCDR[COR(CDR(lNJNF))Jlll
STyP • C0hF(0~ULF,Q)

NRES • F~IME' (JNFEAT,OFEAT,STYP,IJ
!F (NRES,o'l.~l GOTO ~~~3
.:RITE fb.l~7l
F0RMAT 18X, '$~MANTIC FFATUOES "ITCH SUCCfSSFUL, !lOMAJN I')
CALL PRL!RTC'••!S,~,~~

HI • I
GOlD 5

SFMANT!C ~ET~ON~S FOP 5URFICE CAIE SiGNALS
ROLES • SFAPCH [CAR(COA(NffATI))
NRDLE • tAR((DR(CDRICDR(NF!AT))))
CALL ~EW ('FU~5)
CAI.L NEI•I Ill
rAR(NFU,.!Sl o 1
C 10 (!) • ''fUI'C
!F (CAR(CAR(AOLf.S)) ,fO,NR0Lt'l ~r.Tn ~?

- 3.75. -

parser implementation

0!55

01~6
~ 'i~

0\f.~

~l~!
~!b2

0\64
01f.o
0!H
0!6Q
~17~

~171

V.\72
01n
017'>
0)71

0178

.......

01~1
0!~i'

0!83
018<1

~\85
0\~b

0107
0\AQ
01or
~!G2

0\0:l

01Q7
0!QB
0\QQ
~2~0

02fl!

62

6~

u

0

D!0G
D

D

0 I I 1

c

ROLES • COR(OOLESl
IF (R~LfS,fll,'•ROLEl GOTG b2
IF (ROLtS,Eil,~l ~OTO ~~··
r;nr~ 6\

ASSO • rDRICDRICAR(ROLfSl)l
!F (ASSO,EQ,~·l (;OTO !~OS

IF (MITCH(CAR(CA<(ASSQ)),~FUN~.FUNTRE),NF,•l GOTC ••
ASSD • CDRC•SSO)
!F llSSO,f~,o) GOT~ H1•5
~o•o bJ ·
N'J~T = t~P(CA~(~~SOJl
FEATS • C•R(CI•R(COR!rnRCCQR(Ol~FJJlll
WRTTo (b,\~Q)

FURMAT [~t, •rn•SULT CARE FR•~E! •ITH SVNT FEATURES :•)
CALL POLl~T (FfAT~,8o6l
tASEST • tA~(rrRCCnRICnR(NlNF)Ill
IF CCASFST,fQ,PJ CASfST • ChRlNN!T)
IF (CAHST,Fil,O) r.nrr1 \0~!-
$ • N!TW(F~AT~,CASFST,~,DUTP,CAR([D~(c~•(NNfT)ll

I ,CA~[rrP(NNFT)),SY•TREl

!f (OUTP,;·Q,~) GOTQ !O~o

WRITE lbo\111
FOP~AT (8~,~SUCtE~~FUL T~AN~ITION IN SFMANT!C NET~ORK5'

1 /J3)(,"Rf:SI.Jt .. TlNG HI'JPLE~ !FF.ATURf.S * .;;Tt.TF. * CIISE)')

Ct..t.t PRLJ,r;;.T roUTP,B~b1 0
c
n

SEMHiTTI: fEA Til~fS

0!14

0

L>1RrTE. r~,,_14'

FnoMAT ri.,•MITC~ T~E FnLLO•ING SEMANTIC FEATURtS
SE"F • CAAICnACcn•rcnA(COR(CDR(DlNr)J)lll
CAll.. PNLJST ISEMF,B,~l
WRTTE 10 .!12)
FORMAT ~~~. •WITH FFATIIPES QF RfSP, COSES 'l
T : OUTP
I:ALL hlf"~.<; rOuTP)
IL • OUTP
!CASt;: • CAf<(Cl!P(CnH(CAR(I)llJ
~ALL PRL15T I!CAIE,B,bl
ORDLES • SEARCH ([ARICDR(NFEIT))l
IF (CAA(CAR(ONOLESJ),FQ,!CASFl GllTO ~~

OROLF.S o CDR(ORCLESl
IF (nNOLo5,E~.v) GOTO ll'~S
GOT(! 60
OSfMF • CAR[CDR(CIRI0ROLFSI)I
CALL PR[IST (05EMF 0 8o61
J • M~TCH(nSFMF,SEMF,SEMT~E)

lF (J.E:a.oq r;CllO h8
D WRJlE Cb, 1 \!))
0! 1!> FnR'UT ~~·, 'HM FEATURES f'ATC~ SI•CCfSSFUL 'I

Clcl APPF.~n CC~R(CnRCCA~'(ll)),J 0 L)
cALL IPPE,iO (0UTP 1 CIHJJ ,OUTP)
!No!N•I
Gnrn 01
CDf,Tl'JIJf
it!q T fF U·, 1 1 7)
Fl1~MAT (8'1(, ""-;!! 5FI'4 F'fATliRt-:5 M~TCH')

T • C[IR(II

- 3.76. -

.,

~203

~·~5
~2~7

02•8
0~~~

02!1

~?I?
02n
00!1~
02!6
02!7
0218
0~ I q

0220
02~1

02??

0233

02Vi
02!'J'"
~?4!

0244
~2•5

•<·~
0?•7

parser implementation

!F" (T.Nt.r-·) r:oru ,..roo
TF (COR(!lt.F'l.lll GQTn I"'"
OUTP : r.~P{JLI
CALl. ~AfK(!Ll
TF ct.EG. 11 •• &.~fi.PJ.ff.l.Vl) r.OTD H~li'l7

CON1'H1Uf._
wRITF r~. t•5J
F(IRM~T (t>, '>>>> .Ll TfSTS ~UCC~~SFUL, ~EW CONFIGLIPATtn~ :')
on 58 Il~ a 1 ,1N
lf {OUTP.FQ.O) GOTC 50
DsvNTF : CARICAR(QUTP))
NSEM • CAp(CDO(CDRCCDP(C~R(~UTP)llll
!CASE • CAR(C~"lCORlCAR(QUTPJ)))
o.SEST : r>R ([""(CAP (OIITP) 1)
DIJTP = CDplnlJTPl

