
Computational Linguistics in the Netherlands Journal 11 (2021) 35-58 Submitted 10/2021; Published 12/2021

A Logic-Based Framework for
Natural Language Inference in Dutch

Lasha Abzianidze l.abzianidze@uu.nl
Konstantinos Kogkalidis k.kogkalidis@uu.nl

UiL OTS, Utrecht University, Utrecht, the Netherlands

Abstract
We present a framework for deriving inference relations between Dutch sentence pairs. The

proposed framework relies on logic-based reasoning to produce inspectable proofs leading up to
inference labels; its judgements are therefore transparent and formally verifiable. At its core, the
system is powered by two λ-calculi, used as syntactic and semantic theories, respectively. Sentences
are first converted to syntactic proofs and terms of the linear λ-calculus using a choice of two
parsers: an Alpino-based pipeline, or Neural Proof Nets. The syntactic terms are then converted
to semantic terms of the simply typed λ-calculus, via a set of hand designed type- and term-
level transformations. Pairs of semantic terms are then fed to an automated theorem prover for
natural logic which reasons with them while using the lexical relations found in the Open Dutch
WordNet. We evaluate the reasoning pipeline on the recently created Dutch natural language
inference dataset, and achieve promising results, remaining only within a 1.1–3.2% performance
margin to strong neural baselines. To the best of our knowledge, the reasoning pipeline is the first
logic-based system for Dutch. The code is available at git.io/JzdGd.

1. Introduction

Among the many Natural Language Understanding tasks, Natural Language Inference (NLI) is of
particular interest. An NLI task can be broadly summarised as follows: given two natural language
utterances, a premise and a hypothesis, decide whether the former entails, contradicts, or is neutral
with respect to the latter. An NLI system requires the capacity for manipulating syntactic structure
as well as lexical meaning, necessitating a holistic approach to yield meaningful results.

In recent years, the advent of neural models has set new benchmarks for NLI tasks, with general-
purpose language models based on the pre-train and fine-tune paradigm claiming the lion’s share
in the literature. Despite their indisputable performance, such models suffer from a variety of
downsides, opaqueness and unpredictability being the most striking (Sanchez et al. 2018, Glockner
et al. 2018, McCoy et al. 2019). In practical terms, a neural system might achieve high accuracy
scores, but provides limited insight on how it arrived at a decision, thus prohibiting manual ver-
ification of the inference process and its outcome. At the same time, the high expressiveness of
modern neural architectures makes them prone to detect and capitalise on subtle statistical pat-
terns and annotation artifacts common in popular NLI datasets (Gururangan et al. 2018, Poliak
et al. 2018, Tsuchiya 2018), artificially inflating their performance within the evaluation domain,
but failing to generalise on out-of-distribution inputs. These issues are further pronounced in use
cases where reliability, robustness, and interpretability are of major importance.

In stark contrast to neural models, logic-based methods for NLI boast transparency, reliability
and formal rigor, often at the cost of a drop in performance. Logic-based systems offer not just
a prediction, but rather the full explanation behind it, allowing a deep inspection of their inner
workings that extends beyond mere quantitative comparisons. They are also much more reliable in
their non-neutral (i.e. entailment or contradiction) predictions than neural NLI systems. Witness
to this is the fact that disagreements between a logic-based model and a dataset’s ground truth
annotations are often due to noise or errors in the latter.

©2021 Lasha Abzianidze, Konstantinos Kogkalidis.

git.io/JzdGd

In this work, we utilise the SICK dataset (Marelli et al. 2014b) in its recent Dutch transla-
tion (Wijnholds and Moortgat 2021) as an experimental testbed for the first cross-lingual application
of LangPro (Abzianidze 2017), a Natural Tableau-based theorem prover. Our inputs to the prover
are semantic expressions in higher-order logic based on simple type theory. To obtain semantic ex-
pressions, we transform typelogical grammar derivations procured from two wide-coverage parsers:
a pipeline based on Alpino (Bouma et al. 2001), and Neural Proof Nets (Kogkalidis et al. 2020a).
Following careful tuning, the prover employs the above expressions, in combination with the lexical
semantic relations found in the Open Dutch WordNet database (Postma et al. 2016), to generate
logical inferences for the dataset, achieving a final accuracy of about 79%.

The structure of the paper is as follows. In §2 we initiate the unfamiliar reader to the formal
systems we are utilising, namely typelogical grammars, λ-calculi and natural tableaux. In §3 we
move to a more practical territory, describing the tools and processes we use and detailing each of
our framework’s components. We then describe our experiments and expose our results on SICK-
NL in §4, and make our assessments based on extensive qualitative error analysis in §5. We draw
comparisons to related work in §6. The last section is reserved for some conclusive remarks and
suggestions for future directions.

2. Background

In this section, we provide a brief expository note to the formal systems we employ at each step of
our inference pipeline.

We begin by detailing our syntactic framework of choice in §2.1. Motivated by the need for a
transparent syntax-semantics interface, we employ a semantically-geared typelogical grammar (Morrill
2012, Moot and Retoré 2012). Typelogical grammars are rooted in the logical tradition of formal lin-
guistics. One of their biggest appeals is their affinity to semantic expressions due to the propositions-
as-types interpretation that equates proofs with programs and propositions with functional types.
As such, they make for an ideal candidate in the application envisaged here.

We then describe the logic used for linguistic semantics in §2.2. The use of formal logic to
model natural language inference is common practice in formal semantics. The usual suspect is
first-order predicate logic, due to its well-behavedness, on the one hand, and the wide accessibility
of out-of-the-box automated theorem provers and model builders, on the other (Blackburn and
Bos 2005, Blackburn et al. 2001). Despite its attractiveness at a first glimpse, capturing meaning
with first-order logic formulas can be notoriously difficult (common pain points include, among
others, the representation of phenomena involving subsective adjectives and generalised quantifiers).
We therefore opt for a higher-order logic in the form of a simply-typed λ-calculus. Aside from its
expressive power, it boasts a clear syntax that resembles linguistic expressions; as such, its terms
are easy to obtain from parse structures.

We conclude the section by describing the procedure of reasoning with natural language sentences
in §2.3. Our inferential engine is powered by Natural Tableau (Muskens 2010, Abzianidze 2016), as
inspired by the Natural Logic project (van Benthem 2008, Moss 2010), a study of reasoning with
meaning representations close to natural language, and the semantic tableau method, one of the
most popular proof procedures for formal logics (D’Agostino et al. 1999).

2.1 Syntax

Typelogical grammars use a lexicon to assign types to words and model parse structures as logical
proofs built with the aid of a small set of inference rules. Our typelogical grammar’s logical back-
bone is the implication-only fragment of Intuitionistic Linear Logic (Wadler 1993). Its types T are
inductively defined as a set closed under a single binary operator, i.e. they form a magma (A,⊸),
where:

• A ⊂ T a finite set of basic or atomic types

36

• ⊸ the linear implication (or lollipop), an operator such that τ1, τ2 ∈ T ⇐⇒ τ1 ⊸ τ2 ∈ T

A type of the form τ1 ⊸ τ2 (shorthand: τ1(τ2)) is called complex, and is used to denote a linear
transformation that will consume an argument of type τ1 to produce a result of type τ2. In the
linguistic setup, words that can stand on their own are assigned atomic types, whereas words re-
quiring complements are assigned complex types; a simplified but representative lexicon is depicted
in Table 1.

ganzen, eenden, bessen :: np je, me :: pron

zwemmen :: np(s) gaf :: pron(np(pron(s)))

eten :: np(np(s)) die :: (pron(s))(np(np))

rode, blauwe :: np(np) en :: ∀α : α(α(α))

Table 1: A toy lexicon of simple linear types.

In its simplest form, the type logic provides three rules of inference, through which complex
expressions can be built from simple ones. Owing to the remarkable equivalence between logics and
λ-calculi known as the Curry-Howard correspondence (Sørensen and Urzyczyn 2006), each logical
rule has an analogue in the term language of the linear λ-calculus:

Γ ⊢ sτ1(τ2) ∆ ⊢ tτ1

Γ,∆ ⊢ (s t)τ2
⊸ E

xτ ⊢ xτ
Ax

Γ, xτ1 ⊢ sτ2

Γ ⊢ (λx.s)τ1(τ2)
⊸ I

The implication elimination rule (⊸ E) posits that, given the derivability of an expression s
of type τ1(τ2) from some context Γ and the derivability of an expression t of type τ1 from some
context ∆, from the two contexts together we can derive the term s t of type τ2, corresponding to
the application of s to t. Together with our toy lexicon, this rule already suffices to derive terms for
a few simple sentences:

(1) a. eenden zwemmen
(zwemmennp(s) eendennp)

s

b. eenden eten rode bessen(
etennp(np(s))

(
rodenp(np) bessennp

)np
eendennp

)s
c. je gaf me bessen(

gafpron(np(pron(s))) mepron bessennp jepron
)s

The next two rules are a crucial component of the type logic, giving us access to hypothetical
reasoning, a tool required for the derivation of higher-order syntactic phenomena. The identity
axiom (Ax) allows us to instantiate a fresh named variable x of some type τ . Finally, if given a
context Γ and a variable x of type τ1 we can derive a term s of type τ2, the implication introduction
rule (⊸ I) allows us to build a function λx.s of type τ1(τ2) from context Γ alone. With the addition
of the above rules, we can now derive terms for more complicated sentences:

(2) bessen die je me gaf(
die(np(s))(np(np))

(
λx.

