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Abstract

We take a first step towards the annotation of word forms in tweets with normal forms. Such
annotation can assist research into spelling variation and the use of standard NLP tools to process
tweets. This first step consists of the design of a technique to estimate whether two word forms
can be considered variants of one and the same normal form. At this point we are examining
word form types in isolation, i.e. without taking the context into account. We describe a word
form similarity measurement which combines edit distance and context similarity over our whole
tweet collection. Furthermore, we present the results of a pilot study, which we executed on 7Gw
worth of Dutch tweets. We find that, while results are encouraging, various improvements to the
similarity estimations are still possible.

1. Introduction

In recent years the use of social media such as chat, sms, facebook and twitter has taken enor-
mous flight. While primarily these media are intended as means for communicating, sharing and
exchanging information “there and then” with friends, family, peer group or members of some on-
line community, they have also attracted the attention of various other parties for different reasons.
Advertising agencies and businesses have been quick to realize that the social media constitute a
rich data source which may be exploited, for example, for marketing purposes. From the available
data one can learn which are the trending topics, what sentiments prevail, etc. Also, scholars from
various disciplines (e.g. historians, sociologists, linguists) have discovered the wide possibilities that
these data can offer, possibilities that before they could only dream of.

However, access to the data is hindered by the fact that, especially in these media, language users
do not abide by the prescriptive rules as regards grammar and spelling that are generally upheld with
standard language use in more conventional media (e.g. books, newspapers, magazines). Rather,
the language used in the different social media appears to be developing into separate varieties,
each characterized by numerous idiosyncratic grammatical structures and spelling variants. If this is
indeed the case, we should not attempt to map it to the standard language by performing grammar
and spelling correction. Still, for many purposes, such as text mining using standard IR/IE tools
or research into spelling variation, it would be extremely useful if there were a view on the text
in which the vast number of variants is reduced to more manageable proportions. Starting with
spelling, and leaving the grammar for future research, we propose therefore to annotate each token
in the text with some kind of normal form, which can act as a representative for a whole group
of forms that are variants of each other, and for which we intend to adopt a consensual spelling
(see further discussion below). For such annotation, it will be necessary, then, to measure whether
different word forms might be variants of each other, so that they can be grouped together and a
single normal form associated with them. We will attempt to do this measurement on the basis of
an edit distance estimation and a context similarity estimation over a large data collection. In this
paper, we test the basic usefulness of the two estimations, checking whether they lead to a likely
normal form for a test set of word form types. Note that this makes the task different from spelling
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correction, as we will be operating on the level of word form types rather than word form tokens in
context.1

In the present paper we focus on the spelling encountered in Dutch Twitter data. The Nether-
lands is one of the top tweeting nations, with just over 22% of the Dutch online population using
Twitter (November 2011; http://bigthink.com/strange-maps/539-vive-le-tweet-a-map-of-twitters-languages).
Twitter is used typically for sharing information about what is happening almost instantaneously.
Due to the medium, messages are limited to short texts (tweets) of maximally 140 characters. The
vocabulary used in Dutch tweets is extremely rich: the tweets not only contain Dutch words and
phrases, but also words and phrases from various other languages such as English or language va-
rieties such as Dutch ‘straattaal’ (“street language”). Moreover, spelling variation occurs on a vast
scale.

The structure of the paper is as follows. In the next section we first introduce the phenomenon
of spelling variation in Twitter and then go on to define which normal form we will target in the
context of this paper. Next, in Section 3, we describe the data which we will use to run and evaluate
our experimental system. Section 4 describes how we estimate the edit distance and Section 5 how
we estimate the contextual similarity and predict the most likely normal form. The results of the
evaluation are detailed in Section 6. The paper concludes with a discussion and description of future
work.

2. Spelling Variation in Twitter

Spelling variation found in tweets has several sources: as in any text, there are spelling errors but,
other than in texts from conventional media, there is also quite a lot of spelling variation where the
author deliberately chooses to deviate from standard spelling conventions (Tagg 2009).

When we consider the spelling errors we encounter in tweets, we find that these tend be of the
same nature as those in traditional text. First, there are typographical errors, where the author
in principle knows how a word should be spelled but makes a mistake in the operation of the text
entry mechanism. However, such typographical errors display a wider range than is known from
previous studies (e.g. Reynaert 2006) as these studies focused on errors made by users of traditional
keyboards whereas tweets are often produced on smartphones with other keyboard layouts or even
older types of mobile phones, possibly with algorithms (like T9) meant to assist text entry. Then,
there are orthographic errors, where the author does not know the correct spelling (van Berkel and
De Smedt 1988). As for these, they are known, also in more traditional text, to be strongly related
to pronunciation. This relation is even more pronounced in tweets because of the more informal
nature of tweets and the fact that Twitter language tends to be much closer to spoken language. For
Dutch, this means we can expect effects like n-deletion (inzette-inzetten (‘put in’); for n-deletion in
Dutch spoken text, see e.g. (van de Velde and van Hout 2003) and confusion of phonemes which have
various spellings (e.g. ij-ei: batterei instead of batterij (‘battery’)) or which are currently shifting
in spoken Dutch (e.g. z-s: jeself instead of jezelf (‘yourself’); (van de Velde et al. 1996)). Note
that, for this paper, we will only pay attention to spelling. Errors like gekoopt instead of gekocht
(‘bought’, with regular instead of irregular participle formation) or enigste instead of enige (‘only’,
with incorrect use of the superlative) will be assumed to be errors against morphology and not
against spelling, which makes them correctly spelled, albeit incorrect forms.

Spelling variation where the author deliberately chooses to deviate from what is the established
correct form occurs quite often in tweets. There are various reasons for this. Because there is a
limit on the number of characters in a tweet, authors are encouraged to use abbreviated spellings.
This leads to shortened variants such as acronyms (pww-proefwerkweek, (‘exam week’)), devoweliza-
tions (gwn-gewoon (‘just’)), clipped forms (eig-eigenlijk (‘in fact’)) and rebus-like forms (w8-wacht