C!!) CMA~G!R TN Su~0RDTNAT! CONflGU~AT!ON

59 nNFW = tOPV (Ll~TRUC)
·~~ • CDP(CA•rcn~(ONEWIII
IF!COMF(ORUL~o?l.NF,DRJ~Cl GOTO I9J

C (A) FnR O~Jnr<;

13 • CO"(COR(COR(F<Sl))
CCI) SHIT FEAT

IF(ClR(BJ,N~.o) CALL ERASf(CAR(l3ll
CAR (B) : n~'~1TF

C(!l) Sf" FEAT
!F(CAR(Cfl"'!Pll.NE.0l CALL E.RASEl0~(COR(I3lll
CAR(CQR(l3ll • NS~M

C (!! ll C A~~
CAR{CDRlCC~(l3lll • !CAS!
t;QTO 1 qu

C lAl lOJUNCTS
1q3 yf!oFuNC,~~.vFPBALlCAR !CDR(COR(CDR(FES llll•

'Ill N!-:1'1' ~~

IF (OFUNC.EQ.SVNNETl CAP([DRifESl) • FIN
TFISTYP.wf.oiCAW([~R(CDR(C~O(COR(fESl)lll• STVP

C(il CCNSTRUCT pfpTICL! ~UPERST~UCTURE
jQ6 CALL NtO(NSTATEl

NSTRUC : CopV(CAR(NCONF)l
CA~[NST61F, = ~i&TWL!C

C R ANGF
!f(F.EJ1 0 1) r,OTO ?1·1

C FOR ntRECT!nN l.fFT TO RIGHT
20~ CALL APP!ND [NSTATf,CAP((UR(OCONF)),J)

COP(J} c CDp(COR[NCONFI)
CA,l-L.. PU$~1(NCm!F,t tl)

r;rnn ~~7

C FO~ DIR~CTJOP: ·~~~T TO l!FT
2~1 CAll APOFND (NITAT~,CAR(COR(NCONF)l,J)

CD~(Jl • (DR(CO~(OCONF))

CALL PU<H(DCONF,Ln)
C PUSH ON N~Ttl~,T~1 Vf~.LMCK

~~7 IF(CAR(Cno(NOTAT!)l.NE.~l CALL PUSH(NS!ATE,!NVESI
CALL Pll~H(~•~TATt,NSTA1~)

C HHGE
POFL • ~
\&.lrJR = CAH (PO!t-;)

- 3.77.-

parser implementation

~2%

02o7
0~~8
~259

02~0
02~1

~2~3
0265
~2~b
02b1
02b~
~2b9

0?7~
~?7?
~?73
0275
0271

0278
0?79
~28!1

0i?~2

02p9
~291

0293
0?04

~i?Qb

0296
030GJ
~:1~ I

03~·
~3~b

~301
~3~8

03~9
~31~
0~ I I
0~12

~313
03\Q
03\b
0311

"'PO o CAR(CA•ICDR(P~!Nil)
TSTRUC o cr•PI><S1RIJC)
NPntN • NP~JNT fJ~T~UC,WoR,HVPO)
t :1 C!)~ (t...~OlioJ)

K = cn~,Ct)~(~AR(l)l)
!92 tFrCnR(!I,ER.~l ~OTO IQ~

!FCOR(CrR(t)),fQ,O) GOTn 1~1
I • C~R(ll

r.orn tc~
!91 CALL B•CK(CO~(Il l

190 CALL APPEND (!,ONEW,Jl
A,tHII-4 : l

!FlF,Nf,,l ~nTn 52
J ;: t':(1P ruP.JFW)

53 1F(CDRC1.) ,1'•),0) r,nTO ~I

IFccaorcr•cllJ,EP.0l GDTn 52
I o CDR(!)
GOTO 53

~~ CALl. •PPF.>JD q,~,lJ
52 IF (CO''f (ClRULf, 3) ,ED,PRED!CI PPFL :

