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Abstract
We propose an integration of BERT and WordNet to supplement BERT with explicit semantic
knowledge for natural language understanding (NLU). Although BERT has shown its superiority
in several NLU tasks, its performance seems to be relatively limited for higher level tasks
involving abstraction and inference. We argue that the model’s implicit learning in context is
not sufficient to infer required relationships at this level. We represent the semantic knowledge
from WordNet as embeddings using path2vec and wnet2vec, and integrate this with BERT
both, externally, using a top multi-layer perceptron, and internally, building on VGCN-BERT.
We evaluate the performance on four GLUE tasks. We find that the combined model gives
competitive results on sentiment analysis (SST-2) and linguistic acceptability (CoLA), while it
does not outperform the BERT-only model on sentence similarity (STS-B) and natural language
inference (RTE). Our analysis of self-attention values shows a substantial degree of attention
from WordNet embeddings to relevant words for the task.

1. Introduction

BERT (Bidirectional Encoder Representations from Transformers, Devlin et al. (2019)) has
become the most popular paradigm for natural language modeling in recent years. This is mainly
due to its superior performance in Natural Language Understanding (NLU), and Natural Language
Processing (NLP) in general. Most of the research that has been done to uncover the secrets behind
BERT’s success have addressed syntax (Rogers et al., 2020). For example, the model is good
at representing Parts-of-Speech (PoS), syntactic chunks and roles. However, (from the limited
work addressing semantic characteristics) there are indications that the model performs relatively
less well on semantic aspects and common knowledge, such as coreference (Balasubramanian
et al., 2020), abstraction (Da and Kasai, 2019), reasoning (Forbes et al., 2019), and pragmatic
inference (Ettinger, 2020).

We hypothesize that this has to do with the implicit nature of BERT’s training process, with
the use of self-supervision, while it lacks explicit – semantic – knowledge. During pre-training
and fine-tuning, the model captures patterns from text itself by updating its internal structure
weights, without exposure to any – explicit – rules about the language. Although it is a major
advantage that the model learns largely independently of human supervision, in this way the
model becomes dependent on input text, while inference is required for relationships that are not
explicitly mentioned.

This shortcoming of Deep Learning models, and attention-(Transformer-)based models (Vaswani
et al., 2017) in particular, is addressed by Lu et al. (2020) as a gap between local information,
which is captured from text a model is trained on, and global information, which is general
language knowledge that connects words to concepts. In places where literal words have an
implicit higher abstracted meaning, a model like BERT may fail to capture this if it is trained on
local context only and does not have access to higher concepts behind mentioned words. On the
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other hand, relying solely on global knowledge would not suffice for specific tasks, in which word
order matters as well as content.

Our proposal is to enrich the local knowledge, which these types of models are good at, with
global explicit language knowledge. In prior work, Lu et al. (2020) constructed a Vocabulary
Graph Convolutional Network (VGCN) of word occurrences built from the downstream dataset
and combined it with BERT for application to classification tasks, considering the VGCN part as
‘global information’ provision. However, in this method, the information extraction is still task-
dependent. In our method, we introduce global information that exists externally, independent
of the task itself, and that is more generic to have broad abstraction of information on the one
hand, and provides coverage for the task when linked to its content on the other hand. Lu et al.
suggested WordNet as future work for considering other types of vocabulary graphs. In fact,
WordNet fits our criteria for ‘global information’ that is external, explicit and semantic in nature.
WordNet is a lexico-semantic database (Miller et al., 1990) in which words are connected to each
other hierarchically from more generic to more specific level, and vice versa. (More about this in
Section 2.1.)

Thus, in this work we extend BERT’s implicitly captured knowledge with explicit knowledge
extracted from WordNet1 (WN). We compare different models for representing WordNet informa-
tion as embeddings. We then investigate how WordNet embeddings can be best combined with
the BERT architecture, resulting in our proposed WN-BERT model. We evaluate the effectiveness
of the combination on four NLU tasks. In addition, we carry out a more detailed analysis on
the attention-heads of the combined model in order to analyze the contributions of the WordNet
information to the BERT representations.

Our contributions are:

• We trained both path2vec (Kutuzov et al., 2019) and wnet2vec (Saedi et al., 2018) on the
entire WordNet and make these models available for the NLP community.2

• We integrate explicit semantic knowledge from WordNet (Miller et al., 1990) with BERT (De-
vlin et al., 2019), building, in particular, on the suggested future work of Lu et al. (2020);

• We evaluate the created WordNet-BERT models on four GLUE tasks (Wang et al., 2018).