1. As far as we are aware, the task as we cast it here has not been investigated before. We do therefore not include
a separate section on related work, but restrict ourselves to referring to previous work in the sections discussing
the aspects of our work where such references are relevant.
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(‘wait’)). A good number of these shortened forms is already lexicalized, sometimes even inherited
from IRC or SMS (lol-laughing out loud; aight-all right). Lengthened variants also occur, as words
are lengthened to indicate stress. This lengthening occurs through the repetition of a single character
(jaaaaaaaaaaaaa-ja (‘yes’)), a whole word (nunununu-nu (‘now’); lerenlerenleren-leren (‘learn’)) or
more rarely a shorter character sequence (raarderder-raarder (‘stranger’)). Most often the lengthen-
ing takes place in emotive words, but sometimes also in content words (rustiggggg-rustig (‘quiet’)).
Finally, variant spellings may be used to indicate membership of a peer group. An obvious ex-
ample here is dialect spelling, where the spelling represents the dialectal pronunciation (woar-waar
(‘where’)). This type of spelling is known to be especially pronounced in Flanders (Vandekerckhove
and Nobels 2010), but is certainly also present in the Netherlands, notably for the Southern and
Eastern dialects. Here, we have to make a choice whether we want to recognize the dialectal spelling
as a variant or as an independent form. Given our goal, viz. to assist research into spelling variation
and to enable the processing with standard NLP tools, we have chosen to treat pronunciation-based
variants of standard Dutch words as spelling variants, so that we will attempt to map them. However,
if the word itself is dialectal rather than just the spelling, we do treat its variants as an independent
group. An example is the dialectal noun seule (‘bucket’), for which there is no pendant in standard
Dutch. We recognize that there will be words where it will be hard to determine which type they
belong to. For now, we will take a pragmatic approach. It is clear, however, that for the longer term
there is a need for discussion to arrive at more principled guidelines.

The groups of spelling variants representing the same underlying form will normally be of modest
size, some tens of potential variants, for frequent and/or long words extending into the hundreds, of
which probably less than ten will be observed regularly, e.g. politie (‘police’) is seen regularly as poli-
tie, politi, polit, polite, polisie and polietie, but also as politieee, poltitie, poilietie, poltiie, politieeee,
pollitie, plitie, poitie, politsie, poliitie and politcie. However, expressions of emotion giving rise to
extensive repetition may have several thousands of forms in their cluster. For the underlying form
haha, we have actually observed more than 2000 variants, including e.g. haaaaaaaaaaaaaaaaaaaah-
haaaaaaaaaaaaaahaaaaaaaaaaaaaaaaaaaahahaha.

Conversely, observed forms tend to belong to only a few variant groups and usually just one for
longer forms. However, here too we find exceptions, especially for shorter forms. An example is ne
(Table 1) for which in a random sample of 100 tweets 11 different interpretations were encountered.

In further processing, a variant group which is represented by a list of all of its included variants
is both unwieldy and difficult to interpret by humans. Therefore it would be preferable to select
one variant form from within the cluster as the representative. Such a normal form should best be
a form which can be taken to be a kind of consensus spelling. For most words, there are two basic
choices for the consensus: the official spelling or the most frequent spelling. One might consider the
official spelling a good target form. However, it has at least two disadvantages: it will sometimes be
an exceptional spelling (e.g. pannenkoek (‘pancake’), the official form today, is only half as frequent
as the now archaic pannekoek) and sometimes does not even exist at all (e.g. for straattaal words
such as kaulo (‘asshole’)). For the work we describe here, we will therefore organize our approach
around the most frequent spelling, which also means that we have to center our work around the
Twitter data and cannot simply start from existing lexica. In cases where different usage situations
lead to different most frequent spellings, e.g. vanavond (‘this evening’) as vanavond in more formal
tweets and as vanaaf in more colloquial tweets, we accept that we will see the creation of more than
one variant group. Furthermore, in the current study, we restrict ourselves to the surface form and
do not attempt to distinguish between different word classes and/or senses. Thus, although loop will
probably show more spelling variation for the verb sense (‘walk’) than for the noun sense (‘barrel
of a gun’) and school more for the sense ‘a school for children’ than for the sense ‘a school of fish’,
there will still be only one variant group for each of the underlying forms loop and school.
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Table 1: Interpretations for 100 random instances of the form ne.
Underlying form Explanation of variant Freq Example

ne (abbreviation Correct form, sense 1 16 Nu hw maken frans al gedaan bio ook
for school subject nu ak maken xD en dan ak leren en ne
Nederlands) leren
ne (foreign) Correct form, sense 2 12 Het enige zinnetje wat ik in Frankrijk

gebruikte was ’ Je ne parle pa francais ’
ne (dialect form Dialectal form 14 Die wisten gewoon da gij ne chinees waart
of the indefinite
article een)
me Typo: substitution 19 Ik ben ziek voel ne niet lwkkwe
en Typo: transposition 9 dan maar leren voor anatomie ne engelss
nee Typo: deletion (or 8 Oow ne he het regent

deliberate shortening)
net Typo: deletion (or 3 het leven is ne een rotblok soms komt

deliberate shortening) komt het gewoon te hard
je Typo: substitution 2 Fijn dat ne dat zegt als ik al weg beb
ene Tokenization problem 5 Geen 1ne moer zin meer om te werken

due to our tokenization
process2 (or deliberate
phonetic spelling)

neem (cropped) Tokenization problem 2 RT @NAME: Goede start vandaag ,
due to Twitter medium klant akkoord voor het uitvoeren

van een ICT scan . Wil je meer weten
over de QUBE ICT scan , ne ...
[possibly: neem contact op met]

ne t*** Tokenization problem 1 zit je ne top de computer moet je er weer
due to typo by author van af

??? Unidentifiable 9 als k je niet ping ie ne ping

3. Experimental Data

In order to check the usefulness of the edit distance and overall context similarity estimations that
we will use to determine whether two words are variants of each other, we need two data sets. First,
we need a corpus, in this case of Twitter texts, to derive a context similarity estimation from. The
corpus should be quite large, so that the estimation yields information that is exact enough to be
used for the suggestion of the proper normal forms. Secondly, we need a list of word form types and
their corresponding normal form, so that we can evaluate the normal form suggested by the system.

For a large corpus of Dutch language tweets, we were able to use about 608 million tweets from
the year 2011. We are grateful to Erik Tjong Kim Sang who allowed us access to the data he collected
(Tjong Kim Sang 2011). We tokenized these tweets, isolating the purely alphabetic tokens. All hash
tags, user names, URLs, emoticons and such were mapped to representative special forms, e.g. @
for a user name. They were not subjected to the normal form suggestions, but were used when a
token’s context was investigated. Punctuation was separated from alphabetic tokens, as were digits.
Fully alphabetic strings were left intact, also including clitic forms such as kheb (‘I have’). This led
to a total of about 7.4 billion tokens. For all processing in our system, we furthermore mapped all
upper case letters to lower case and removed all diacritics.