FfT~ • rnorcAR(CDR(NPOINJ)l
C SYNTACTIC STATE

CIR(fJSTRUC) • NEWS
C(3) CHANGES JN Hf•P CONFlRURAT!DN
21? TFIANE~5.NE,0l CAR(CDR(F!TS)) • ANEWS
C(ll] STATE IN CASE N!TWORM
~~~ 13 o CQR(tDA(CD~(FfTSlll 

tF(CAStST,N!oOl CA~(CDR(CDR(FET&lll • CASEST 
C HEAD II O~J~CT 
CCI!!) SYNTACTIC FFATURE COMPLH 
?~A !F(NSYN,EQ,Il ROTO o05 

TF [CAP (13) ,N!.,0) CALL E. RASE (CAR 031) 
CAR(l3] • >I~YN 

~0~ IFICOMF(N~ULE,2),NE,OFJECl GOTO i~b 

CtlV) SEM FEATURF COMPLf> 
!F(NRFS.E;,M) GOTO IQ• 
!FICAR(CDF(TI)),NE,m) CALL ERASE(CARCCDR(l3))l 

CAR(CDPI13ll • NRE8 
r,['IT(l tCJ~ 

C HEAD YR AI'JUNCT 
~·6 !F!CHAO,No.~l CIR(CnR(!3ll • CHAR 
C VER65 

jF~P:~hfloD,01 GOTO 197 

1 • CORICAR(N~TATtll 
rOP(~AR(NR1&lfll • CAR(CnR(J)) 
CAlL ~FPHIO CCOR(C~R(CIR(NSTHE)l),I,Ll 

l o CI1R(JJ 
C•LL R•CK(L) 
r:A.LL APPE~~p r~t,m,,t) 

CAI(CAPINRT&Ttl) • PREDIC 
!FITR,fO.Il (All PRL!ST(CAR(~STaTEl,~obl 
cONT!rJUE 
l:lfTUP.r.J 
M~S.;Al~~ S 
lF(nU.EG.~l ~~l.UR~; 

WRIT€l~.11',tll 

- 3.78.-



parser implementation 

03~0 

0322 

01011 

?·~2 
n 
DU!2 
0 
a~3 

0 
D !01! 
0 
IMO 
0 
0)0!4 
D 
1~05 
D 
0 I.~ 15 
D 
1~0h 
D 
DtO!b 
D 
I ~o7 
D 
01~17 
D 

FORMAT (8:t, •+- WRO/'IG HE.AI1 OR NO nU.N5lT.t0N tp.: SVNT NET') 

~FTIJ~N 
IFIOU,EQ,•1 RfTURN 
''Rl T~ (b,l ?\?1 
FQQMAT [~w,•• SYNTACTIC FEATURES MATCH UNSIJCCES~FL'l'J 

RflURN 
IF!OU.EQ.~l RFTURN 
WRITE(~, lr\31 

FoRMAT (8w,'+ 5!~ANT!C FEATURES MITCH UNSUCCESFUL') 
RETLlRrl 
TFfOU·fO•~) RETUR~ 
WR!TE(b,!~l4) 
FQRMIT l~x,•• H~An TA•Es NO ORJECTS OR WRONG P05JT!DN') 
RFTURI•J 
IFI~u.En.~J RETuo• 

WR1Hlh,\0151 
Fn~MAT (8X,•+MTSSING CASE OR FUNCTION IN SEM NETWOR~') 
fH. TUPN 
TF (DU,Ell,•l RETURN 
"PtTE (~,101;,) 
FOPMIT rR~,•oNO TRANSITION IN S!M NETWORK') 
RETURN 
TF lnU,EQ!O) ".'tlURri 
>IRTfE r~. •t71 
FORMAT (AM, 'o SEMA•1IC FEATUA!S MATC" UNSUCCfiSFVL') 
RtTliO" 
ENr"l 

- 3.79.-



parser implementation 

NPOINT 

parameters: STURC, WOR, HYPO 

Operation: 

This small auxiliary function is used to locate in 

a configuration (pointed at by STRUC) the information 

of a word (addressed by WOR) for a certain hypothesis 

(HYPO) . The result is a pointer to a cell where the 

addressed configuration started. 

code: 

tNTEGER FUNcTI .. ON NPOINT (!STRUC 1 WQR,~YPO) 
!~PL!C!T !NTEr.eR (A•wl 
CAlL NEW(PDS) 

193 IF(CAR(ISTRUCJ,NE,WOP) GOIO 190 
IFCCAR!CAR(CnH(ISTRUC))),NE,HYPDl GOTO \9~ 

NPD!NT • tSTRUC 
lf(POS,EQ,0) RETURN 
CALl POPuPCI,POsl 
GOTO I 

!9~ ISTRUC • CDR(ISTRUC) 
IF!C0R(lSTRUCl,EQ,0l GOTn 192 
lF(CAR(CDR(lSTRUC)J,EQ,0) GOTO 192 
CAll PUS~c!STRUC PDSl 
ISTRUC o CDR(!ST~UC) 
!STRUC • CAR(!STRUC) 
QOTO !93 

192 CALL POPUP(JSTRUC,PDSl 
IF!ISTRUC,NE,0J r.OTO 19~ 
WR!TE(b,\9&) 

19& FORMAT!\~, 'ERROR IN fiNDING ATTACHPO!NT !N TRF.~'l 
CALL E~IT 
END 

- 3.80. -



parser implementation 

FRAMES 

parameters: FEAT!, FEAT2 being two information sequences as found 

in a configuration 

STYPE the qual/mod/undet characteristic 

SEMF (optional) a semantic feature complex. 

operation: 

FRAJms computes whether the semantic features are compatible. 

Result of FRAMES is NIL if no match (neither for·qual nor 

undet) or the resulting semantic features domain if 

a match was successful. Moreover FRAMES decides which 

characteristic holds if possible on the basis of semantic 

features. 

code: 

~0~1 

~0~2 
0~03 

~~~4 

~0r11S
N,.,t'lb
NH/17
r.~ ;~ f1l A

~~·9
~~Hl

~~11
~012
0)013

0015
~0!~

~017
17tO:Jt8

~~~~ 

~U21 

''0<3 
IL'Pi?l.l 
00i?~ 

12'~?1 

JNTEGE~ FUNcTION F~A~FS tf~lTlrFEAT2,STYPE,SfMF) 

!MP~ICIT INTEGER (A•Wl 
LOGICA~•I AF _ .. 
cOMMQNicnne/ ~OcK 1 RULErB~fORF,AFTER,1R~E,FALSt,li~G~T,FU~CTW, 

*, SVNNET,FRAr~E,O~JfC,IJNMArPR~DlC 

roMMnNJ(UMFJrnMF(30 1 l~) 
rn~~nN/rDG~!MOD,QLI~LrA~JlJ 
cOMr.JON C.td~ c 3lilil'f"), cnR C30(.'1iAJ, AF (~0'10~·) 
C0'•P10N 1lt·1FTR~ /SV~iTQE, ~EMTRE 1 FI,1NfRf 

C GET CASE F~AMtS 
FPA~~ES :::1 ~ 

T FR II 171 

!~ONA~ o tAAICOR(FEAT2ll 
J~~~AM :::1 (AR(CnR(FEATlll 
JF iTF~NA~.F;.a.nR.JFRNIM.EQ.O) GnTD R 
JAOLE& • REIRCH (JFPNA~) 
!R : Jt:!Qlf ~ 
T'Hli.F.S o SEARcH (JFPNAM) 
TF (1QPL,c::S.~.:r~.Ol,OR.JRnLF~.tQ,V) r;o·ro 8 

C SORrH FUTliRE'; ro 6F RAT!~Fif~ 
IC•IE • CA~(r~RfCOPICr~IFF•T2llJ1 

~ IF (0'< (CAP (!ROLF' I 1 .E~.lCHEJ \-OTO 3 
!PO~F~ • rnA(I~OLfll 
TF (T~OLf .. "';,.!~~ ... ~) !JOTt'l ~ 

~OTO 10 
3 ~fOFp o CAA(CCP(CAR(!iOL~I))I 
0 •·lRTTE (f>,ll 
D\ FOR~l~T (6X 'INVFSTT~ATE TH~ F0LLOW1NG SF~,FEATUQFS:•) 
D CALL PRLlS~ (RF'•1F2,~.~~ 

- 3.81. -



parser implementation 

~~3~ 

0•~2 
~~B 

·~!S 
~~3& 

~~38 

~0!q 

t"\~HiLI 

m0•& 
~~!.&8 

~~·q 
0~~~ 

00<;0' 
00;Q 
Mso 

0(1':''T 

0~58 

!~059 
?1(71~[71 

~"06 J 
~0~2 
~~b3 

C 5EA~C" FEA TIIRf.~ tlF SLOT F!U.E~ 
IF (~TVPE,Fq,MQI>l GOTn 7 

C t•l QUAI.HVII>C. 
lF{SfMF.NE.01 GOTO ~ 

JCA5E a CAO[CDR(CDR[COR(ff.AT\)1)) 
" TF (0R(CAR[JROLF.51l,FJJ,JtASE) r,OTO 'i 

JPOLES • COR(JRULERJ 
J F [ JRDLFS, N~, Ol r:nT~ C 
GOTO tt~ 

5 SfMF c [XT(CAR(COR!CAR[JRDLoSllll 
C COMPARE 
& FRAMfS : MATCH (SEMF~, lif.MF,~I:t"TRE') 

0 01.1. PPLL~f (5FeF, A, f.) 
IF (F~AMES,ErJ,r~) r.nTO 1 
tFR = FHAM~S 

C (AJ MDO!FV!NG 
IF [STfP!,fQ,QUAL) ~iTUR• 

tF !STVP~ .Eq.UNDET) STYPE = IJtlAL 
1 !~EMF : F(Tr[AP(rr1R(~AP(J~])11 

C COMPAOF 
0 CALL P~LlSf ftSE~F,8,b) 

F~AMES = M4TCH csEMF~,tsFMF,stMTRe) 
tr (FPA~1~o;.E"I.J,Q'I) G,ln t? 
Tf (5TYRF,fCJ,QUAL) .STYPf = UtiOET 

!? IF (1F-~,t~~::,l;,, C:~AMf.S = IF~ 
P E' TUJ.nJ 

C E>ROR~ 
R \.>.t~TTt'_ r,:,,Q) 

I~ 

! I 

F(HH·lAT (1X, "'h!SS!NG FRAM!:."') 
RF:TURt~ 
wPIH (.,,111 
r011'MAT (1)(, 't-1IS~Iht_.; CASF IN Ft-«J\t1f ") 
RE ru~"~ 
E:.~IO 

- 3.82. -



structuring 

3.3. The computation of the structures 

We present now three subroutines which extract the 

linguistic informationstructures defined earlier from 

the particles. The implementation of this subroutines is 

mainly due to K. De Smedt~ 

(i) Functional structures 

FUN 

parameters: CONF (a configuration) 

operation: 

FUN computes the functional structure and prints it on 

an output device 

00~1 
0002 

code: ~(1~ 3 
~00A 

00(15 
000,b 
0!ii~l7 

0~~8 

0VJC19 
0010 

0011 
~01i? 
0013 
00\A 
0015 3 
~~~, 