(
gafpron(np(pron(s))) mepron xnp jepron

)s)np(s)
bessennp

)np

The last item in our syntactic toolshed is a hint of type polymorphism, a telling example being
the type ∀α : α(α(α)) assigned to coordinators, where α is a variable ranging over types. The above
recipe gives us the means to derive conjunctions of different syntactic categories in a uniform way:

(3) a. ganzen en eenden
(enα(α(α)) ganzennp eendennp)

np

37

b. eenden eten rode en ganzen blauwe bessen(
enα(α(α))

(
λxy.

(
xnp(np(s)) (rodenp(np) ynp) eendennp

)s)(np(np(s))(np(s))
(
λzw.

(
znp(np(s)) (blauwenp(np) wnp) ganzennp

)s)(np(np(s))(np(s))
etennp(np(s)) bessennp

)s

where in Example (3-a) we set α := np for a simple noun phrase conjunction, whereas in (3-b) we set
α := (np(np(s))(np(s)) for a conjunction of sentences sharing their phrasal head, but also the head
of the object noun phrase. This last example is indicative of the treatment of elliptical constructions
in a linear regime.

2.2 Semantics

The semantic logic we opt for is a higher-order simple predicate logic corresponding to the implication-
only fragment of Intuitionistic Logic, or, in Curry-Howard terms, the simply typed λ-calculus. It is
a close replica of our syntactic logic, modulo implication no longer being linear: complex types are
now the type signatures of ordinary functions. In practical terms, the type forming operator is now
an arrow → rather than the lollipop ⊸, and a single rule of inference is added to our vocabulary:

Γ, xτ11 , xτ12 ⊢ sτ2

Γ, xτ1 ⊢ s[x/x1, x/x2]
τ2 Contraction

It suggests that if from some context Γ together with two distinct variables x1, x2 of the same type τ1
we can derive a term s of type τ2, then we can do the same with just a single instance of x, provided
we replace all occurrences of x1 and x2 in s with x. The effect of a non-linear semantic logic is that
our semantic terms may now contain more than a single occurrence of terms appearing just once in
the corresponding syntactic term, essentially permitting duplication of words when necessary (the
utility of this will become evident in Example (5-e) later on).

Just like syntactic terms, semantic terms (otherwise called Lambda Logical Forms, or LLFs) are
built up from variables and constant lexical items. LLFs are typed using a small set of atoms: np,
n, pp, pr, and sx, corresponding to noun phrase, common noun, prepositional phrase, particle, and
sentence respectively.1 A few sample LLFs are depicted in Example (4); to distinguish between
syntactic and semantic expressions, we format lexical terms of the latter as boldface. For types we
use the abbreviation vp := np(s).

(4) a. A woman who loves John is very happy
an(vp(s)) (whovp(n(n)) (love(np(vp)) johnnp)womann) (bevpadj(vpdcl) (veryvpadj(vpadj)happyvpadj))

b. Every man loves a woman
everyn(vp(s)) mann (λx. an(vp(s)) womann (lovenp(vp) xnp)) Object narrow scope

an(vp(s)) womann (λy. everyn(vp(s)) mann (λx. lovenp(vp) xnp ynp)) Object wide scope

2.3 Reasoning with Natural Tableau

Natural Tableau is a signed tableau method specifically designed for a version of Natural Logic. Its
core component is a set of inference rules, called tableau rules. During the reasoning process, these
rules gradually break down the input logical forms, and different facets of the meaning are fleshed
out. To avoid overloaded LLFs, we will omit types of lexical terms when appearing in tableau proofs.

1. In addition to the predicative adjectives feature (adj), a sentential clause category can be subcategorised as
declarative (dcl), active past participial (pt), passive past participial (pss), present participial (ng), or a question
(e.g. q or wh). These sentence category features are inspired by the Combinatory Categorial Grammar (CCG)
treebank (Hockenmaier and Steedman 2007). Note that the category feature adj in CCG serves to prevent certain
ungrammatical declarative sentences, e.g. “John happy” and “John very love a woman”.

38

×⊑

A : [c̄] : T
B : [c̄] : F

×
A infers B

λ¡

λx.A : [b, c̄] : X

A[x := b] : [c̄] : X

∃F

Q A B : [] : F

A : [c] : F B : [c] : F

c is existing, Q ∈ {a, some,. . . }

∃T

Q A B : [] : T

A : [c] : T
B : [c] : T

Q ∈ {a, some,. . . }
c is a fresh constant

a>

A b : [c̄] : X

A : [b, c̄] : X

aux

AB : [c̄] : X

B : [c̄] : X

A is auxiliary

adj⊂T

AB : [c̄] : T

B : [c̄] : T

A is subsective

pss

bynp(vppss)(vpdcl)bnp V cnp : [] : X

V np(vp) : [c, b] : X

V with a new type is introduced

Figure 1: The (tableau) inference rules that are employed in the tableau proof of Figure 2. Each
inference rule has its name and optional constraints that are explicitly stated below the rule. c̄
denotes a (possibly empty) list of terms. X is a variable over the truth signs T and F.

Figure 1 shows some of the tableau rules. Each rule has antecedent and consequent entries, where a
tableau entry is a triplet of a λ-term, its (possibly empty) list of arguments, and a truth sign. For
example, A : [c̄] : T means that when A is applied to its arguments (respecting the argument order),
the resulting term is rendered as true. Consequent entries of a rule are usually shorter than the
antecedent ones, which decomposes initial terms into smaller pieces. One special type of rule is a
closure rule, e.g. (×⊑). The rule spots inconsistencies (like an entity being A and not B, but at the
same time A being more specific than B) and triggers the termination of the search. The best way
to understand the rules and see how they work in tandem is to consider an actual tableau proof.

We illustrate a tableau proof in the style of Natural Tableau in Figure 2.2 The tree-style proof
is built to refute that the premise “a harmonica is played by a young boy” entails the hypothesis “a
person sounds a musical instrument”. If the refutation fails, this serves as a proof for the entailment
relation. The refutation is carried out by searching for a counterexample for the entailment relation,
i.e. building a situation that makes the premise true and the hypothesis false. The tableau starts
with this exact requirement: the LLFs of the premise and the hypothesis are set to be true and false
in nodes 1 and 2 , respectively. The rest of the tableau is built by decomposing the semantics of
the initial entries with the help of the inference rules. For example, (∃T) applies to 1 and produces
3 and 4 . The latter produces 5 via (λ¡), and so forth. In the end, 1 is decomposed as there
are b “boy” (11) and h “harmonica” (3), and b “plays” h (10). This information is inconsistent
with the semantics of 2 , and it is expressed in terms of three closed branches closed due to the
following inconsistencies: b not being “person” (12), h not being “musical instrument” (15), and
b not “sounding” h (17). A tableau with its all branches closed means that the refutation failed,
i.e. it was impossible to find a counterexample for the entailment relation. Therefore, the premise
entails the hypothesis; Q.E.D.

2. The example is in English as Natural Tableau and its computational implementation, the LangPro theorem prover,
were originally developed for reasoning with English sentences. Also following the LLF format in LangPro, lexical
terms are represented as lemmas. Additional information about types and part-of-speech (pos) tags of the lexical
terms are omitted for the sake of simplicity.

39

1 a harmonica (λy. a (young boy) (λx. by x (be play) y)) : [] : T
2 a person (λx. a (musical instrument) (λy. sound y x)) : [] : F

3 harmonica : [h] : T
4 λy. a (young boy) (λx. by x (be play) y) : [h] : T

5 a (young boy) (λx. by x (be play) h) : [] : T

6 young boy : [b] : T
7 λx. by x (be play) h : [b] : T

8 by b (be play) h : [] : T

9 be play : [h, b] : T

10 play : [h, b] : T

11 boy : [b] : T

12 person : [b] : F

×

13 λx. a (musical instrument) (λy. sound y x) : [b] : F

14 a (musical instrument) (λy. sound y b) : [] : F

15 musical instrument : [h] : F

×

16 λy. sound y b : [h] : F

17 sound : [h, b] : F

×

∃T[1]

λ¡[4]

∃T[5]

λ¡[7]

pss[8]

aux[9]

adj⊂T [6]

×⊑[11,12] λ¡[13]

×⊑[3,15] λ¡,a>,a>[16]

×⊑[10,17]

∃F[10,j]

∃F[14,h]

Figure 2: The closed tableau proves that the premise “a harmonica is played by a young boy” entails
the hypothesis “a person sounds a musical instrument”.