For the lists of pairs of word form types and their corresponding normal form, we took a repre-
sentative sample of all the types in the corpus described above. We restricted ourselves for this first
experiment to fully alphabetic tokens (including apostrophes) and leave creative spellings such as
w8 (wacht = ‘wait’) for later.
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Table 2: Type frequency bands in our corpus from which samples will be taken for system evaluation.
Frequency Examples Total Coverage of Cumulative Number

band number alphabetic coverage of types
of tokens in sample

types in corpus

> 1/1,000 ik (‘I’) 150 60.2% 60.2% 150
k (ik; ‘I’)

> 1/10,000 jammer (‘pity’) 724 19.6% 79.8% 724
ak (‘geography’)

> 1/100,000 opgegeven (‘abandoned’) 3,947 10.8% 91.6% 1,024
oowk (ook; ‘also’)

> 1/1,000,000 vuilnisbak 18,649 5.3% 96.3% 1,024
watik (wat ik; ‘what I’)

> 1/10,000,000 aanstichter (‘instigator’) 80,542 2.3% 98.6% 1,024
aaaardig (aardig; ‘nice’)

3.1 Frequency dependent sampling

Since we wanted to investigate both frequent and less frequent types, we first divided the types
into frequency bands, as shown in Table 2. The most frequent types occur in the tweets more than
once per one thousand tokens. The next band holds types which occur more than once per ten
thousand tokens, but do not already fall in the first band. We continue this band assignment up
to types occurring more than once in ten million tokens. For the current experiment, types with
lower frequencies were not used, as their overall context similarity estimate is likely to be too noisy
for proper evaluation. Together, the five frequency bands we use cover only 26.6% of all observed
types. However, these account for 98.6% of all observed tokens. We aimed for 1,024 sample forms
per band. For the first two bands, there were fewer than 1,024 forms present and we included all of
them in the sample. For the remaining three bands we made a random selection.

3.2 Manual annotation

We (the two authors) independently annotated all form types manually for the expected most
frequent spelling variant (possibly the form itself). Where we disagreed, we came to a consensus
by discussion. Annotation was largely on the basis of the type, but regularly a sample of instances
in their contexts had to be inspected. During this exercise, it became clear that the language
used on Twitter cannot be characterized as a single separate variety, but rather as a number of
varieties. Given that it is hard to have an overview of all these varieties, but also their relative
volume and therefore the relative frequency of the spelling variants in them, we have to assume
that our annotation cannot be fully correct. However, we do think it is correct enough for use
in an evaluation as presented here. Still, after applying our system, we decided to re-inspect 179
types where there was disagreement between our annotation and the system’s suggestion, in order
to check whether the system or we ourselves made a mistake. For 68 of these we indeed adjusted
our annotation.3

In 32 cases we had interpreted the form correctly, but had misestimated what would be the
most frequent form, usually selecting the orthographically correct form instead. This included a
number of clitic forms, where the reduced form of the pronoun appears to be the most popular
(e.g. tis (‘it is’), kwist (‘I knew’), zegtie (‘he says’), ofie (‘whether he’)), although not always (twel-
hetwel (‘it’ plus an adverb expressing confirmation)). Then there were plurals, diminutives and
other words where the officially required apostrophe was most often left out (msnen (‘msn’), smsje
(‘SMS’), hollandsgottalent (talent show)) but again not always (bn’ers (‘Dutch celebrities’), corona’s

3. These cases tend to be the more difficult ones and the percentage of errors here (38%) is far higher than the
overall percentage of errors in our data set.
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Table 3: Interpretations for 100 random instances of the form omt.
Normal form Frequency Example

komt 34 zo irrritant op iemand wachten en ze omt nieeet
om het 27 Mn nagels zijn ook nog oranje gwn geen zin omt eraf te halen
om t e*** 12 Als j twitter gebruikt omt evertellen wat je doet is et saai
om 10 maar eigenlijk is het tijd omt naar huis te gaan
omdat 4 se heeft der hyves verwijderd omt iedereen der ging stalken
***k omt 4 erk omt zo een tweet aanvan me moeder
om te 3 geen zin omt gaan
omt (name) 3 je doet mee aan het omt toch
ont ploft 1 Wooow tank omt ploft nog geen politie
??? 2 wat is omt boven op een berg ? – wtf ? Weet ik veel

Table 4: Classification of forms for differentiated evaluation.
Class Number Examples

Standard 3,013 ik, deze, gezegd, noodweer, ziennn
Jargon 70 rt, gwn, vanaaf, wss, ak

(retweet, gewoon, vanavond, waarschijnlijk, aardrijkskunde)
Name 401 amsterdam, jan, whatsapp, lowlands, klm
Interjection 207 haha, xxx, omg, whahahaahahah, aaaaaaaaaaaaaaah
Tokenization 100 kga, tvkijke, smiddags, kenningsmakings gesprek
Straattaal 45 facking, kaulo, wollah, gechapt, blaka
Foreign 110 cool, feature, vir, assasins

(the beer)). As could be expected, the normal confusion about forming past participles is visible
also here, with some erroneous forms appearing to be more popular than their correct counterparts
(gespamt (‘spammed’), gelult (‘talked nonsense’)). A last recognizable subclass is formed by words
where a schwa may be inserted at some point, which now also becomes visible in the spelling
(ongelofelijk (‘unbelievable’), bijvoegelijk (‘adjectival’)). The difference in frequency between the
variant spellings can be very large, e.g. with tis 200 times more likely than hetis (‘it is’) and
daagjes ten times more likely than dagjes (‘days’). The variants can also be practically equally
frequent, e.g. the already mentioned ongelofelijk-ongelooflijk and bijvoegelijk-bijvoeglijk, but also
noppes-nopes (‘nothing’), pyjama-pyama (‘pyjama’) and snoeperd-snoepert (‘sweet tooth’). In such
cases, we decided to choose the most frequent spelling for our experiment.4 In the other 36 cases, we
turned out to have misinterpreted the form. Usually this was a matter of ambiguity, where another
sense than the expected one turned out to be more frequent in the corpus. For late, e.g., we expected
that it would normally represent laten (‘let’), as we saw rather many cases of n-deletion. However,
a sample of 100 instances of late showed that 75 were in fact the form late (‘late’) itself, only 23
were laten and the remaining two represented later (‘later’) and an unidentifiable form (late kei lang
op ’ D ’ - sorry was ff eten). More balanced cases were douche, with 59 instances of douchen (verb
‘shower’) and 41 of douche (noun ‘shower’), and ui, with 44 times uit (‘out’) versus 40 times ui
(‘onion’). An example of very high ambiguity, only slightly less than ne shown above, is omt (Table
3). Apart from the ambiguous ones, there were also some forms where we had simply misunderstood
the form. An example is the form jaxxie. We had originally interpreted this as a contracted form
of ja ik zie (‘yes, I see’), but it turned out to be a kind of diminutive variant of the name Ajax (the
football club).