~~17
0018 ' O!VJ1 q

0020
0~21
~[122
til.;·,.? 3
Ql (J ;:t ll
~~?~

~0?0
0,, 2 r
0~?8
0e?G
0030
00,1

S!J~~OUTTNE FU~ ([ONF)
I"PL!C!T JNlfGcR (A-Wl
LllGlCI\l •t ~F

COM~DNIFIN/FJN,TR

CUr"!FOt~ CA~f3~00) •Cf1R{.3"H"\?!) ,s\F(3V!OV)
IF(CQNf.EA.~l OETtiON
CALL NE•'rPDS)
rALL IJF,t,.;(_~l·t~K)

P 1~'TF'tn~:cFU\ll<
T r-;wO>.i=C'"JI'"F

l' 1FLIN:CnR (CAR (CDR (HtWOR)))
J:cnNrcnocc•~cco•rrN•GoJJll

l~ (CA~(J),EJJ,r~,OR,CAR(J,.f!~,FPo~) (-OT(l ~
IF (F:I.E~l(FJN,CAR(J))~E!'J,!Il) G!JfD 50
J: C•"rCGN(Jll
J~ (J,En,0,nR~J.FQ,fJN) GnTQ ~
H (t'lf~·1(fTN,J),E•'J,t'l) GQT!l Sll;
C.6P (f1llfF(ir-:) =CAR (lfi.JF'iJI\J)

T~I4:C~P(~O~[lNWQR))

TFf(!N~.~r .• ~).O~,(CA~(JN~).tQ.0)) GOTO ~
Call ~-~E~(OIJTWORl
C A.P (fq_J 1 ~·i(1f'<!) lll'(AR (l ~'!AirHI")
['ALL tPPf~ln(OUTFU~:,nlJT~OR,I]J

~ l~wnQ=CAQ(JN~)

CAl, I,_ f!E1•1 (r"li.JTFIH-.1)

CALL o'\PP!;rdl{I:HJTWOk,r1UTFl•"J,lX)
P.Jw:coj.;(Jt·Jl..,)

J F ((I ~J"'" • E r~. ii) • n R • C C A~ (T ~J ~) • f 1:.1 • 11_1) J G 0 T 0 l
CAL~ PUS~(J~,PnSl
CA.ll PUS~(fN~ 1 POi)
GLHD 1

- 3.83. -

structuring

0032
0033
~~3~

~~35
~0l~
00~7
0eJB
00~9

000~
0041
0002

;:. CALL APPf.Nr;(OUTf'~LI~J,CANttN~:QR) ,C'lliT~o·DR)

CfiLL 1"01''JPflN\PJ,P[;~)

lF n~, .Fr:"J.0l r..orn t~

CAll p.)~IH'(f•Uf•"~rw,PI):(!.)

r.orn ~

L! r.Al.L f-'~l !Sl(~IJN~, t,b")
CALL F1LOH.1 (Fllfl.i~"o,, t, 1 I 1)
FETU~~·l

,vi co~ .. F = ~
P.f_ TU~r~
E OJQ

(ii) Case structures

CAS

parameters: CONF , a configuration

operation:

CAS computes the case structure and prints 1't on an outputdevice.

code:

Q1f<H~1

~';~?