The Natural Tableau method can also be used to learn from data via abductive reasoning –
inference to the best explanation. For example, let’s assume that “musical instrument” is replaced
with “French harp” in the hypothesis of the example in Figure 2. The proof for entailment would
fail in case there is no knowledge available saying that a “harmonica” is a “French harp” (e.g. such
knowledge is not available in WordNet). The idea behind abductive learning is that, given the
correct/gold relation of such a problem (e.g. entailment), a tableau that attempts to prove the
relation is constructed. If the proof is not found (i.e. the tableau is not closed), then the search
starts for such knowledge that helps to close the tableau. In other words, abductive reasoning is used
to infer the knowledge that supports the correct relation. In our example, such inferred knowledge
would be “harmonica” being a sort of “French harp” (harmonica ⊑ french harp), which suffices to
find the proof for the entailment relation. This way, abductive learning helps infer new knowledge
from labeled NLI problems, which can later be used for unseen problems.

40

3. Methodology

Having introduced the formal background, we now move on to describe our implementation of the
automated theorem prover for Dutch and the computational machinery behind its components.

3.1 Parsing

We obtain syntactic λ-terms in the form described in §2.1 using two different parser pipelines: one
based on Alpino, and another on Neural Proof Nets.3

Alpino is an attested wide-coverage parser for unrestricted written Dutch, creating parse struc-
tures in the form of dependency graphs (Bouma et al. 2001, van Noord 2006). Its grammar, in
line with head-driven phrase structure grammars (Pollard and Sag 1994), consists of a set of man-
ually specified phrase formation rules and a rich lexicon providing subcategorisation frames and
dependency information. The format employed (graphs, rather than trees) provides the means to
capture reentrancy; nodes correspond to words and phrases (labeled with syntactic category tags),
and outgoing edges denote a dependency frame containing strictly one phrasal head, and zero or
more complements and adjuncts. Due to the ambiguity inherent in frame assignment and rule ap-
plication, Alpino may produce a multitude of dependency graphs for a single input sentence; these
are evaluated and scored on the basis of a log-linear disambiguation model aided by a few hand-
designed penalisation rules. We convert Alpino’s graphs to proofs of the syntactic type logic using
the type extraction algorithm of Kogkalidis et al. (2020b); the algorithm traverses the parse graph,
translating syntactic categories to atomic types and iteratively casting heads (resp. adjuncts) as
linear functions that consume their complements (resp. phrasal parents) for each phrase.

Neural Proof Nets (NPN) is a formalism-specific neuro-symbolic parser composed of three parts
(Kogkalidis et al. 2020a). First, a pretrained BERT model reads the tokenised input text and builds
contextualised vectorial representations for each token (Delobelle et al. 2020). An autoregressive
transformer stack then translates the encoded representations into a sequence of types aligned with
each input work, handling lexical type assignment and disambiguation in context (Kogkalidis et al.
2019). Finally, a permutation module based on Sinkhorn networks (Mena et al. 2018) uses the
format of multiplicative linear logic proof nets (Girard 1987) to tackle rule applications in parallel,
transforming the type sequence into a proof proper.

3.2 Obtaining Lambda Logical Forms

Despite also being λ-expressions, LLFs differ from syntactic terms not only in their intended use, but
also in their structure and types. Whereas syntactic terms capture the tectogrammatical structure
underlying the sentence in a bottom-up fashion, LLFs are used to express the sentential meaning,
and are processed top-down by the Natural Tableau inference rules. The conversion from the former
to the latter is handled by a manually-designed pipeline, generally following (Abzianidze 2015b). The
pipeline is depicted in Figure 3; it gradually simplifies syntactic expressions, homogenising parser
inconsistencies and syntactic subtleties that would otherwise be attenuated in the output LLFs.

Simplifying lexical entries The syntactic terms come with fine-grained types built up from 31
atoms. On the other hand, Natural Tableau operates on LLFs typed using the following atoms:
{n, np, sx, pp, pr} as detailed in §2.3. We translate syntactic terms into simple semantic terms using
a many-to-one map from syntactic atoms to simplified types, as depicted in Table 2. This serves two
functions: it first collates the (quite large) set of syntactic primitives to a more manageable size, but
also casts syntactic atoms that hide their semantic frames into explicit functions.

3. Both pipelines generate proofs and terms enhanced with unary type- and term-level operators that specify de-
pendency information on top of function-argument structures; we discard the dependency information while the
structure of proofs and terms remains the same. We leave utilisation of the dependency information in the context
of semantic reasoning as an open question for future work.

41

Syntactic
term

Simplified
semantic term

Fixed
semantic term

LLF

Simplifying types & pos tags
(many-to-one mapping)

Fixing analysis:
use pos tags & lemmas

Type-raising
quantified NPs

Figure 3: A procedure of obtaining LLFs from the syntactic terms of the parsers.

Syntactic Atoms (description & sign) LLF Types

Declarative sentence (verb at the 2nd position) smain sdcl
Subordinate clause (verb final) ssub ssub

Pronoun vnw np

Preposition vz pr

Numeral tw np

aan het-infinitive group ahi np(sng)

Verb ww np(sb)

Passive/perfect participle part np(spt)

te-infinitive group ti
np(sto)

om te-infinitive-group oti

Adjectival Phrase ap
np(sadj)

Adjective adj

Table 2: Mapping from typelogical atoms to LLF types.

Syntactic constants for lexical entries are translated to semantic constants that respect the trans-
lation of their type signature. Example (5-a) shows the simple semantic term resulting from casting
each of the syntactically flat atoms ti, part and ww to the function type vp := np(s).4

Fixing analyses Adjustment and correction of simple semantic terms is the most elaborate part
of the conversion procedure. Since there is no clear cut between adjustments and corrections due
to the differences in two styles of analysis motivated from top-down and bottom-up approaches, we
will not distinguish them and call it fixing. During term fixing, pos tags of the lexical entries are
used in addition to type information. Lexical terms are replaced with their lemmas (formatted in
boldface). Below we illustrate representative instances of the term fixes for Dutch syntactic terms.5

Moving a determiner in a term structure above noun modifiers is the most applied rule. The
instance of the rule application is shown in Example (5-b). Other fixing rules related to NPs are
the rules that change the type of a verb or a preposition term that takes an argument of type n.
Example (5-c) shows the changes in the types of “zijn” and “snijden” and the insertion of explicit
quantifiers for existence and plurality for the bare NPs “hout” and “mannen” respectively.

Sometimes adjectives that act like nouns are analysed as predicative adjectives of type np(sadj),
like in (sim) of (5-d). The type of such nominal adjectives are set to n and the type of related lexical
terms are changed accordingly. Example (5-d) also shows how the predicative PP “op een berg” is
changed from an adjunct phrase to a complement of the copula “zijn”.

(5) a. (nld) om te vissen gebruikt

4. The simplification step also involves mapping the Alpino-style and Universal (Petrov et al. 2012) pos tags (coming
from Alpino and spaCy, respectively, see §4.2) to the Penn Treebank-style. The latter is the tagset expected by
an existing reasoning component (see §3.3).

5. Some of these fixes are the results of combinations of the already existing fixing rules from Abzianidze (2015b)
specific to CCG derivation trees and the fixing rules specific to the structures of the Dutch syntactic terms.

42

(syn) omti(part(part)) (teww(ti) vissenww) gebruiktpart

(sim) omvp(vp(vp)) (tevp(vp) vissenvp) gebruiktvp

(fix) omvp(vp(vp)) (tevp(vp) vissenvp) gebruikenvp

b. (nld) een grote bruine hond

(sim) grotenp(np)
(
bruinenp(np) (eenn(np) hondn)

)
(fix) eenn(np) (grootn(n) (bruinn(n) hondn))

c. (nld) mannen zijn hout aan het snijden

(sim) zijnvp(n(s))
(
aan hetvp(vp)

(
snijdenn(vp) houtn

))
mannenn

(fix) zijnvp(np(s)) (aan hetvp(vp) (snijdennp(vp) (eenn(np) houtn))) (sn(np) mann)
(llf) sn(vp(s)) man (zijn (aan het (λx. eenn(vp(s)) hout (λy. snijden ynp xnp))))

d. (nld) een man in het blauw is op een berg

(sim) opnp(s(s)) (eenn(np) bergn)
(
isvp

(
innp(np(np))

(
hetvp(np) blauwvp

)
(eenn(np) mann)

))
(fix) zijnpp(vp) (opnp(pp) (eenn(np) bergn)) (eenn(np) ((innp(n(n)) (hetn(np) blauwn)) mann))

(llf)
hetn(vp(s)) blauw (λx.eenn(vp(s)) (in xnp man)

(λy. eenn(vp(s)) bergn (λz. zijn (op znp) ynp)))

e. (nld) een rode jas en kaki broek

(sim) enα(α(α))
(
λx. rodenp(np) (xn(np) jasn)

) (
λy. kakinp(np) (yn(np) broekn)

)
eenn(np)

(fix) ennp(np(np)) (eenn(np) (roodn(n) jasn)) (eenn(np) (kakin(n) broekn))

Elliptical coordination constructions are modeled with syntactic terms containing λ-abstractions,
as shown in (sim) of Example (5-e). We apply a non-linear rewriting rule to such constructions that
distributes the argument over the coordinated function terms: in the example, “een” is distributed
over “rode jas” and “kaki broek”. After the argument distribution, β-reductions are applied and the
determiners are moved at the top level of NPs, as done in Example (5-b).