Apart from the expected most frequent spelling variant, we also annotated for the nature of each
type (Table 4). The class standard contains all types not marked as one of the other six, special

4. We might just as well have decided to count both forms as correct but in this pilot we did not want to have special
rules for ambiguous cases.
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x • H A R D E R
y
• 0 1 2 3 4 5 6
H 1 0 1 2 3 4 5
A 2 1 0 1 2 3 4
R 3 2 1 0 1 2 3
S 4 3 2 1 1 2 3
R 5 4 3 2 2 3 2

Figure 1: Example of the cost table constructed with the Levenshtein algorithm. We assume that
the word harder is incorrectly spelled harsr, due to hitting the s instead of the d and
leaving out the e. The algorithm correctly shows an edit distance of 2 operations, but also
suggests an alternative sequence of operations viz. deletion of d and substituting e by s.

types; although called “standard”, it also contains dialectal forms. We marked as jargon those forms
which, although not necessarily part of the standard language vocabulary, appear to be accepted
forms on Twitter. Note that this does not mean that they are not used outside of Twitter; some forms
are inherited from the general language use of subgroups of authors, such as abbreviations for school
subjects (ak for aardrijkskunde (‘geography’), gs for geschiedenis (‘history’)). The jargon forms are
almost always shortened forms. Under name we group all proper names and interjection is the class
of tokens expressing some emotion but not participating in the syntactic structure of the tweet. The
class with tokenization problems generally contains tokens which would normally be written as a
series of tokens with spacing in between, e.g. tvkijke (tv kijken; ‘watching TV’) and kga (ik ga; ‘I
go’), but also a few half words that are part of a compound, which would normally be written as a
single token in Dutch, e.g. kennismakings (mostly part of kennismakingsgesprek (‘interview’)). As
the normal form for these forms, we chose the most frequent variant of the concatenated version.
For example, kga will not be changed because this is the most frequent variant in clitic form, even
though ik is more frequent than k when the two parts are written separately. The final two classes
are straattaal (street language) and foreign words.

4. Edit Distance Estimation

Our starting point, and also the traditional approach, for the edit distance computation between
two word forms is the Levenshtein algorithm (Levenshtein 1965; English translation 1966), using
costs which vary per inserted/deleted character or substitution character pair. However, for the
spelling variation we observe in Twitter, the Levenshtein algorithm does not suffice. The repetition
of character sequences, as described above, forces us to use an algorithm which offers the possibility
of moving backward in one of the two compared strings. And if we move away from the pure
Levenshtein anyway, we would also like to be able to handle other cases that are problematic for
Levenshtein, such as transposition (e.g. omzet-ozmet (‘turnover’)) and predictable substitutions
involving longer character sequences (e.g. nacht-nagt (‘night’)). Our solution is patterned on the
Viterbi algorithm (Viterbi 1967), another dynamic programming algorithm which is mostly known as
the decoding algorithm for Hidden Markov Models. In the following sections, we will first describe the
two algorithms we borrowed from and then our own algorithm, which we have dubbed Vitershtein.

4.1 Levenshtein and Viterbi

Most often, edit distance is calculated with the Levenshtein algorithm (Levenshtein 1965; English
translation 1966). In this algorithm, two strings to be compared are (virtually) placed alongside a
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Figure 2: State network for simple newspaper headlines.

two-dimensional grid (see Figure 1). The grid will then be filled in such a way that the number
in a cell [x,y] describes the edit distance between the substrings up to positions x and y. After
all cells have been filled, the distance for the complete strings can be found in the bottom right
cell. When filling a cell, the continuation from cells [x-1,y-1], [x-1,y] and [x,y-1] is considered. The
first represents substitution. In the base version of the algorithm, the cost of this move is 0 if the
characters on positions x and y in the respective strings are the same, and 1 otherwise. The latter
two represent insertion/deletion and (in the base version) always cost 1. The cost of each move
is added to the contents of the cell of origin and the lowest of the three values is placed in the
target cell. The base version is usually adjusted in that the cost of various moves is based on their
occurrence in observed corresponding string pairs, e.g. in speech-related comparisons, a schwa would
have a relative low deletion/insertion cost and voiced and unvoiced versions of a phone would have
a relatively low mutual substitution cost.

The Viterbi algorithm (Viterbi 1967) is also meant to determine a path of lowest cost (or al-
ternatively highest probability). Where Levenshtein specifically targets the alignment of two linear
strings, Viterbi is more general in that it tries to align any series of observations with a path in
a network of connected nodes, which is usually described as a collection of states with transitions
between them and with a start state and one or more end states. In Figure 2, we show an example
of a network that models a number of (sensationalist) newspaper headlines like Man With Spear
Chased Bear In Wood!. The transitions in the network are shown as arrows, each with a list of
costs for the various parts of speech that can be observed on that transition. The headline has to
start off with a noun, which can be followed by any number of preposition-noun pairs. Then we
proceed to the verb, after which we again allow the same kind of noun phrase as before the verb.
The headline is terminated with an exclamation mark. We also allow the preposition phrase to miss
its prepositional complement, i.e. for Man Without Found Woman With!, but this is given a higher
cost.

The fundamental observation underlying the Viterbi decoding algorithm is that a subpath of the
best path for the complete series of observations is necessarily a best subpath on the stretch of the
observation series that it covers. This means that for any subpath, one needs only remember the
lowest cost to get there and the state from which a transition leads to that lowest cost (the back
pointer). Therefore, all necessary information can be stored if one creates a list for every position in
the observation series, in which for every state the lowest cost and the back pointer are noted. After
the algorithm has collected all the information, the best overall path can be found by following back
the chain of back pointers, starting at the end state.

These lists can be visualized as a so-called trellis. We show an example trellis in Figure 3,
corresponding to the example headlines Man On Plane Above Saw UFO!, but showing only the
paths that lead to non-infinite costs.5

When calculating the costs for all the state-position pairs in the trellis, Viterbi starts at the
second line in the trellis (the first one having only the start state at cost 0) and works its way down

5. This is a very simplified example. In most applications of Viterbi, there are many more potential transitions and
there is much more variety in cost.
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Figure 3: Example trellis for a headline being decoded with the network of Figure 2.

Figure 4: An example of one progression of Viterbi from one trellis line to the next.

line by line. For every line, it visits every state and checks the transition from every state in the
previous line. If the cost at the origin and the cost of the transition are both less than infinite, the
two costs are added and suggested for the target state. After checking all possible transitions to a
target state, the lowest suggested value is stored, along with the corresponding back pointer. An
example can be seen in Figure 4, where all possible transitions of the network are shown, linked to
the observation of the word Saw in the decoding of Figure 3.
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Figure 5: Example route along position-state pairs in Vitershtein corresponding to the Levensthein
cost table in Figure 1.

4.2 Combining Levenshtein and Viterbi to Vitershtein

It is possible to recast the comparison done by the Levenshtein algorithm in terms of the Viterbi
algorithm. We transform one string (the model string) into a network of states.6 We create one
more state than the length of the model string. The first (numbered 0) will be the start state; the
last the end state. Each transition corresponds to one character in the string to be decoded. If the
model string itself is decoded, this is meant to lead to a route through all the states in numerical
order, which means that we can label the position between two adjacent states with the model string
character that is matched on that transition on the model string route. The second string remains
as it is, i.e. simply a series of observations, in this case characters, which will be linked to the
transitions when the network is traversed. In Figure 5, we show the Viterbi trellis that corresponds
to the Levenshtein cost table of Figure 1. When we introduce the various edit operations below, we
will every time illustrate them by showing lines from this trellis and the transitions originating at
S2, in the same format as used in Figure 4, as we think this will be clearer than showing the network
without reference to the progression through the string to be decoded.