0''"3
0004
0~"5
0k,i71b
rtl0(1,7

0•~&
~~~\VjQ 

Ql01 V1 

0~ 1 \ 
~0\2 
00!3 

0~1· 
0015 
~0lo 
~~17 

0018 
0~19 
0~2'·~, 

0~<'1 
~0;>2 

0023 
~~?4 
0~;>? 2 
~0;>b 

VI f.'i ;11 

SUBROUTINE CASCCON~) 
).'IPL!ClT tflE(;E'RC•·•l 
l-Or.!CAL•l AF 
(;OMfi',0!\1 CA'9(3t:i!~0) ,CQj;l(30H'il71) ,AF l3~1iWJ 
CO~~ON 1cnD2/ Mno,QUAL,~DJU 
Cfl~~ON /c~MP/ CU~Ft3~,l~] 
tUMtlO!~ /CO~~/ LOC~,~UlE,8EfORE,AFTEP,TRUE,FALb~,Ur4VET,FUNCl~, 

* ~'frJ~JFT 1 F'"'~~1E,Of.\,lF:C,IJNMA,P~E.DlC 
CAST :::: FpAf-lf'_ 
IF' (("ONF .E0, 1il) 'R(TIIRN 

CALL '~'<(CASE) 
CS:C.a$E 
CAQcr-~1•rt~sr 

CltL PIJsHrCn~F,PDSPl 

tALL PU~Hr0,~DST1 
f."L 1!1 t~ 

rALL oa~u•r•,•ospJ 
r~LL P[l~UP(T,Pn9Tl 

IF(P,fW,0) GDTn 90 
FLAG=(1 
PFU • COO(tARICDRtP)ll 
CILL GET(C,M!Pf\!),kULEol~l 
PJN',:rflf' CP) 
TF(FL,ci1,·.1J GtlTQ 2 
jF(COMF(IR,?),NE,DRJFCl GOTO II 
JFCCO"FflR,2),FQ,OBJHl GnTO \? 
OLL GET(OR(P),CAR(CAP{COR(PlJ),HYP) 
SURJ • CfO([ORCCDRCrDR(CAA(CnR(~YPJJ))l) 

- 3.84.-



structuring 

0028 
~0?• 
0030 
~0~1 
0~32 

~en 

0~3· 
~C3'l 
~~3h 

0~~7 

~0~8 
00'q 
~'l!HICJI 

M<il 
0042 
~~·3 
QH/1 tl Q 

~~·5 
00t.ll!l 
00•7 
0048 
00Q9 
0~50 

00';) 
0~52 

0055 
0054 
~055 

00'ih 
C/IIZ15 7 
~058 

00S9 
Ql~b(~ 

0~~~ 

0~~2 
0063 
00&4 
00&5 
0~bb 

00~7 

0068 
00&9 
0070 
0071 
~07;,> 

00.73 
0074 

0~75 
0m1o 
~011 
0078 
~m1q 

008~ 
0~8! 

(i)(,!~? 

~08~ 

p FL•\ 
~ PtN~crllP(Pl~W) 

JF(tF'IJ\I,_·.trJ.r:).Cd~.(CUi(PT~ 1 w1.f:'.tJ.R)l t.n'fn 1 
P~=CAR fPJNI.,.) 

1'1 P2F"l,lc(,!li~ (f';.A.R (CIH~ (P2)1) 
CAll..- GtT(CAP(P?FI_I) ,t;~LILJ.:, TR) 

!FfC:O~F(1~,2).Nf-.(1KJf.Cl GfllO f") 

P?(A:r '" (C!'R (COO !cOO (Cn>' (CnR (P;>FUll l 1 l) 
lF(P?CA.tQ.0) P?CA c ~LJ~J 

lF(FLA{~,H~.l) G01n 1.1 

CAlL "">! !< l 
CALL ~PP~N~(CS,TV,CSl 
r,AO(TXl•cH<(P) 

1.1 CALL i!fv;(!·IX) 

('bL-l. f,P~~!'J['1(TX,r-1X,Tll) 

('A~(~~i:1cP('rA 

C4LL A~'~t~iO(~~.rA~CP~,,r,~) 

FLAG=t 
P?Nw=rri4(Cn~(P?J l 
1 F r ( P 2 tH • F r:). vn • n Q • ' c b. F.! c P ;;n: 1JJ) .. F" rJ .IZI 1 ) ~orr: 1 s 
CALL PU5H!P2,PrSP} 
(ALL Pll~i<lnA,P!;ST1 

1~ !F{P0SP~.NE.~l ~·JTO \5 
GUlO '1 

~ TF.(C0f"'•f(TP,~).,_!~.,jl.[I~11J) r'iOTI1 ltJ. 
tALl PU~H(Pi,PnSPl 
CALL PUSH[P,PIISTI 
tF (Pf'ISP?,NF.~) GOT\ 1 1~ 

GOHl 15 
lU JF(tC,MF(JR,?1.t;~.fU~ 1 CTW) CALL P~LIST{Crl~Ff!P,2l,~,h) 

CALl- P!J~~(P~N~F~·,Pil~Pi) 

f:'2NWf-I~:(.'Ht (P2J 
t5 F2NWF~=COR(P2t~~FW) 

.TF: ( (P?,~I!.>lFi.J,fQ .. Lil) .nR, (Cb.f~ (P2N~;F,~) ,FQ,{)J) l GUTO tf.o 
P?•CA!-! (~2~-JI>JF.W) 
Gr_lTO t 7 

1~ ~ALL PUPLJPrP~N!~Fw,PrSP?l 

JFr~h5P? .. ~F.~l~DT8 15 
G!JTD 'i 

II JF(C0MF(TR,2J,NE,ADJU) G~TO I 
CALL OET(p•CPl,CAf'(CAA(C!l"[P)ll.~V~) 

v!EWP • CIP(Cn•cc~R(CnA(CIR(rDA(HVP)J)lll 

tFlFL>rJ.~CJ,IJ r.arn 13 
CALL flrw(HJ 
C'Ll aPPENDCt5.TI,C!l 
CAQ(T~)•CA'I{Pl 

1 ~ tALl. r-ol::w(~,)() 

CALL APPENrtT~,~~,TXl 
CAF (MX) =V n:·,·.1 P 

Cf'.L\ AF!'PF_NO (~lX 1 Ct..R(T),r-iX) 
FLA(~ c , 

r,r.JTO 2 
q0 CALl PRLT~T((AS~,l ,~) 

0 CALL PI,.JJfLlfCAS~-,1_ 1 1,1) 
iHliJI-tf., 
E'"D 

- 3.ss. -



structuring 

(iii)Sernantic structure 

SEM 

parameter~:CONF, a configuration 

operation: 

SEM computes the semantic structure and prints it on an 