Type-raising NPs The final step in the conversion is to obtain LLFs from fixed terms. This
is done by type-raising NPs with determiners/quantifiers. This procedure follows the algorithm
described in Abzianidze (2016), which is already implemented in the LangPro theorem prover.
Examples of LLFs with type-raised NPs are given for the sentences (5-c) and (5-d). All lexical terms
retain their types except the determiners; their n(np) type is replaced with n(vp(s)).

3.3 Natural Language Reasoning

Reasoning over the Dutch LLF is handled by LangPro (Abzianidze 2017), a Natural Tableau-based
automated theorem prover. The prover, in its original English implementation, uses a CCG parser
to parse and tag input sentences, and builds two tableaux (one for entailment, and one for con-
tradiction6) while using the Princeton WordNet (Miller 1995) as a lexical knowledge base (KB).
LangPro has been applied to a few NLI benchmarks, and its results rank high among logic-based
NLI systems (Abzianidze 2016). In order to enable the acquisition of novel lexical knowledge from
data, Abzianidze (2020) recently proposed a training methodology that models learning as abductive
reasoning.

We extend the theorem prover to allow processing of Dutch sentences; switching between lan-
guages can be done easily by setting the corresponding flag. The adaptation process includes changes
in two prover components: the inventory of tableau rules, and the knowledge base. We extend the
scope of one tableau rule (ϵmod) and add a new closure rule (×⊥) to the rule inventory due to

6. To prove the contradiction relation between a premise and a hypothesis, a tableau starts with both premise and
hypothesis marked with the true sign because a counterexample for the contradiction relation is when both of the
sentences can be true.

43

ϵmod

ers(s) A : [] : X

A : [] : X

×⊥

zijn : [c] : F

×

×v-pr

A Rpr : [c̄] : X

R+B : [c̄] : X̄

if X = T, A infers B;

if X = F, B infers A

1 een hond (kijken rond) : [] : T
2 er (geen (die rondkijken hond) zijn) : [] : T

3 geen (die rondkijken hond) zijn : [] : T

4 hond : [h] : T
5 kijken rond : [h] : T

6 die rondkijken hond : [h] : F

8 rondkijken : [h] : F

×

9 hond : [h] : F

×

7 zijn : [h] : F

×

ϵmod[2]

∃T[1]

×v-pr[5,8] ×⊑[4,9]

×⊥[7]

noT[3,h]

∧F[6]

Figure 4: The tableau proves the SICK-NL problem 5220: “Een hond kijkt rond” contradicts “Er
is geen hond die rondkijkt”. The proof uses new rules specially designed for Dutch. X̄ is a negated
version of X, where T’s negation is F and vice versa.

the analysis of Dutch expletive constructions differing from English ones. This contrast is shown in
Examples (6) and (7). Dutch syntactic terms treat the expletive “er” as a clause modifier, while its
English counterpart “there” is an argument of the main verb, following the CCG analysis. We also
introduce a new rule (×v-pr) for Dutch phrasal verbs.

(6) (eng) There is no dog looking around

(llf) non(np) (whvp(n(n)) (aroundvp(vp) lookvp) dogn) (λx. benp(vp) x therenp)

(7) (nld) Er is geen hond die rondkijkt

(llf) ers(s) (geenn(np) (dievp(n(n)) rondkijkenvp hondn) zijnvp)

A tableau proof in Figure 4 illustrates the Dutch-specific additions to the tableau rule inventory.
In order to prove that “Een hond kijkt rond” contradicts “Er is geen hond die rondkijkt”, the
tableau method shows that there is no possible situation where both sentences are true; therefore,
the tableau construction starts with entries 1 and 2 marked as true. In the proof, the (ϵmod) rule
treats the expletive “er” as a semantically vacuous modifier (i.e. the identity function) when 3 is
obtained from 2 . The right-hand side branch is closed after (×⊥) is applied to 7 . Similarly to
reasoning with English, the relative pronoun “die” is analysed as a logical conjunction. The middle
branch is closed due to 4 and 9 contradicting each other. The left-hand side branch is closed with
the help of the new (×v-pr) rule, which identified contradiction between 5 (it is true that “h kijkt
rond”) and 8 (it is false that “h rondkijkt”).

Obviously, without a language-specific lexical database, the tableau prover would only be able to
tackle dull logical relations. To further allow reasoning with lexical knowledge, we employ the Open
Dutch WordNet (Postma et al. 2016). To make the database compatible with the theorem prover,
we convert it to the Princeton-style prolog format.7 In addition to the antonymy and hyperonymy
relations present in the resource, we also use near synonymy and cross-category near synonymy,
which we cast as similarity and derivational morphosemantic relation, respectively.

7. https://wordnet.princeton.edu/documentation/prologdb5wn

44

https://wordnet.princeton.edu/documentation/prologdb5wn

We adopt a default approach of the theorem prover when extracting KB relations from the
WordNet. In particular, two words are in a certain relation if there exist word senses of these words
for which the corresponding WordNet relation holds. Put differently, it is an all-sense approach,
where all corresponding word senses are considered when comparing two words. By opting for this
approach, we avoid additionally complicating our pipeline by adding a word sense disambiguation
system to it. Moreover, Abzianidze (2015a) showed that it works reasonably well for the English
SICK dataset.

4. Experiments

In order to experimentally validate our methodology, we utilise SICK-NL, a recently created Dutch
NLI dataset, described in §4.1. We perform a range of experiments involving various combinations
of tools, settings and baselines, detailed in §4.2, and present our results in §4.3.

4.1 SICK-NL

The SICK dataset (Marelli et al. 2014b) is a collection of 6 076 sentences originating from image
captions. These sentences are arranged in 9 840 problems of ordered pairs, made up of a premise and
a hypothesis together with an inference label (neutral, entailment or contradiction) that signifies the
one-directional logical inference from premise to hypothesis. The dataset is originally segmented in
three parts: train, trial and test (4 500, 500 and 4 927 problems respectively) for the SemEval-14
shared task (Marelli et al. 2014a).

The Dutch version of SICK (Wijnholds and Moortgat 2021) is derived from the original through
an automated translation process and a gold inference label transfer. The dataset consists of 6 060
unique sentences in total. The automatic translations were manually inspected, and erroneous ones
were corrected on an individual sentence basis (i.e. not taking pairing contexts into account). Based
on preliminary experiments with neural models, Wijnholds and Moortgat (2021) indicate that the
Dutch counterpart is more difficult than the original; the main hypothesised reason is a reduction in
lexical overlap between sentence pairs (despite a small reduction in average sentence length), owing
to machine translation inflating the dataset’s vocabulary.

4.2 Experimental Setup

We experiment with syntactic expressions from both parsers. From Alpino, we request the global op-
timal parse for each sentence, imposing no time constraints. The graphs obtained are then converted
into typelogical derivations with the aid of the extraction algorithm. In the process, a small portion
of parses are discarded due to either underspecifying the sentence’s function/argument structure
(e.g. resorting to vague discourse-level annotations) or failing rudimentary correctness checks. From
Neural Proof Nets, we select the structurally correct analysis with the highest score that falls within
a beam of width 6 (when at least one such exists). Table 3 reports sentence and dataset coverage
from each parser pipeline.

Parser Sentences Parsed Problems Covered

Neural Proof Nets 5 812 (95,9%) 9 264 (94,1%)

Alpino 5 947 (98,1%) 9 611 (97,7%)

Table 3: Sentences parsed and problems covered with each parser.

We then transform syntactic analyses to logical forms as described in §3.2. In order to ease lexical
lookup, we homogenise semantic constants by lemmatising them, using pos tags to disambiguate,
and apply term conversions when necessary. Lemmas and tags are obtained from two sources:

45

Alpino, and spaCy’s large Dutch language model (Honnibal et al. 2020). Logical forms are then fed
to the LangPro theorem prover – if a problem is missing a term for either premise or hypothesis,
the prover’s prediction defaults to the neutral label.

We obtain an accuracy score on the test set (percentage of problems correctly classified) from each
parser & tagger combination, as well as five ensemble models. Each ensemble aggregates the votes
of equally-weighted models, prioritising non-neutral over neutral votes, and defaulting to neutral in
case of conflict (e.g. entailment vs contradiction). We produce two ensembles over parsers, two over
taggers, and one over all four taggers and parser combinations.

Next, we train each of the core models using abduction on the union of the training and trial
portions of the dataset. We use the trial set in abductive learning since the theorem prover has
no proper set of hyperparameters that can be tuned in the development phase. For the abductive
learning we use the settings of Abzianidze (2020). Post-training, models are organised in ensemble
pairs as before, without cross-model spilling of learned knowledge.

To quantitatively assess our models’ performance, we compare against established pretrained
language models, fine-tuned as three-way sequence classifiers (a sequence being the concatenation of
the premise and hypothesis sentences, as is standard practice). Following Wijnholds and Moortgat
(2021), we use BERTje (de Vries et al. 2019), RobBERT (Delobelle et al. 2020) and mBERT (Devlin
et al. 2019), but perform model selection on the basis of trial set accuracy, and average scores from
five training instances.