If we organize our network as described, what does this mean for the three possible moves in
Levenshtein? The move from [x-1,y-1] to [x,y] is the most straightforward. It advances the position
in the observed series one place and also takes one state transition. We merely need to set the
transition cost for that transition to the substitution cost between the character observed and the
character connected to that transition. If the two characters are the same, this should be 0. For
other character pairs, for ease of explanation, we will be using cost of 1, but we will come back
to this below. This is shown in Figure 6, where the substitution transition from S2 is shown (the
arrow) together with the costs associated with every decoded character (the list in the box on the
arrow).

6. In fact, we select the more frequent variant to be the model string. We will come back to this when we discuss
the repetition operation in Section 4.3.
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Figure 6: Example of the substitution operation in Vitershtein.

Figure 7: Example of the insertion operation in Vitershtein.

Figure 8: Example of the deletion operation in Vitershtein.

The move from [x,y-1] to [x,y] is an insertion into the model string. It advances the observation
position, but stays in the same state (see Figure 7). Its cost is the insertion cost of the observed
character, for this description again set at 1.

The move from [x-1,y] to [x,y], a deletion in relation to the model string, is the most complex.
The problem is that the observation position is not advanced. However, all transitions in the network
are connected to an advance of this position, since Viterbi proceeds line by line (cf. Section 4.1).
This means we have to introduce transitions from each state to all following states, with a cost that
is the sum of the deletion costs of all the skipped characters,7 plus the substitution cost of the final
character. Examples can be seen in Figure 8, which shows all possible deletion transitions from S2.

Where, in the explanation, all costs were 0 or 1, we differentiate the costs in our actual im-
plementation in such a way that more likely variation is given lower cost. In principle, the cost
for substitutions, insertions and deletions should be based on observed frequencies in variant pairs.
However, as we lack the necessary data for this, we have for now only applied some adjustments on
the basis of our intuition. We decided to override the standard cost of 1 only where we have a strong
expectation of variation, namely

7. For this explanation again kept at 1 each so that the sum is the number of deleted characters.
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• Substitutions of v-f, s-z, d-t (all 0.01) and b-p (0.1)

• Substitutions with a character adjacent on the computer keyboard (0.7).8

• Insertion/deletion of h (0.01), e (0.2) and n (0.2)

• Other deletions are cheaper when they reduce a series of equal characters (undoubling; 0.7)

• Insertions are cheaper if the inserted character is adjacent to the previous/next model string
character on the computer keyboard (0.7).

With the three operations now described, and the example costs, the algorithm will decode
HARSR as one of

• S0 [0] - H - S1 [0] - A - S2 [0] - R - S3 [0] - S - S5 [2] - R - S6 [2]

• S0 [0] - H - S1 [0] - A - S2 [0] - R - S3 [0] - S - S4 [1] - R - S6 [2]

just as Figures 1 and 5. However, with the intuitive costs, this becomes

• S0 [0] - H - S1 [0] - A - S2 [0] - R - S3 [0] - S - S5 [1.7]9 - R - S6 [1.7]

• S0 [0] - H - S1 [0] - A - S2 [0] - R - S3 [0] - S - S4 [0.7]10 - R - S6 [0.9]11

and the system gives a lower cost to our originally intended typo scenario.

4.3 The added potential of Vitershtein

With Vitershtein, we want to overcome two limitations of Levenshtein. First of all, Levenshtein
cannot move backward in either string, so that repetition cannot be handled. Secondly, Levenshtein
can only apply edit operations that involve at most one character in each string, so that transposition
cannot be handled. Staying within the scope of the original Viterbi, Vitershtein can handle repetition
by allowing jumps to lower numbered states (i.e. states that correspond to characters earlier in the
model string) at a cost which only represents the substitution of the last character.12 Figure 9 shows
all possible repetition transitions originating from S2.13

At this point we can see an asymmetry in the handling of the two strings to be compared. Where
the repetition is made cheap in the observed string, repetition in the model string which does not
occur in the observed string is taken to be normal deletion and is handled by jumping forward along
the states, which has rather higher cost (Figure 8). Given the intended application, this is not a
problem, as in our application we will always try to determine whether a more frequent and a less
frequent string are spelling variants of each other and we can expect the more frequent string to
be less convoluted than the less frequent one. However, when more symmetry is needed in the edit
operations, we expect that a more generalized algorithm than Vitershtein will be needed.

For edit operations involving longer substrings than single characters, we even need to go beyond
Viterbi and allow transitions that refer back further than the state cost list of the previous position
in the observed series. Take as an example transposition. We can handle this in Vitershtein by way
of a multi-position transition in the network (see Figure 10, which shows the transposition transition

8. As already mentioned earlier, various other input methods are also, if not even more often, used to produce tweets,
which means that we should also investigate which other typing mishaps tend to occur more often.

9. Cost of 1 for insertion of the D and 0.7 for the substitution of the E by the adjacent S.
10. Cost of 0.7 for the substitution of the D by the adjacent S.
11. Cost of 0.2 for the insertion of E.
12. The additional cost is again kept simple for the purpose of easy explanation. Although it is here shown as 0, our

implementation actually uses a cost of 0.001 to favour lower numbers of repetitions over higher numbers.
13. The transition to S2 does not have an “other” option as this has already been handled above as insertion (Figure

7). This does mean that the “any” there should rather be read as “other than A”.
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Figure 9: Example of the repetition operation in Vitershtein.

Figure 10: Example of the transposition operation in Vitershtein.

from S2). Now, the transposition by itself costs 1. However, the route via two substitutions is also
still accessible and will be preferred if it has lower cost.14 Multi-position transitions can also be used
for mapping between other related substrings, e.g. string pairs like ch-g and ij-y.

On the algorithm side, the changes are not complicated. Where, in Viterbi, a loop was needed
along all the states on the previous position, Vitershtein needs to loop over all incoming network
links. In the current application, the number of multi-position transitions tends to be low, so that
the speed of the algorithm is not noticeably reduced.

With the complete Vitershtein, even variants like HARDERDREDER will now yield a relatively
low edit distance:

• S0 [0] - H - S1 [0] - A - S2 [0] - R - S3 [0] - D - S4 [0] - E - S5 [0] - R - S6 [0] - D - S4 [0.001]15

- RE - S6 [1.001]16 - D - S4 [1.002] - E - S5 [1.002] - R - S6 [1.002]

Our final tweet-inspired editing operation is not merged into the Vitershtein algorithm. We have
observed that sometimes words are abbreviated by leaving out all vowels. Therefore, if one of the
strings contains no vowels, we calculate two edit distances, namely a normal one and one in which
all vowels are removed from the second string as well, and we use the lowest distance.