outputdevice 

code: 

00~1 

0002 
0003 
00~4 

~m 
0007 
00~8 
000q 
0010 
~011 
0012 
0013 
0014 
0015 
0016 
00!1 
~018 
00!Q 
~020 
0021 
0022 
0023 
0024 
0025 
002& 
0027 
0028 
002q 
a.QI'1:01 

D 

0 
D 101 

0 
D 102 

D 
D 
0 lOb 
0 
D !03 
0 

0 104 
0 

SUBRnuTI~E SEM(CD~F) 

IMPLICIT tNTEGER(A•Xl 
LOGICAL•! H 
COMMON CAR(3000l,CDR(3000),AF(3000) 
cOMMON 1SEM10L!ST,5EM5TR 1 PREO,ARG,FEAT,MOO,OBJEC,ADJU,FUNCTW 
C0MMONICOMFICOMF(30,!0l 
COMMDNtADDIRULE 
NUM•0 
P2NWfWo0 
wR I H. ( & ,! 01 l 
FoRM'TC!x,'CREATING TOP OF SEMANTIC STRUCTURE') 
ULL NEWCSEMA) 
CAR(SEMAJ•SEMSTR 
SMoSEMA 
wRlTE(b.l~2) 
FORMAT(tX,'CREATlNG INITIAL TASK IMAGE') 
CALL PUSH(CONF,PDSCO) 
CAL~ PUSH(~ 1 PD5SEJ 
CA~L PUSH(0,PDSO~) 
CALL PUSH(0,pDSPRl 
CA~L POPUP(PCO,POSCO) 
~UMoNUM•1 
WR1TE(&,t4&) NU~ 
FDRHAT(IH0,!H[ 0 12 1 1Hl) 
wRITE(&.103l 
FORMAT(!H0 1 ',1, POPPING UP NEW TASK IMAGE') 
WR!TE(~,!04) 

FOOMAT(,X,'PRESENT POINT IN CONfiGURATION:') 
CALL PRL!ST(PCO,q,&l 
CALL PDPUP(PSE,POSSE) 

- 3.86.-



structuring 

0031 
0032 
00H 
0034 
003~ 

003~ 
0037 
0038 
00H 
0040 
0041 
~042 

0043 
0044 
0045 
004b 
0047 
0048 
004~ 
0050 
0051 
0052 
0053 

0054 
0055 
0056 
0057 
0058 
0059 

0060 
00&1 
0062 
0063 
0064 
00~5 
00&~ 
00&? 
00~8 
00&~ 
0070 
0071 
0072 
0073 
0074 
0~75 
~07b 

0077 
0078 
0079 
00~0 

0081 
00a2 
0083 
0084 

00 8s 
0086 
00A7 
0088 
0089 
00Q0 

0 
0 10~ 
D 

0 
0 10b 
0 

D 
0 10T 
0 

WR!TEC&r10~l 
fORHAT(SK,'~TTACHM~NT POINT IN SEMANTIC STRUCTURE!') 
CA~~ PR~IST(PSE,Q,b) 
CA~L POPUP(MQOK,POSOll 
WR!TEC6,106) 
fORMAT (Sl, 'TOP OF NODE (FOR GUA~l I') 
CALL PRLIST(MQOX,Q,bl 
CAL~ POPUP[MQPR,PDSPRl 
WRITE(~, 1011 
fORMAT(Sx,'PRED!CHE NODE [FOR MOll') 
CALL PRL!ST(MGPR,~,b) 
!F(PCO,EQ,0) GOTO Q0 
lFCPSE,E0,0) GOTO IT 

!6 lF(CD~(PSEl,NE,~l PSE•CDR(PSE) 

D 
lf!CDR (PSEl,NE,0l GDTD 18 
WRITE(&, 10Q) 

0 109 
0 

FORMAT(5~,'~EAOJU5TEO ATTACHMENT PO!NTI'l 
CA~L PR~!ST(PSE,~,&l 

0 

IT PfU•COR[CARCCDR(PCOlll 
CA~L GET!CAR(PfUJ,RULE,!Rl 
WRJTE(b,1!~) 

0 110 
0 

F0RMAT(!H0,',11, EXECUTION Of TASK') 
CALL PR~!ST (CAR(PfUlr30,~l 

D WR!TEC~,Ittl 

D Itt FORMAT(!H+r'FUNCT!ON OF PRESENT WORO lSI') 
PNW•COR (PCOJ 
!F(PSE,NE,0l GOTO 19 

0 WR!TEC&,ttJl 
0 t!3 FORMAT!tX,'* PRESENT WORD IS FIRST WORO IN CONFIGURATION'/ 
0 o5X,'START!NG TO CREATE INIT!A~ 08JECT NODE'l 

IFCCOMF(!Roil,EQ,OBJECl O~IST•COR(OL!STl 
P2oPCO 
P2FU•PFU 
GDTO !b 

2 PSE•NP~ 
MQOX:OX 
MQPRoPR 

0 WR!T~Cb,ll•l 
0 114 FORMATC3X,'CHANG!NG TASK IMAGE AFTER CREATION OF NODE') 
D WRITE(~,!!~) 
D liS FORMAT(SX,'ATTACHMENT POINT IN SE~ANT!C STRUCTURE!') 
D CA~~ PR~IsTCPSf,q,~) 
n WRIToC~,IIb) 
0 !16 FQRMATr,X,'TOP OF NODE (FOR QUllll'l 
D CA~~ PRLIST(MQOX,~,&l 
D W~JTE(.,II7l 
0 !17 FOP•UT[~M,'PRE~ICATE NOOE (FOR MODll'l 
n r.ALL PRLIST(MQPR,9,6) 
D WR!TE(6,12~l 
n 12~ FORMAT(!X,'STARTING TO TRACE DEPENDENT WORDS') 

GOTO 4 
!q IFtCOMF(IR,~J,NE,OBJECl GOTQ le 

D CALL PRLISTCCAR(PCQ),I5o&l 
0 WRITE (~,1!8) 
D liB FORMAT(tH+•'PRESENT WDRDI IS DBJECT•TYPE'I 
P •IX,'START!NG TO TRACE DEPENDENT wORDS') 

4 PNwaCDR (PNW) 
IF ( (PNW,EQ.~) ,OR, (CAR (PNI~) ,EQ,0) l GOTO 80 