4.3 Results

Table 4a presents the results for all parser & tagger combinations and ensembles, with and without
abduction. Comparing individual components, we note that models perform better with (i) pos
tags and lemmas coming from spaCy rather than Alpino, and (ii) parse structures coming from the
Alpino pipeline rather than NPN. When it comes to abduction, trained models perform consistently
better across the board, raising individual model performance by 1.38–1.83%. In line with previ-
ous work (Abzianidze 2015a, Mart́ınez-Gómez et al. 2016), aggregating proofs from various model
combinations substantially improves results. Our best performing model is the ensemble of four
theorem provers using all cross combinations of parsers & taggers, where each of the provers has
been trained using abduction; The ensemble model achieves a raw improvement of 1.22% over its
best constituent (with the Alpino parser & spaCy tagger combination). We abbreviate this ensemble
model as LangProΣ2 and use it for subsequent comparisons.

Unsurprisingly, and as Table 4b suggests, all BERT-based models outperform LangProΣ2, with a
maximum absolute difference of 3.2%. However, inspecting the confusion matrices of the systems in
Table 5 reveals LangProΣ2’s merits, namely the high precision of its entailment and contradiction

Parser

Tagger npn alpino Σ

Alpino 74.65 -1.50 75.87 -1.83 76.38 -1.75

spaCy 76.66 -1.38 77.61 -1.72 78.38 -1.58

Σ 77.04 -1.40 77.98 -1.71 78.83 -1.62

(a) Accuracy of LangPro when using each parser & tag-
ger combination, including ensembles (Σ) over parser,
tagger or both. The right subcolumns report differences
when no training with abduction is used.

Model Accuracy Hybrid

LangProΣ2 78.8 –

BERTje 82.0 81.8

RobBERT 81.7 82.6

mBERT 79.9 80.6

(b) Performance of LangProΣ2 compared to
fine-tuned neural baselines. The right column
reports performance when LangProΣ2 proofs
override neural predictions.

Table 4: Internal and external model comparisons on the test set of SICK-NL, with 56.4% of neutral-
class baseline. The scores are a percentage of correctly classified problems.

46

LangProΣ2

% E C N

Entailment 14.6 0.1 14.0

Contradiction <0.1 9.8 4.8

Neutral 1.5 0.7 54.5

BERTje

E C N

24.7 0.1 3.9

0.7 12.7 1.3

9.5 2.6 44.6

RobBERT

E C N

22.1 0.1 6.6

0.6 12.5 1.5

7.2 2.3 47.1

mBERT

E C N

22.7 0.2 5.8

0.6 12.0 2.0

9.3 2.2 45.2

Table 5: Confusion matrices on the test set. The numbers represent a percentage of the test set.

predictions. Proofs generated by LangProΣ2 are reliable enough to safely override most neural
models’ predictions, allowing the two types of systems to complement one another. Table 4b shows
accuracy scores for all baselines, as well as hybrid models where LangProΣ2’s proofs (i.e. entailment
and contradiction predictions) override predictions of the neural models. Evidently, LangProΣ2 can
benefit RobBERT and mBERT but not BERTje. The reason behind the latter is that according
to the gold labels, LangProΣ2 correctly proofs 39 proofs for entailment (31) and contradiction (8)
problems which are wrongly classified by BERTje, but LangProΣ2 also provides false proofs for 48
neutral problems (the false proofs are discussed in §5.1), which outweigh the accuracy gain from the
correct proofs.

The hybrid model that pairs LangProΣ2 and RobBERT outperforms all models, surpassing the
previous benchmark of BERTje. Closer look at the predictions of LangProΣ2 and RobBERT reveal
that RobBERT benefits most from LangProΣ2’s proofs (93) for entailment problems compared to
mBERT (71) and BERTje (31). Table 5 also shows that RobBERT is the worst among the neural
baselines in predicting entailment problems, but the adoption of LangProΣ2’s proofs results in the
best performing hybrid model.

It is interesting to see the problems that all neural models failed at, but LangProΣ2 solved.
Several of these problems are shown in Table 6. The problems seem easy, but for some reason all
the neural baselines predict them as neutral. It is even more mysterious how all of them predict the
comparable problem 169 correctly, which has the same premise as 175 paired with the hypothesis
“Een familie kijkt naar een jongen die een honkbal slaat”. The reasoning capacity required to predict
169 correctly is sufficient for solving 175; we hypothesise that neural models give more weight to
word sequence similarity when it comes to predicting entailment.

id/Label Sentences

168 p Een kind slaat een honkbal

C h Een kind mist een honkbal

175 p Een familie kijkt naar een kleine jongen die een honkbal raakt

E h Een jongen slaat een honkbal

1556 p Een man draagt een boom

E h Een man draagt een plant

897 p Mensen zitten op een strand vol zand bij de oceaan en genieten van een zonnige dag

C h Er is niemand aan de wal

4470 p Een man schopt een voetbal

E h Een man schopt een bal

Table 6: Based on the test set, a set of problems (cherry-picked from a total of 17 problems) that
were misclassified by all neural models as neutral but solved by LangProΣ2. The gold labels are
abbreviated with the initial letters.

47

World KnowledgeMissing RuleLexical KnowledgeNoisy GoldParsing
0

5

10

Reason

#
E
rr
o
rs

True Entailment
True Contradiction

Figure 5: Error analysis for a sample of problems falsely classified as neutral.

5. Analysis

To gain a better insight into the model’s performance, we perform extensive qualitative analyses
targeted at either specific components of the framework (namely, the syntactic parsers in §5.2 and
the abductive learning in §5.3) or particular cases of interest (missing and imagined proofs by
LangProΣ2 in §5.1). All the conducted analyses are based on the training part of SICK-NL to avoid
eyeballing the problems from the test set.

5.1 Missing and Imagined Proofs

We begin by investigating the predictions of LangPro that differ from gold labels, treating the neutral
label as the null hypothesis. To avoid confounding our analysis with the effects of abduction, we
inspect predictions by untrained LangPro versions.

We first focus on missing proofs or type II errors, i.e. cases where none of the stand-alone models
produce a proof (that is, a neutral prediction for a non-neutral gold label problem). We detect a
total of 1 038 such cases out of 4 500, and randomly sample 60 of those, half between entailments
and contradictions. Our findings are presented in Figure 5 and illustrating examples in Table 7.
The majority of missing proofs (17) can be attributed to requiring commonsense reasoning or world
knowledge, which goes beyond the capacities of the prover (e.g. problem 4701 requires knowing
that “voetbalt” implies “speelt met een bal”). LangPro is also responsible for not delivering equally
many proofs, the reason being the absence or malfunction of a structure altering rule (e.g. 8073

requires ignoring the auxiliary to equate the present continuous “staan te sparren” with the simple
continuous “sparren”). Another 13 cases can be explained as requiring lexical relations not present

id/Label Sentences

4701 p Een groep mannen voetbalt op het strand

E h Een groep mannen speelt met een bal op het strand

8073 p Twee jongens in witte outfits en rode beschermende kleding staan te sparren op een mat

E h Twee kinderen in witte outfits en rode beschermende kleding sparren op een mat

7375 p Een man staat op de top van de rotsen met wolken erachter

N h Een persoon zit op een bergtop

Table 7: Problems that were misclassified by LangProΣ2. The gold labels are abbreviated with the
initial letters.

48

Lexical KnowledgeNoisy Gold
0

5

10

15

Reason

#
E
rr
or
s

False Entailment
False Contradiction

Figure 6: Error analysis for a sample of neutral problems falsely classified.

in the KB, and 7 more are due to noisy (erroneous or ambiguous) gold labels, partially caused by
translation-induced meaning shifts (e.g. problem 1194 of Table 8). Finally, 6 are to be blamed on
absurd parses.

Next, we turn our attention to imagined proofs or type I errors, i.e. cases where all of the
stand-alone models produce a proof, whereas none was expected (that is, a non-neutral output with
a neutral gold label). We detect and inspect a total of 33 such cases and present our findings in
Figure 6; most of the errors (21) are due to inaccurate lexical relations with 11 of the remaining
being debatable gold labels (Table 8).

Based on the above findings, we draw a number of conclusions pertaining to the framework as
well as the dataset, and identify recurring patterns in the kinds of sentences we fail to properly
analyze. First, we emphasise the 2 orders of magnitude difference between type I & II errors: there
are almost 1 000 cases of missing proofs, but only about 30 cases of wrong proofs, which serves to
show that LangProΣ2 is precise in its proofs but lacks high coverage, and thus makes for a good
candidate first model in a hierarchical classification pipeline.

Witness to that, we remark that 33% of the false positives and 12% of the false negatives en-
countered are in fact plausible or outright correct, the issue lying with the label rather than the
prediction! A portion of the mislabeled problems found are in agreement with prior analyses of

id Sentences Label Change

1
2
0
2

en
p A man is making a speech on a podium

N
h A man is speaking on a stage 7−→

nl
p Een man houdt een toespraak op een podium

?E
h Een man spreekt op een podium

1
8
1
8

en
p Some bells are ringing near a cook slicing peppers

N
h A cook is slicing some bell peppers 7−→

nl
p Er rinkelen wat belletjes bij een kok die paprika’s in reepjes snijdt

?E
h Een kok snijdt wat paprika’s in reepjes

1
1
9
4

en
p A man is speaking on a podium

C
h There is no man speaking on a podium 7−→

nl
p Een man spreekt op een lessenaar

?N
h Er spreekt geen man op een podium

Table 8: Example problems with potential label discrepancies between English and Dutch.