14. This is of course only possible once we are using variable cost instead of the default 1 point.
15. Cost of 0.001 for the jump back.
16. Cost of 1 for the transposition, which is lower both than 1 for the insertion of R plus 1 for the deletion of R and

0.7 for substitution of E by R plus 0.7 for substitution of R by E.
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5. Automatic Selection of the Most Likely Normal Form

For each word form type, we want our system to find the most frequent form in its variant group.
Such a form is expected to be similarly spelled, as it should be in the same variant group, and to be
more frequent in the contexts that the original type occurs in. We can therefore go about finding the
target variant by having the system examine each occurrence of the original type in the corpus.17

For each occurrence, the system can then determine which other similarly spelled word forms are
used more frequently in the same context.18 Next the system has to choose which form is the best
alternative overall by considering the suggestions in all occurrences. Especially when the type under
examination is a more extreme variant of the normal form, this best alternative may itself also have
received a better alternative, in which case this choice is chained. Finally, the system has to check
if there are enough occurrences where an alternative is suggested. If not, the original word form is
suggested as its own normal form.

5.1 Locally better alternatives

So, first, for each occurrence of a word form type, we want to determine whether there is an alter-
native “better” spelling variant in the current context. This means finding tokens which a) can be
deemed spelling variants of the current token and b) are used more frequently in the current context
than the token now present in that context.

For a), we compare the edit distance estimated with the Vitershtein algorithm (Section 4) with
a threshold, currently set at one edit cost point for every five characters beyond the first in the
suggested alternative.

For b), we first need to decide what we want to use as context. For the work described here, we
used a simple window of two tokens left and right of the focus token, which is already quite large
in relation to what is usual in other tasks, such as spelling correction, although extension of the
window is already being looked into (e.g. Stehouwer and Van Zaanen 2010), and which generally
also suffices in tagging. However, considering the size of the corpus we are using and our (currently)
available computational resources, we could not afford to use the actual 5-grams. Instead, for each
token, we used all three trigrams it participates in19 and compare the frequencies of these trigrams
with those of the trigrams we get when replacing the focus token with the suggested alternative.
E.g. in the tweet was echt leuuk om weer te zingen in den haag (‘was really nice to sing again in
The Hague’), the token leuuk participates in the trigrams was echt leuuk, echt leuuk om and leuuk
om weer. These trigrams are observed 828, 35 and 3 times respectively. For the desired alternative,
leuk (‘nice’), the trigrams was echt leuk, echt leuk om and leuk om weer occur 77871, 22956 and
8387 times in our corpus respectively. In this case, all three frequencies are higher and we can
definitely say that leuk is a better variant. Since even trigrams will be relatively sparse, we do not
demand all three frequencies to be higher, but only two of the three. However, these two frequencies
both have to be higher by a factor of at least 2. Note that, in this example, this leniency of not
demanding three higher frequencies leads to the additional wrong suggestion lukken (‘succeed’),
with trigram frequencies of 0, 108 and 49. For the next processing step (see Section 5.2), we also
calculate the relative usage frequencies for the three context positions, in this case 77871/828=94.05,
22956/35=655.89 and 8387/3=2795.67. The median value, here 655.89, we deem the most indicative
of the form’s desirability as an alternative and is used as described below (under the name median
relative frequency, Section 5.2).

17. However, we limit this examination to 100,000 instances, so that for 2,868 very frequent types a random sample
of occurrences was used instead of the full set.

18. In this, we follow much the same strategy as is used in some systems designed for spelling correction for Dutch,
such as Valkuil (http://valkuil.net; van den Bosch (personal communication)) and TICCL (Reynaert 2005).

19. Including trigrams which extend beyond the start or end of the tweet, in which case the trigram was padded with
tokens consisting of a hash character.
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For reasons of efficiency, steps a) and b) are executed in reverse order: better forms are suggested
on the basis of context frequencies and these forms are then checked for edit distance.

5.2 Globally better alternatives

We now need to choose the best variant when considering all occurrences together. This in fact
needs two decisions. The system not only needs to choose the best of all suggested variants, but
also whether this best variant should be preferred to the original form. For both decisions, we might
consider taking into account many features. We are currently using the following: the number of
occurrences in the corpus, the number of different contexts (here one token left and right), the
number of occurrences for which no better alternative was suggested, the number of occurrences for
which the best alternative was suggested, the quotient of the latter two, the number of contexts for
which no better alternative was suggested, the number of contexts for which the best alternative was
suggested, the quotient of the latter two, the edit distance, the average over all occurrences where
the best alternative was suggested of the median relative frequency (see above, Section 5.1), and the
highest value for the median relative frequency over these occurrences.

We have experimented with several manually designed formulae to combine these features in
order to decide whether to keep the original form as normal form or to choose the best alternative.
However, as the interaction of the features proved rather complex, we decided to use a machine
learner in the experiment at hand. We chose WPDV (van Halteren 2000) as this will automatically
also take into account all combinations of features. A disadvantage of WPDV is that it can only
handle nominal values, so that we had to discretize the values. For every feature, we mapped the
continuous value to one of seven nominal values in such a way that the number of cases for each
of the seven nominal values is approximately the same. We then took a sample of all word form
types for which a choice needed to be made, attempting to include sufficient examples for all feature
values. We annotated the resulting sample of 581 cases by hand and trained the hyperparameters
by hill-climbing (cf. van Halteren 2000). The final classifier reached an accuracy of about 86% when
applied in leave-one-out mode on the training set.

If the best variant selected is different from the original type, we apply one more operation. If
the selected variant has also been assigned a better alternative variant, we use the latter variant
instead. This chaining process is repeated until no more changes are made. For example, the form
gaaaaaaaaaa is first mapped to gaaaaa, but then chained to gaaa, gaa and finally ga (‘go’).

6. Evaluation

We evaluated system behaviour for only five of our seven word form type classes. We did not
evaluate straattaal as there is not really a consensus spelling and we are too unfamiliar with the
subtleties in meaning to be able to judge a) when two types are variants of each other or not, and
b) whether a straattaal word maps sensibly to a similarly spelled traditional Dutch word. We also
did not evaluate foreign words, as our current algorithm is targeted at Dutch only. For the other
five classes, we now list the results.

6.1 Standard forms

We start our evaluation with the standard forms. Here, we distinguish

• The form found in the tweets can itself function as the normal form.20 The system suggests
the same.

20. Remember that we are working with form types, and that this sentence should not be interpreted as meaning
that the form should be given this normal form in a specific context, but is the normal form which is to be used
most often.
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Table 5: Evaluation of the system’s single best normal form suggestion for standard forms. The string left

of the slash indicates the authors’ opinion and the one to the right of the slash the system output.