P2aCAR(PNW) 

D CALL PRLISTCCAR(P2l,27,6) 
~ WRITE(6,1!Q) 
0 11q FORMAT(tH+•' •> DEPENDENT WORD fOUNOl'l 

- 3.8f.-



structuring 

00ql 
A0q2 
00q3 
00q4 
~0q9 
00q6 
00q1 
00qe 
0zqq 

010~ 
0101 
0102 
~103 
0104 
0!05 
010b 
0101 
0108 
01~q 
0110 
0111 
0112 

~IU 
:u~ 
~m 
011q 
0120 
0121 
0122 

0123 
0124 
0125 
012& 
0127 
0!28 
0Uq 
0130 
0131 
013~ 
0133 
0134 
0135 
0136 
0137 
0138 
01H 
014~ 
0141 
0\42 
0143 
0144 
0145 
0!46 
Dlt4'7 

2~ peFuoCDR(C~R(COR(P2lll 
C~L~ GET(C~~(P2FUl,RU~E,IRl 

0 CA~~ PRLISTtCAR(P2FUl,!8,&l 
0 WRIT~(&,I21l 
0 121 FORMAT(IH+,U,'fUNCTION ISI') 

!FICO~F(!R,2),NE,OBJEC) GOTO 7 
0 CA~~ PR~!ST!CAR(P2),1!,6l 
0 WRITE(h,\22) 
D 122 FORMAT(IH+,4~,'WOROI lS OF OBJECT•TVPE'I 
D oSX,'START!NG TO CREATE NEW OBJECT NOOE') 

16 CA~~ NEW(NPLl 
OX•CAR !OL IST) 
OLtSToCDR(O~tST) 
CAR(NP~I•OX 
CA~L APPENO(SM,NPL,SM) 
CAL~ NEW (PR) 
CAR (PR loPRED 
CALL APP!ND(NPL,PR,NPL) 
CA~L GET(CAR{P2),CAR(CAR(COR(P2))),lNF) 
IHPRoCOR(tNF) 
CALL APPEND(PR,CAR(COR(CD~(!HPRll),PRl 
CALc APP~NOIPR,CAR(tHPR),PR) 
tF!cAR!cpR(IHPRl),NE,~I CALL APPEND(PR,CAR(COR(tHPRl),PR) 
FE&tN 0 COR(CDR(COR(P2FUl)l 
tF!cOMF(tR•~l,NE,08JECl fEAlN•CDR(FEAINl 
C&LL FEAcoMCCAR(FEAINJ,FEAOUTl 
tf!FEADUT,EQ,0) GOTO 20 
CALL NEWIFEl 
CAR(fEI•FOT 
CALL APPEND!NPL,FE,NPLl 
CA~L APP£ND(FE,FEAOUT,FEl 

D WRIT£(~,123) 
D !23 FORMATtlx,'* OBJECT NOOE COMPLETED AND ATTACHED TO '• 
D •'SEMANTIC STRUCTURE'! 
0 CALL PRLIST!CAR(SMl,T,&l 

2~ P2C&•CDR(COR(CDR(CORICOR(P2FUlllll 
lFf(CDMF(!R,2l,NE,OBJECl,OR,(CAR(P2CAJ,EQ,0ll GOTO 2 

D CALL P~L!ST(0~,2T,&) 
D ~RlTE(b,l24l 
0 124 FDRH&T(!Ht,4X,'NOW ATTACHING nBJECTI TO ARGUMENTS') 

!F (C&R (CU (PSE)) ,EQ, ARG) GOTO 5 
CALL NEW CARl 
CAR tARl•ARG 
CALL APPENO(PSE,AR,PSEl 

5 CALL NE~ICA) 
CAR(Cl]oCAR{P2CA) 
CALL APPENP(AR,CA,ARl 
CA~L APPENO(CA,OX,CAl 

0 CA~" PO~IST!CAR!~SE),7,~) 
P2NW•COR(CDR(P2ll 

0 CALL PRLlST(CAR(P~l,S,~) 
!F((P2NW,EQ,0],0R, (CAR!P~NW),EQ,0)l GOTO ?q 

n wR!TEC&,I25l 
0 125 FORMAT(IH+,!1X,'HAS PEPENOENT WORDS~ PUSH NEW TASK tMAGE'l 

CALL PUSH(NPL,PDSS!) 
CALL PUSH(P~,PDSCO) 
CAL~ PUSH(OX,POSOXl 
CALL PUSH(PR,PQSPR) 
GOTO 2T 

- 3.88.-



structuring 

0iliri 
014q 
~190 
0151 
0!52 
0153 
0194 
0!55 
015& 
0157 
0158 
015q 
01&0 
0161 

01&2 
01&3 
01&4 
01&5 
~I&& 
01U 
01&8 . 
01&9 
0170 
01 Tl 
0172 
0173 
0174 
~115 

011& 
0117 
0!78 
01H 
0180 
0181 
0182 

0!83 
0184 
0185 
018& 
0!87 
0188 
018Q 
0U0 
0191 
01Q2 
0!93 
01Q4 
01q5 
019& 
0197 
0198 
0\QQ 
0200 
0201 
0202 
0203 
~204 
0205 

29 CONTINUf. 

8 12& 
2T 

T 

0 
0 

W~!TEC&,!2&) 
FO~MAT(IH+,l7M,'HlS NO DEPENDENT WORDS') 
IF(PDSP2,NE,0l GDTO 24 
GOTO 4 

CALL GET CCl~(P2FU),RULE 0 1Rl 
IF (COMP(IR,2),NE,&OJUl GOTO 8 

CHAR•CAR(COR(CnR(COR(COR(P?,FU)llll 
CALL PRL!ST(CAR(P2l,ll,&l 
WRIH(6,1,2Al 

0 128 
0 

FORMAT(!H+,4~,'WOROI !5 OF ADJUNCT•TYPE') 
CALL PRLISTCCHAR,!& 1 &l 

D WRtTE(&,!2Q) 
D ! 29 FORMAT(!H+o&M,'SU6TVPE1 • PUSHING NEW TA5~ !MAr,£•) 

0 
0 

tF(CH&R,EQ,MOD) GOTO 21 
CALL PUSH(PSE,POSSEl 
GOTO & 

21 CALL PUSH(MQPR,POSSEl 
& CALL PUSH(P2,PDSCO) 

CtLL PUSH(MQOX,POSOXl 
CALL PUSH(~,POSPR) 