49

the original SICK, common causes being a lack of an absolute reference frame, no clear distinc-
tion between alteration and contradiction, ungrammatical sentences, and annotation errors (Kalouli
et al. 2017). Others, however, are unique to the Dutch translation, and can be pinpointed to the lex-
ical choices of the machine translation system employed; Table 8 presents a few telling examples. In
several cases (problems 1202 and 1818), two distinct source words are translated to the same target
word, creating slight meaning shifts that affect the inference label. The issue is not exclusive to type
I errors; in fact, shifts occur even more frequently the other way around, translating the same word
differently depending on (sometimes irrelevant) context (problem 1194). Albeit not always catas-
trophic, translation-induced inconsistencies magnify the dataset’s difficulty: lexical inconsistencies
increase the vocabulary size, and therefore the demand on the knowledge base, whereas grammatical
inconsistencies necessitate a more exhaustive set of structure-altering rules.

Concerning Open Dutch WordNet, we note that the resource places a severe upper boundary on
system performance, as 25% of the missing proofs are due to the absence of a needed lexical relation.
This is not surprising, considering the scale of the database and the highly demanding nature of the
task. What is, however, surprising is the frequency of relations that lead to unexpected proofs. Upon
closer inspection, we distinguish two error cases. The first is due to relations that are just plain
wrong, a striking example being kat⊑hond, which contributes to a total of six imagined proofs.8

The other is more deeply rooted, and is associated with the all-sense approach we chose to adopt
for simplicity (see §3.3). For instance, based on the standard (i.e. frequently used) senses, verbs
like liggen, lopen, and staan are not hyponyms of zitten. But there is a sense of zitten, which means
to occupy a certain position or area, and it is a hypernym of some senses of liggen, lopen, and
staan. This makes the all-sense approach to adopt the relations like liggen⊑zitten, lopen⊑zitten,
and staan⊑zitten and to prove problems like 7375 in Table 7.9

Finally, the prevalence of separable verbs in Dutch can also be a source of stress for all components
of our framework. Starting from the parsers, there is an apparent tension between optional adverbs
and necessary but free-floating particles. LangPro itself then requires careful tuning on the treatment
of each case (while accounting for possible errors) before deferring to the lexical database. The latter
may often contain a relation between verbal cores but lack one for the full verbs, making derivations
possible only if one selectively ignores particles; this, however, carries the danger of ignoring crucial
parts of the sentential meaning.

5.2 Alpino vs. NPN

Our next analysis seeks to investigate the effect of parser choice on model performance. Perhaps
strikingly, predictions that rely on the Alpino-based pipeline seem generally more reliable than
predictions based on the NPN parser, despite the latter reportedly achieving a higher parsing ac-
curacy (Kogkalidis et al. 2020a). We randomly sample and inspect 50 problems where exactly one
of the parsers’ outputs leads to a proof. Our findings are presented in Figure 7. Both systems fail
with almost equal frequency (26 failures from the Alpino-based pipeline and 24 from NPN), but the
error sources are quite different between the two.

More than half (14) of the NPN failures arise from a lack of a parse. Of those, 5 problems con-
tain comma-separated non-restrictive relative clauses (NPN has been trained with punctuation-free
sentences), 3 contain very short and simple “aan het” constructions (incorrectly analysed in NPN’s
training data) and 3 more contain simple transitive sentences where the subject is a conjunction
(we hypothesise those to be training artifacts). Alpino, on the other hand, rarely fails at producing
any parse (5 cases), but its output is more often wrong. There are 11 cases of PP attachment gone
wrong, 8 cases of a modifier mislabeled as a predicate or vice-versa and 4 cases of severe issues in the

8. In the Open Dutch WordNet, while hond.n.01 is a direct hyponym of huisdier.n.01, erroneously it is also a hypernym
of it. This makes kat.n.01 a hyponym of hond.n.01 as it is a direct hyponym of huisdier.n.01.

9. It is possible to block such unwanted relations from the Open Dutch WordNet by specifically discarding certain
problematic senses and hypernymy relations from it. But pushing the performance score as high as possible is
not the main goal of the current paper.

50

0 2 4 6 8 10 12 14

No Parse

PP Attachment

Mislabeled Mod

Absurd Parse

Other

Errors

Error Type

NPN
Alpino

Figure 7: Error analysis for a sample of problems with parser disagreements.

predicted function/argument structure; NPN, in comparison, has 0, 3 and 2 of those respectively.
Considering also Table 3, the verdict is that Alpino is more robust, boasting a higher coverage which
in turn leads to more solved problems, but NPN is more accurate, boasting a higher proportion of
correct parses; this serves to further justify our decision to ensemble the two, and is in line with the
benefits observed when doing so.

5.3 Abduction

The abductive learning further boosts the performance of the theorem prover with the help of lexical
knowledge induced during the training phase (see Table 4a). The learning bias of the abduction
is to find the smallest set of relations over short phrases that explains (i.e. helps prove) the gold
inference label for a premise-hypothesis pair. Here, we manually check and analyse the relations
learned by the abduction from the train and trial parts of SICK-NL.

We consider the overlap between the relations learned by each version of the theorem prover
differing in terms of the parser-tagger combinations. There are in total 161 such common relations
learned. We classify each relation according to five categories. The correct and wrong categories
are self-explanatory. contextual relations require a substantial amount of context to be considered
justifiable. Reversed relations are reversed versions of correct subsumption relations, while preposi-
tional are, as the name suggests, relations over prepositions. A distribution of the learned relations
over the five categories with accompanying examples are shown in Table 9.

The majority of learned relations are correct, and either resemble WordNet-like entries, such
as the antonym leeg | vol and the hyper/hyponym pizza | voedsel, or commonsense-like relations,
e.g. zwart ⊑ donker. The wrong relations cover examples caused by wrong lemmatisation (e.g.
wissen ⊑ weten), noisy gold labels (e.g. suiker ⊑ kruid), and failure to correctly identify verb
particle constrictions (e.g. gieten | halen). Worth discussing are also reversed relations. While some
relations (e.g. hond ⊑ bulldog) are induced from noisy gold labels, most of them are due to the
learning bias of the abduction preferring relations with short phrases. This preference opts for
learning persoon ⊑ fietser rather than persoon die op fietsen rijdt ⊑ fietser.

51

Type Count (%) Examples of learned relations

Correct 53 (32.9)

zwart ⊑ donker: zwarte hond ⊑ donkere hond

leeg | vol: schaatsbaan is leeg | schaatsbaan is vol met mensen

liggen in het gras | rennen: hond ligt in het gras | hond rentin het gras

pizza ⊑ voedsel: er is geen man die voedsel eet | Een man eet een pizza

lopen ⊑ rennen: honden lopen snel samen ⊑ honden rennen samen

Contextual 20 (12.4)

zwaard ⊑ mes: snijdt een laars met een zwaard ⊑ snijdt een laars met een mes

boren | sluiten: boort een gat | sluit een gat

klein ⊑ jong: kleine jongen speelt ⊑ jonge jongen speelt

Reversed 26 (16.1)

container ⊑ plastic container: een container van plastic ⊑ een plastic container

hond ⊑ bulldog: aap borstelt de hond | aap borstelt geen bulldog

persoon ⊑ fietser: Iemand die op fietsen rijdt ⊑ een fietser

Prepositional 27 (16.8)

op ⊑ door: stel loopt het gangpad op ⊑ stel loopt door het gangpad

in ⊑ aan: puppy knaagt aan een houten paal ⊑ puppy bijt in een paal

buiten ⊑ rond: tijger loopt buiten een kooi ⊑ tijger loopt rond een kooi

Wrong 35 (21.7)

wissen ⊑ weten: man is het werk . . . aan het wissen ⊑ man wist het werk . . .

suiker ⊑ kruid: voegt suiker toe aan het vlees ⊑ voegt kruiden toe aan wat vlees

spannen ⊑ draaien: meisje . . . spant een lint | geen meisje . . . dat een lintje draait

gieten | halen: giet olie in een koekenpan | haalt de olie uit een koekenpan

Table 9: Types of relations learned with the abduction and their counts. Each relation instance
comes with a context from the original problem as seen during abductive learning.

6. Related Work

There are a few logic-based systems that have been successfully applied to NLI. Good entry datasets
for logic-based systems to NLI represent SICK (Marelli et al. 2014b) and FraCaS (Cooper et al. 1996)
as the former contains relatively simple sentences mainly requiring reasoning with lexical and com-
positional knowledge, while the latter covers multi- and single-premised problems presupposing com-
plex logic-based reasoning. Two logic-based NLI systems that stand out with their performance on
these NLI datasets are ccg2lambda (Mart́ınez-Gómez et al. 2016, Yanaka et al. 2018) and LangPro
(Abzianidze 2017, Abzianidze 2020). While both systems are logic-based and use CCG parsers as a
starting point, they differ in terms of the logical representations of sentences and the reasoning pro-
cedures. While ccg2lambda has already been applied to Japanese NLI (Mineshima et al. 2016), the
current work represents the first cross-lingual application of LangPro. We believe that ccg2lambda
could also be adapted to Dutch likewise LangPro to Japanese as both systems require comparable
resources of syntactic parsing and lexical knowledge.