SELF means that the form as used in the tweets is itself the normal form; ALT that another form

is the normal form. In case of another form, the system may agree (ALT+) or disagree (ALT-) as

to which alternative form is the best normal form.

Frequency band SELF/SELF ALT/ALT+ SELF/ALT ALT/SELF ALT/ALT- Total

> 1/1,000 135 2 - - - 137
> 1/10,000 594 14 22 10 4 644

> 1/100,000 728 58 24 10 4 824
> 1/1,000,000 603 101 27 13 4 748

> 1/10,000,000 434 139 18 58 11 660

Total 2,494 314 91 91 23 3,013

• There is a better alternative spelling to be used as normal form. The system suggests the same
alternative.

• The form found in the tweets can itself function as the normal form. The system suggests an
alternative form.

• There is a better alternative spelling to be used as normal form. The system suggests using
the form present in the tweets.

• There is a better alternative spelling to be used as normal form. The system suggests another
alternative form.

The numbers for each evaluation class in each frequency band are shown in Table 5. Since
the normal form is by definition the most frequent form in each variant group, it can be expected
that the more frequent forms have a higher probability of being normal forms. This also becomes
visible in the table, where we see that the percentage of forms that need alternatives increases as
the frequency decreases. However, most of the types already turn out to be normal forms and the
number of types needing alternatives is far lower than one might expect after experiencing Twitter
text. Looking at agreement in general, we see an accuracy of about 93%, which remains practically
stable in the three center frequency bands and only drops (to about 87%) in the last band.

If we inspect the incorrect suggestions in more detail, we see a number of ways in which the
algorithm can err. When it incorrectly suggests alternatives, we see that it overmaps to different
variant groups. Often, the overmapping jump is small, e.g. grot-grote (‘cave’-‘big’) or comma-coma.
However, we also see quite large differences, especially where there is semantic similarity and one
form is markedly less frequent, such as in honkbalwedstrijd-voetbalwedstrijd (‘baseball match’ - ‘soccer
match’, soccer being much more popular than baseball in the Netherlands). In two cases, the system
at first stays close to the correct meaning, but then goes astray in the suggestion chaining: mama-
ma-man and pps-ps-pas (‘postscript’-‘recently’). A quite common error (13 cases) is the confusion
of verb forms. This can be between present and past tense (werkte-werkt (‘worked’ - ‘works’);
tweette-tweet (‘tweeted’ - ‘tweets’)), participle and infinitive (genoten-genieten (‘enjoyed’ - ‘enjoy’);
rennend-rennen (‘running’ - ‘run’)), but often also demonstrates the inability of many Dutch people
to properly choose between d, t and dt in the formation of past participles and present tense (gebeurd-
gebeurt (‘happened’ - ‘happens’); verandert-veranderd (‘changes’ - ‘changed’); vindt-vind (‘finds’ -
‘find’); wordt-word (‘becomes’ - ‘become’)). We hypothesize that there must be relatively many
incorrectly spelled forms in the corpus, especially for the latter two examples. If there were not,
there are far too many correct examples and the system should be unable to learn the incorrect
mappings.
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Table 6: Evaluation of the system’s single best normal form suggestion for jargon forms. The string left of

the slash indicates the authors’ opinion and the one to the right of the slash the system output.

SELF means that the form as used in the tweets is itself the normal form; given the nature of

jargon, we ourselves marked all forms as SELF (see text). The system may also suggest another

form. In such cases we may judge this suggestion as acceptable (ALT+) or not (ALT-).

Frequency band SELF/SELF SELF/ALT+ SELF/ALT- Total

> 1/1,000 3 1 - 4
> 1/10,000 9 3 - 12

> 1/100,000 16 9 3 28
> 1/1,000,000 11 3 5 19

> 1/10,000,000 5 1 1 7

Total 44 17 9 70

When the system does not manage to find the alternative form selected by us, we see that it
cannot identify a present link and therefore undermaps. This can be surprising, e.g. when the system
is unable to connect the non-existing form erq to the expected alternative erg (‘very’), but sometimes
also understandable, e.g. when it does not link mechien to misschien (‘maybe’). Here too, we see
various special classes. Above, we already mentioned that for some forms, different spelling variants
occur in near equal frequencies; it should not come as a surprise that some of these will then lead
the system to come up with erroneous suggestions, e.g. papagaaien instead of papegaaien (‘parrots’)
or nopes instead of noppes (‘nothing’). Similarly, many reduced forms are not corrected to their full
form, such as goeie to goede (‘good’), tuurlijk to natuurlijk (‘of course’) or ’m to hem (‘him’). For
dialectal forms, e.g. not linking woar-waar (‘where’) or skoon-schoon (‘clean’, ‘pretty’), it may be
that the link is not made because the context is often also in dialectal spelling. The final class of
errors, suggesting alternative forms other than the alternative we selected, is most often caused by
following links that appear to be more likely than the needed ones. The form scheiten, for example,
should be corrected to schijten (‘poop’), with the other (and here correct) spelling for the same
sound. However, the system prefers schieten (‘shoot’), which is reached by transposition of the e
and the i. Apparently the two words occur often enough in similar contexts that the mistake can
be made. Even more surprising given the context restrictions is hbet. Here, there is a transposition
and the system should suggest hebt (‘have’). However, deleting the h and inserting the n yields the
also very frequent form bent (‘are’) which the system prefers.

6.2 Jargon

One would assume that Twitter jargon forms can in all cases be used as their own normal form.
The system, however, suggests alternatives for 26 out of 70 forms (Table 6). On inspection, 17 of
these are not really wrong. Most often, the jargon has been formed by removing vowels from the
original word and the system manages to reconstruct the original. Examples are mn-mijn (‘my’),
gwn-gewoon (‘just’) and lkkr-lekker (‘good’). Special cases are tg-toch (‘after all’), where the system
does not only reinsert the vowels, but also corrects the spelling of the final consonant, and vnv-
vanaaf (‘this evening’), where the system suggests another jargon form for the correct sense instead
of the full word vanavond. If we count all these cases as correct, we arrive at an accuracy of about
87% for Twitter jargon. In the remaining, fully erroneous cases, the system is overmapping, from
mildly (pww-pw (proefwerk = ‘exam’ - proefwerkweek = ‘exam week’), wss-was (waarschijnlijk =
‘probably’ - ‘was’)) to wildly (hdd-tijd (‘hard disk’ - ‘time’); ft-heeft (‘ft’ - ‘has’)). A partial match is
zh-huis, where zh is jargon for ziekenhuis (‘hospital’). Also interesting is rrt-rt (‘reretweet’-‘retweet’),
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Table 7: Evaluation of the system’s single best normal form suggestion for names. The header for every

class indicates the way in which the system agrees or disagrees with the authors (see text).