IFCPOSP2,NE,~) GOTO 24 
GOTO 4 

8 JF(C0MF(!Ro2l,NE,FUNCTW) GOTO 23 
CAI.L PRUST (CAR (Pal, II, bl 

0 131 
W~!HCbol!ll 
F0RMAT(IH+,U 1 'WORD I 
CALL PUSH(P2NWFW,POSP2l 

P2NwFw • COR(P2l 

IS OF fUNCTJONWORD·TYPe'l 

24 P2NWFWoCOR(P2NWFWl 
!FC(P2NWFW,EG,0l,OR,(CARCP2NWFW),~Q,~l) GOTD 2& 
P2•CAR(P2NWFW) 

0 CALL PRLIST(CAR(P2) 1 !3,&l 
D WR!TE(b,13~l 
0 132 FORMAT (!H+,&X, 'WORD I IS DEPENDENT FROM FUNCTtONWORD'/ 
0 •UX, 'AND IS CONSIDERED TO H~E IlS PLACE') 

GOTO 25 
2~ CALL P0PUPCP2NWFW,P05P2) 

!F (POSP2,NE,0l GOTO 24 
0 WRIT!th, 133) 
0 !33 FORMAT(?M,'• NO (MOR~l WORDS DEPENDENT FROM FUNCT!ONWQRO'l 
D WRITEC&,nAl 
0 134 FORMAT(!H+,53~,'• PoS EMPTY') 

GOTO 4 
23 CALL PRLIST(CAR(P2FU) 1 39,hl 

WRITE(b,\35) 
\35 FORMAT(tH+ 1 'S ~RRQR S ••CANNOT IDENTIFY FUNCTIONI'l 

CALL PRL!ST(CAR(P2l 1 3Q,b) 
"RITE(&, 13~) 

13~ fORMAT[t~+o2qX, 1 0F WOROI'l 
GOTO 4 

1~ IF(COMF(lR,2l,NE,~DJIJl GOTO lJ 
0 CALL PRLI$T(CAR(PCDl,!5,&l 
0 WRlTEC&,!3Tl 
0 13? FDRMAT[tH+,'PRES~NT WORD! 

o~•CAR(CDRCCDRCCDRlCOR(PFUlllll 
0 CALL PRL!ST(O~,l4 1 &l 
0 WR!TEc&,t38l 
0 1!8 FoRMAT(!H+,2M,'SUBTVPE1'1 
D •SX,'START!NG TO CREATE NEW ADJUNCT NOOE'l 

IS OF AOJUNCT•TVPE'l 



structuring 

020& 
020 7 
~208 
0209 
0210 
.0211 
0!12 
0213 
0214 
02!5 

02!b 
0217 
02!8 
02!9 
0220 
0221 
022~ 

sm 
0225 
022& 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
~23& 
0237 
0238 
0239 

02U 
0241 
0242 
0243 

0244 
0245 
024& 
0247 
0248 
0249 
0250 
0251 

0252 
0253 
0254 
0255 
025& 
0257 
~258 

CALL NEW(NPLl 
CAR(NPL)cOX 
CALL APPENO(PSE,NPL,PS~l 
CALL NEWCPRl 
CAR(PRl•PR!D 
CALL APPENO(NPL,PR,NPLl 

CALL GET (CAR(PCO),CARCCARCCORCPCOlll,INF) 
IHPR • CDR (!Nfl 

CALL APPENO(PR,CAR(COR(C~R(lHPRll),PR) 
CALL APpENO(PR,CAR(lHPR),PR) 

IF(CAR(tORCIHPRll,NE,~l CALL APPENOCPR,CAR(CORCIHPR)J,PRl 
IF(OX,EQ,MO~l GOTO 2 

D CALL PRLIST(MQOX,20,&l 
D WR!TE(&,!J9) 
Q !3Q FoRM.T(!H+•'NOW ATTACHING TOPI TD ARGUMENTS OF QUALIFIER•) 

EALL NEI'i(ARl 
AR(ARl•ARG 

CALL APPENO(NPL,AR,NPL) 
CALL NEW(cAl 
CAR(CA)oCAR!CDR(CQR(lHPR)ll 
CALL APPENO[AR,CA,AR) 
CALL APPEND(C.,MQOX,CAl 

D CALL P~LtSTCC.~(NPL),I,~l 
0 CALL PRLtST(OX,3,&l 
0 WRyT 0 (o,l41) 
0 !41 FORMAT(tH+,!Ho,7X,'NODE COMPLETED •NO ATT.CHEO'l 
0 CALL PRLlST(CAR(~SE),I,&l 

GOTO 2 
I~ C•LL PRLlsTCCAR(PFU),3Q,~) 

D WRITEC&,t42l 
0 !4~ 'ORMAT(1H+ 0 '$ E~ROR! ••CANNOT tOENTtFY FUNCTlONa'l 
D C•LL PRLlST (CAR(PC0),39,6l 
D oRJlE C&,\43) 
D !43 ~ORMAT(tH+,a9X,'OF WORDI'/ 
D •I?X,'O~ INCORRECT INPUT FROM POpUP') 

GOTO 4 
S~ CONTINUE 

D wRITEC&,!44) 
D !40 FQRMAT(!X,'• NO (MOREl WORDS DEPENDENT FROM PRESENT WORD'/ 
D oiH~,',IU, SEMANTIC STRUCTUR! AT PRESENT STAGEr'/) 
0 SMAoSEMA 
0 81 SMAoCO~(SMA) 
0 IF(SM.,EQ,~l GOTD 82 
0 CALL PRUST(C.R(SMA] ,7,&1 
D GQTO 81 

B? GOTO I 
q~ wRITE(6,t45l 

145 FORMAT(\H~,'>>>>> S!MANTIC STRUCTURE COMPLETED NOW'/ 
o7X,'FINAL OUTPUTI'I) 

SMA•SEMA 
91 SMA•COR!SMAl 

1F(SMA,fQ,0] R~TURN 
CALL PR"!ST!CAR(SMAl 1 7,6l 
CALL PLOTLI(CAR(SMA),1,1,1l 
GOTO 91 
END 

- 3 90 0-


	PhD_Steels_1977_Aspects of modular theory of language_volume2a
	PhD_Steels_1977_Aspects of modular theory of language_volume2b