Categorial grammar-based syntactic trees represent a smooth starting point when it comes to
obtaining logical forms of sentences since the grammars’ transparent syntax-semantics interface
facilitates the meaning composition. That’s why most of the logic-based NLI systems have used
CCG-based parsers, which are the best performing categorial grammar-based parsers for English.
In this paper, we take advantage of a wide-coverage typelogical parser for Dutch, and shift our
syntactic representations accordingly (Kogkalidis et al. 2020a).

An NLI dataset has been recently made available for Dutch (Wijnholds and Moortgat 2021), and
during the writing this paper we are not aware of any Dutch NLI systems (other than the baseline
neural models discussed in our experiments). We would like to stress here that a Dutch system

52

for semantic similarity (Marsi and Krahmer 2010) is not comparable to Dutch NLI systems as it is
tackling a different NLP task. Additionally, it is measuring the similarity of syntactic trees without
really reasoning about the meaning (the latter can also be attributed to the Dutch neural NLI
models to some extent).10 Obviously one could adapt a semantic similarity-based system to NLI,
but such an endeavour would offer little in terms of explainability compared to our reasoning-based
framework.

7. Conclusion

Building on existing work, we have proposed a framework for the logical analysis of textual inference
in Dutch. Our work has been motivated by the recent release of a Dutch translation of the SICK
dataset (Wijnholds and Moortgat 2021), and is the first work specifically targeted to the dataset.
As our entry point, we used the two available tools for acquiring type-theoretic analysis of writ-
ten Dutch to parse the entirety of the dataset (Kogkalidis et al. 2020b, Kogkalidis et al. 2020a).
Relying on the clean syntax-semantics interface offered by typelogical grammars and their close
affinity to λ-calculi, we hand-designed a conversion scheme that first simplifies syntactic terms,
before then casting them to semantic expressions. We then employed a high-horsepower Natural
Tableau prover (Abzianidze 2017), and expanded upon it with new rules, aimed at addressing some
of the quirks of Dutch. Supported with the lexical relations from the Open Dutch WordNet (Postma
et al. 2016), the prover first learns domain-specific relations from the training data via an abductive
learning component (Abzianidze 2020) and then predicts unseen problems based on formal proofs.
We finally compared our system to strong neural baselines (Devlin et al. 2019, de Vries et al. 2019, De-
lobelle et al. 2020), and find them to be not only on equal standing, but also complementary to one
another to some extent.

Contrary to neural alternatives, our proposed framework constitutes a “glass box” model, yield-
ing answers not in the form of plain labels, but rather proofs which can be both human-inspected
and machine-verified. This allows us to gain deeper insights into the problem in all of its aspects,
including the peculiarities of the dataset (e.g. detecting noisy gold labels), the strengths and weak-
nesses of the components employed (e.g. identifying missing relations in the Open Dutch WordNet),
and the methodological decisions we have followed. We have conducted an in-depth error analysis,
which has shed light on the effects of automatic translation on the difficulty of the dataset, of word
variation on lexical database stress, of parse choice on prominent error cases, and of the abduction
on the quality of lexical knowledge extracted.

The extensive error analysis showed several directions for future work that can further improve
our system’s performance. First, to surmount the issues related to wrong parses or inconsistent
PP attachments, one could additionally consider logical forms generated from n-best parses from
NPN and Alpino and/or employ yet another syntactic parser for Dutch (e.g. a Dutch CCG parser
developed as part of the Parallel Meaning Bank (Abzianidze et al. 2017) is an obvious candidate
for this). Second, to improve the abductive learning, a promising direction would be to incorporate
embedding-based word similarity during training, e.g. give priority to relations with a higher cosine
similarity between their arguments. Third, to better process Dutch particle verbs during term
conversion and theorem proving, one could include specialised processing of verb lemmas that include
a particle. Fourth, to procure more training data (Yanaka et al. 2019b) or phenomenon-specific
evaluation sets (Yanaka et al. 2019a, Richardson et al. 2020, Yanaka et al. 2021) for Dutch NLI,
one could automatically create labeled NLI pairs where our logic-based NLI system could serve
as an integral component of the problem generation or as a sanity checker of the inference labels.
Error analysis aside, we are finally curious to explore how dependency relations (provided by both

10. We include this comparison after one of the reviewers considered our work similar to the DAESO project in terms
of scope and aim.

53

parsing frameworks, but not utilised here) can find use to term processing, lexical disambiguation
and reasoning as a whole.

In hopes that our work will prove useful to future research on Dutch NLI and acknowledging
the contributions of others that made it possible, we open-source our code and make it available at
git.io/JzdGd.

Acknowledgements

We thank the organisers of the Natural Logic Meets Machine Learning (NaLoMA) workshop for
hosting us, the reviewers for their suggestions on earlier drafts of this work, and the participants
for attending. We also thank the members of the Utrecht NLP Reading Group for providing a
friendly environment for discussions and rehearsals. Lasha is supported by the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant
agreement No. 742204). Konstantinos is supported by the Dutch Research Council (NWO) through
the project “A composition calculus for vector-based semantic modelling with a localisation for
Dutch” (360-89-070).

References

Abzianidze, Lasha (2015a), A tableau prover for natural logic and language, Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Association for Computa-
tional Linguistics, Lisbon, Portugal, pp. 2492–2502. https://www.aclweb.org/anthology/D15-
1296.

Abzianidze, Lasha (2015b), Towards a wide-coverage tableau method for natural logic, in Murata,
Tsuyoshi, Koji Mineshima, and Daisuke Bekki, editors, New Frontiers in Artificial Intelligence,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 66–82.

Abzianidze, Lasha (2016), A natural proof system for natural language, PhD thesis, Tilburg Univer-
sity.

Abzianidze, Lasha (2017), LangPro: Natural language theorem prover, Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, Association for Computational Linguistics, Copenhagen, Denmark, pp. 115–120.
https://www.aclweb.org/anthology/D17-2020.

Abzianidze, Lasha (2020), Learning as abduction: Trainable natural logic theorem prover for natural
language inference, Proceedings of the Ninth Joint Conference on Lexical and Computational
Semantics, Association for Computational Linguistics, Barcelona, Spain (Online), pp. 20–31.
https://www.aclweb.org/anthology/2020.starsem-1.3.

Abzianidze, Lasha, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van Noord, Pierre Lud-
mann, Duc-Duy Nguyen, and Johan Bos (2017), The Parallel Meaning Bank: Towards a multi-
lingual corpus of translations annotated with compositional meaning representations, Proceed-
ings of the 15th Conference of the European Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, Association for Computational Linguistics, Valencia, Spain,
pp. 242–247. https://aclanthology.org/E17-2039.

Blackburn, Patrick and Johan Bos (2005), Representation and Inference for Natural Language. A
First Course in Computational Semantics, CSLI.

Blackburn, Patrick, Johan Bos, Michael Kohlhase, and Hans De Nivelle (2001), Inference and com-
putational semantics, in Bunt, Harry, Reinhard Muskens, and Elias Thijsse, editors, Computing
Meaning: Volume 2, Springer Netherlands, Dordrecht, pp. 11–28.

54

git.io/JzdGd

Bouma, Gosse, Gertjan van Noord, and Robert Malouf (2001), Alpino: Wide-coverage computational
analysis of Dutch, Computational linguistics in the Netherlands 2000, Brill Rodopi, pp. 45–59.

Cooper, Robin, Dick Crouch, Jan Van Eijck, Chris Fox, Josef Van Genabith, Jan Jaspars, Hans
Kamp, David Milward, Manfred Pinkal, Massimo Poesio, Steve Pulman, Ted Briscoe, Hol-
ger Maier, and Karsten Konrad (1996), FraCaS: A Framework for Computational Semantics,
Deliverable D16.

D’Agostino, Marcello, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors (1999), Hand-
book of Tableau Methods, Springer Netherlands, Dordrecht.

de Vries, Wietse, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord,
and Malvina Nissim (2019), BERTje: A Dutch BERT model, arXiv preprint arXiv:1912.09582.

Delobelle, Pieter, Thomas Winters, and Bettina Berendt (2020), RobBERT: a Dutch
RoBERTa-based Language Model, Findings of the Association for Computational Linguis-
tics: EMNLP 2020, Association for Computational Linguistics, Online, pp. 3255–3265.
https://www.aclweb.org/anthology/2020.findings-emnlp.292.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019), BERT: Pre-training
of deep bidirectional transformers for language understanding, Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186.

Girard, Jean-Yves (1987), Linear logic, Theoretical computer science 50 (1), pp. 1–101, Elsevier.

Glockner, Max, Vered Shwartz, and Yoav Goldberg (2018), Breaking NLI systems with sentences
that require simple lexical inferences, Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), Association for Computational
Linguistics, Melbourne, Australia, pp. 650–655. https://aclanthology.org/P18-2103.