Frequency band Agreement Same name Other name Not a name Total

> 1/1,000 - - - - -
> 1/10,000 11 - - - 11

> 1/100,000 68 1 - 4 73
> 1/1,000,000 119 - 3 3 125

> 1/10,000,000 173 10 6 3 192

Total 371 11 9 10 401

Table 8: Evaluation of the system’s single best normal form suggestion for interjections. The header for

every class indicates the way in which the system agrees or disagrees with the authors (see text).

Frequency band Same cluster Other interjection Not an interjection Total

> 1/1,000 9 - - 9
> 1/10,000 39 5 - 44

> 1/100,000 37 11 2 50
> 1/1,000,000 39 9 2 50

> 1/10,000,000 35 15 4 54

Total 159 40 8 207

as something similar happens for the full verb retweeten (‘retweet’), for which the system suggests
tweeten (‘tweet’).

6.3 Names

For proper names, there is always a single official spelling. However, it is very often impossible to
know this correct spelling without actually knowing the people (or other referred entities) in question.
Given the nature of the text material in question, we are unable to identify these referred entities
and therefore to evaluate reliably. As an alternative, we distinguish between a) the form suggested
by the system and the form encountered are the same, b) the form suggested is a clear variant of
the same name, c) the form suggested is clearly another name and d) the form suggested is not even
a name. The resulting counts are shown in Table 7. If we count the first two columns as correct,
the system’s accuracy is about 95%. The system proves to be reluctant to suggest alternatives for
names. In 11 of only 30 cases where the system does suggest an alternative to the encountered
form, another spelling of the same name is suggested, e.g. zarah-sarah or voss-vos. A further 9
suggestions concern recognizably different names, e.g. thies-dennis and tomtom-tom. For the 10
suggestions, a non-name is suggested, e.g. hov-of (‘or’) and stan-staan (‘stand’). For the six names
where we decided to suggest a better alternative, the system was able to follow us for four of them
(bredaa-breda, sneeek-sneek, turkijeee-turkije, jaxxie-jaxie). Zitterd (dialect form for the place name
Sittard) and coronas (without the apostrophe before the s) were not linked to their officially spelled
form.

6.4 Interjections

With interjections, one should rather evaluate the normal form in terms of the expressed emotion.
Although this is clearly an interesting topic for a future study, we will here not attempt to identify
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Table 9: Evaluation of the system’s single best normal form suggestion for forms with tokenization problems.

The string left of the slash indicates the authors’ opinion and the one to the right of the slash the

system output. SELF means that the form as used in the tweets is itself the normal form; ALT

that that another form is the normal form. In case of another form, the system may agree (ALT+)

or disagree (ALT-) as to which alternative form is the best normal form.

Frequency band SELF/SELF ALT/ALT+ SELF/ALT ALT/SELF ALT/ALT- Total

> 1/1,000 - - - - - -
> 1/10,000 7 1 - - - 8

> 1/100,000 20 2 1 1 - 24
> 1/1,000,000 21 3 - 2 - 26

> 1/10,000,000 27 7 3 5 - 42

Total 75 13 4 8 - 100

the emotion expressed, but merely distinguish between a) an interjection clearly falling in the same
variant group, b) another interjection, and c) non-interjection. The resulting counts are shown
in Table 8. With an accuracy of only about 77%, the performance of the system appears to be
disappointing. However, 24 of the 48 errors are mismappings of forms of ah, aha, whaha and wuhaha
to haha, 18 of which because of suggestion chaining. Once proper decisions have been made as
to what clusters are desired for interjections, it is likely that the more frequent clusters (including
most of the ones involved here) will be handled by regular expressions rather than machine-learned
variation and such errors will no longer occur.

6.5 Forms with tokenization problems

The final class is the group with tokenization problems. In principle, one would expect that context
would have to be handled in a different way for these forms. However, as most of the forms in
question are clitics, the system can still process them quite adequately, with an accuracy of 88%
(Table 9). In three of the four cases where the system incorrectly suggests an alternative, the
suggested form is actually one of the two tokens that were merged together: endan-dan (‘and then’
- ‘then’), geeneen-geen (‘no one’ - ‘none’) and liefhe-lief (‘sweet, no’ - ‘sweet’). The final incorrectly
suggested alternative and the 8 missed suggestions for alternatives are much like the errors that are
made for the standard forms, where the system is unable to link to a mapped form (8 cases) or heads
in the wrong direction (1 case).

7. Discussion and Future Work

In our experiment, we have tested whether our estimations of edit distance and of contextual sim-
ilarity can be used to identify normal forms for word form types out of context. For most classes
of form types, accuracies were around 90%, which is encouraging but also shows that improvements
are still needed. However, our experiment has also led us to identify already quite a number of
improvements which can be applied.

Our Vitershtein algorithm is working adequately in principle, but several aspects need to be
tuned. For some, tuning was already intended. For example, the transition costs should be patterned
on actually observed variation rather than on our initial intuitions. This may have to be done in
an iterative learning process, each time learning variation patterns on the basis of variant groups
formed on the basis of the costs in the previous cycle. We also want to experiment with transition
costs that are differentiated as to the position in the respective strings. An example is the low cost
of n-deletion, which should probably be limited to the end of the string (or the end of parts of
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compounds). We have also observed several recurring variation patterns which have so far not been
included in the algorithm, such as the ending -uh replacing -en. Finally, once the algorithm behaves
well on alphabetic strings, we will extend it also to alphanumeric spellings like w8 (wacht = ‘wait’).

The context window of two tokens left and right also appears to be sufficient as most cases are
handled appropriately, but there are clearly cases of overmapping where more (or more intelligent)
context is needed. Also, in future work, we will have to identify normal forms in context, which
means the context in a single tweet. For that task, we will need to re-experiment. After starting with
the same window as used in this paper, we may investigate increasing the size of the window when
the immediate context is insufficiently disambiguating or even including all words in the tweet (as a
bag of words) if we have to choose between two normal forms of the same word class where the choice
can be made on the basis of the forms’ meaning. In cases where it is hard to choose between forms
of different word classes, we might investigate the possibility of (at least local) syntactic analysis.

A point requiring special attention with regard to context is the tokenization. Our algorithms
only work properly for genuinely separate words and for many clitics. In other cases where words
run together or are incorrectly separated, both variant group identification and context similarity
estimation become problematic. Some kind of retokenization step seems appropriate (cf. van Hal-
teren and Rem (submitted)), but we will need to investigate if this step is best inserted before or
after the suggestion of normal forms for the tokens, or if the two processes are best interleaved.

All in all, our first step on this new path was encouraging. We have seen that (a type of) normal
form can be identified in most cases, and we have identified several improvements to the estimations
described in this paper which will make the process even more effective. Our primary conclusion
is therefore that, after applying the improvements, these estimations will be a valuable aid in our
further progress along the road on which we set out.
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