Gururangan, Suchin, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman,
and Noah A. Smith (2018), Annotation artifacts in natural language inference data,
Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 2 (Short Pa-
pers), Association for Computational Linguistics, New Orleans, Louisiana, pp. 107–112.
https://www.aclweb.org/anthology/N18-2017.

Hockenmaier, Julia and Mark Steedman (2007), CCGbank: A corpus of CCG derivations and de-
pendency structures extracted from the Penn Treebank, Comput. Linguist. 33 (3), pp. 355–396,
MIT Press, Cambridge, MA, USA.

Honnibal, Matthew, Ines Montani, Sofie Van Landeghem, and Adriane Boyd
(2020), spaCy: Industrial-strength Natural Language Processing in Python.
https://doi.org/10.5281/zenodo.1212303.

Kalouli, Aikaterini-Lida, Livy Real, and Valeria de Paiva (2017), Textual inference: getting logic
from humans, IWCS 2017 — 12th International Conference on Computational Semantics —
Short papers. https://aclanthology.org/W17-6915.

Kogkalidis, Konstantinos, Michael Moortgat, and Richard Moot (2020a), Neural proof nets, Pro-
ceedings of the 24th Conference on Computational Natural Language Learning, Association for
Computational Linguistics, Online, pp. 26–40. https://www.aclweb.org/anthology/2020.conll-
1.3.

55

Kogkalidis, Konstantinos, Michael Moortgat, and Richard Moot (2020b), Æthel: Automatically
extracted typelogical derivations for Dutch, Proceedings of The 12th Language Resources and
Evaluation Conference, European Language Resources Association, Marseille, France, pp. 5259–
5268. https://www.aclweb.org/anthology/2020.lrec-1.647.

Kogkalidis, Konstantinos, Michael Moortgat, and Tejaswini Deoskar (2019), Constructive type-
logical supertagging with self-attention networks, Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019), pp. 113–123.

Marelli, Marco, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
Zamparelli (2014a), SemEval-2014 task 1: Evaluation of compositional distributional seman-
tic models on full sentences through semantic relatedness and textual entailment, Proceedings
of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Association for
Computational Linguistics, Dublin, Ireland, pp. 1–8. https://aclanthology.org/S14-2001.

Marelli, Marco, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli (2014b), A SICK cure for the evaluation of compositional distributional semantic
models, Proceedings of the Ninth International Conference on Language Resources and Eval-
uation (LREC’14), European Language Resources Association (ELRA), Reykjavik, Iceland,
pp. 216–223. http://www.lrec-conf.org/proceedings/lrec2014/pdf/363 Paper.pdf.

Marsi, Erwin and Emiel Krahmer (2010), Automatic analysis of semantic similarity in comparable
text through syntactic tree matching, Proceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010), Coling 2010 Organizing Committee, Beijing, China,
pp. 752–760. https://aclanthology.org/C10-1085.

Mart́ınez-Gómez, Pascual, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki (2016), ccg2lambda:
A compositional semantics system, Proceedings of ACL-2016 System Demonstrations, Associa-
tion for Computational Linguistics, Berlin, Germany, pp. 85–90. https://aclanthology.org/P16-
4015.

McCoy, Tom, Ellie Pavlick, and Tal Linzen (2019), Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference, Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, Association for Computational Linguistics, Florence, Italy,
pp. 3428–3448. https://aclanthology.org/P19-1334.

Mena, Gonzalo, David Belanger, Scott Linderman, and Jasper Snoek (2018), Learning latent per-
mutations with Gumbel-Sinkhorn networks, International Conference on Learning Representa-
tions.

Miller, George A. (1995), Wordnet: A lexical database for English, Communications of the ACM 38
(11), pp. 39–41, ACM, New York, NY, USA.

Mineshima, Koji, Ribeka Tanaka, Pascual Mart́ınez-Gómez, Yusuke Miyao, and Daisuke Bekki
(2016), Building compositional semantics and higher-order inference system for a wide-coverage
Japanese CCG parser, Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Austin, Texas, pp. 2236–2242.
https://aclanthology.org/D16-1242.

Moot, Richard and Christian Retoré (2012), The logic of categorial grammars: a deductive account
of natural language syntax and semantics, Vol. 6850, Springer.

Morrill, Glyn V (2012), Type logical grammar: Categorial logic of signs, Springer Science & Business
Media.

56

Moss, Lawrence S. (2010), Natural logic and semantics, in Aloni, Maria, Harald Bastiaanse, Tikitu
de Jager, and Katrin Schulz, editors, Logic, Language and Meaning: 17th Amsterdam Collo-
quium, Amsterdam, The Netherlands, December 16-18, 2009, Revised Selected Papers, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 84–93.

Muskens, Reinhard (2010), An analytic tableau system for natural logic, in Aloni, Maria, Harald
Bastiaanse, Tikitu de Jager, and Katrin Schulz, editors, Logic, Language and Meaning, Vol.
6042 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 104–113.

Petrov, Slav, Dipanjan Das, and Ryan McDonald (2012), A universal part-of-speech tagset, Proceed-
ings of the Eighth International Conference on Language Resources and Evaluation (LREC’12),
European Language Resources Association (ELRA), Istanbul, Turkey, pp. 2089–2096.

Poliak, Adam, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme
(2018), Hypothesis only baselines in natural language inference, Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, Association for Computational Linguis-
tics, New Orleans, Louisiana, pp. 180–191. https://www.aclweb.org/anthology/S18-2023.

Pollard, Carl and Ivan A Sag (1994), Head-driven phrase structure grammar, University of Chicago
Press.

Postma, Marten, Emiel van Miltenburg, Roxane Segers, Anneleen Schoen, and Piek Vossen (2016),
Open Dutch WordNet, Proceedings of the Eight Global Wordnet Conference, Bucharest, Roma-
nia.

Richardson, Kyle, Hai Hu, Lawrence S. Moss, and Ashish Sabharwal (2020), Probing natural lan-
guage inference models through semantic fragments, The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial In-
telligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press,
pp. 8713–8721. https://aaai.org/ojs/index.php/AAAI/article/view/6397.

Sanchez, Ivan, Jeff Mitchell, and Sebastian Riedel (2018), Behavior analysis of NLI models: Un-
covering the influence of three factors on robustness, Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New
Orleans, Louisiana, pp. 1975–1985. https://aclanthology.org/N18-1179.

Sørensen, Morten Heine and Pawel Urzyczyn (2006), Lectures on the Curry-Howard isomorphism,
Elsevier.

Tsuchiya, Masatoshi (2018), Performance impact caused by hidden bias of training data for recog-
nizing textual entailment, Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), European Language Resources Association (ELRA),
Miyazaki, Japan. https://aclanthology.org/L18-1239.

van Benthem, Johan (2008), Natural logic: A view from the 1980s, in M. K. Chakraborty, B. Lowe,
M. N. Mitra and S. Sarukkai, editor, Logic, Navya-Nayaya & Applications. Homage to Bimal
Krishna Matilal, Vol. 15 of Studies in Logic, London College Publications.

van Noord, Gertjan (2006), At last parsing is now operational, Actes de la 13ème conférence sur le
Traitement Automatique des Langues Naturelles. Conférences invitées, ATALA, Leuven, Bel-
gique, pp. 20–42. https://www.aclweb.org/anthology/2006.jeptalnrecital-invite.2.

Wadler, Philip (1993), A taste of linear logic, International Symposium on Mathematical Foundations
of Computer Science, Springer, pp. 185–210.

57

Wijnholds, Gijs and Michael Moortgat (2021), SICK-NL: A dataset for Dutch natural language
inference, Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, Association for Computational Linguistics, Online,
pp. 1474–1479. https://aclanthology.org/2021.eacl-main.126.

Yanaka, Hitomi, Koji Mineshima, and Kentaro Inui (2021), Exploring transitivity in neural NLI
models through veridicality, Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, Association for Computational
Linguistics, Online, pp. 920–934. https://aclanthology.org/2021.eacl-main.78.

Yanaka, Hitomi, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine, Lasha Abzian-
idze, and Johan Bos (2019a), Can neural networks understand monotonicity reasoning?,
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Association for Computational Linguistics, Florence, Italy, pp. 31–40.
https://aclanthology.org/W19-4804.

Yanaka, Hitomi, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine, Lasha Abzianidze,
and Johan Bos (2019b), HELP: A dataset for identifying shortcomings of neural models in mono-
tonicity reasoning, Proceedings of the Eighth Joint Conference on Lexical and Computational
Semantics (*SEM 2019), Association for Computational Linguistics, Minneapolis, Minnesota,
pp. 250–255. https://aclanthology.org/S19-1027.

Yanaka, Hitomi, Koji Mineshima, Pascual Mart́ınez-Gómez, and Daisuke Bekki (2018), Acquisition
of phrase correspondences using natural deduction proofs, Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New
Orleans, Louisiana, pp. 756–766. https://aclanthology.org/N18-1069.

58

	Introduction
	Background
	Syntax
	Semantics
	Reasoning with Natural Tableau

	Methodology
	Parsing
	Obtaining Lambda Logical Forms
	Natural Language Reasoning

	Experiments
	SICK-NL
	Experimental Setup
	Results

	Analysis
	Missing and Imagined Proofs
	Alpino vs. NPN
	Abduction

	Related Work
	Conclusion