In the remainder of this paper, we discuss related work in Section 2. In Section 3 we describe
our methods, consisting of the WordNet to embeddings conversion, integration with BERT, as
well as mitigation of encountered limitations. We present our experimental results in Section 4,
followed by a discussion of points that require additional attention and directions for future work
in Section 5. Finally, we draw the conclusions from our findings in Section 6.

2. Related Work

BERT models have been highly successful on various NLU tasks since the initial publication in
2018.3 The base-model turned out to be especially good at capturing syntactic knowledge, while
having a bit more difficulty with word semantics and higher abstraction (Rogers et al., 2020;
Clark et al., 2019; Ettinger, 2020). These language aspects require common knowledge that is not
necessarily mentioned in text. We hypothesize that a supplement of explicit semantic knowledge
would be an improvement for NLU.

1. https://wordnet.princeton.edu/
2. The models are available at: https://github.com/mbarbouch/WN-BERT.
3. https://gluebenchmark.com/leaderboard
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Since then, incorporating explicit information from external knowledge bases (KB) in large
pre-trained language models has been receiving increasing attention. Verga et al. (2021) proposed
Facts-as-Experts (FaE) building on Entity-as-Expert (EaE) (Févry et al., 2020), in which factual
information from a symbolic KB is injected into BERT at inference time. They outperform
EaE on FreebaseQA and WebQuestionsSP Q&A datasets by nearly 10 points. Yu et al. (2020)
presented JAKET for joint pre-training of knowledge graphs (KGs) and language understanding.
They improved the accuracy on the FewRel relation extraction dataset by about 2% points.
Zhang et al. (2020) have achieved good improvements on classification and inference tasks by
incorporating explicit contextual semantics from pre-trained semantic role labeling.

BERT has therefore widely extended after its introduction and has been offered in different
combinations for different types of tasks. However, most research has focused on the syntactic
model aspects, while the semantic aspects have not been looked at as broadly (Rogers et al., 2020).
In addition, given the indications that the model does not always perform as well semantically,
our focus in this study is on the semantic supplementation of BERT. As external resource to
get the supplement from, we involve WordNet1 (Miller, 1995) lexico-semantic database. This
database had a prominent role in NLP research in the ’90s and early 2000s. However, due to
its limitations using ‘traditional statistical methods’ (Section 2.1), it was not developed further.
With the latest successes of Deep Learning in NLP (especially of Transformers-based models
like BERT, GPT-3 and T5), we aim to further explore WN’s potential by injecting its explicitly
constructed knowledge into BERT. To the best of our knowledge, WN has not yet been integrated
in BERT to study its quality on semantically-based tasks.

2.1 WordNet

WordNet represents a hierarchical network of words with their semantic relationships by synonymy,
hypernymy, hyponymy, meronymy and antonymy. The network includes nouns, verbs, adjectives
and adverbs as parts-of-speech. These are categorized in sets of word senses and synonyms
called synsets. Semantic similarities and relatedness between words can be determined by, for
example, calculating the tree distance or gloss overlap between associated synsets (Pedersen et al.,
2004). However, these methods are limited by word pairs computations, method constraints (e.g.
assuming the ‘is a’ relationship in the Lowest Common Hypernyms (LCH) metric (Budanitsky
and Hirst, 2001)), and same pair similarity when path length is equal Meng et al. (2013).

In this paper we propose to use WordNet as secondary external knowledge base, to provide
BERT with explicit global semantic knowledge that BERT would lack in downstream tasks. As
BERT encodes words as word embeddings, we first need to convert the WordNet representation
to a similar vectorized format. In this, we rely on two existing methods: path2vec (Kutuzov et al.,
2019) and wnet2vec (Saedi et al., 2018).

Path2vec re-encodes WordNet synsets as node embeddings, where the embeddings are learned
as dense vectors based on pairwise synset similarities. A dot product is taken between pairs of
corresponding synset node vectors, such that the value is close to a given ground truth similarity.
These ground truths come from four graph distance measures, as implemented for WordNet in
NLTK, i.e. Leacock-Chodorow (LCH), Jiang-Conrath calculated over the SemCor corpus (JCNS),
Wu-Palmer (WuP), and Shortest path (ShP), in addition to a (fifth) user-defined similarity, i.e.
the SimLex-999 gold standard. The evaluation was done by taking Spearman correlation between
the estimated score and the ground truth. The best representations were found for ShP, reaching
correlations up to 0.952 and 0.512 for WordNet similarities and SimLex-999, respectively. This
model has also outperformed other methods like Node2Vec and Deepwalks. For application of
the model to larger sequences of words with meaningful statements (e.g. sentences), where for a
given word multiple synsets could be found, the model was further evaluated on SensEval and
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SemEval Word Sense Disambiguation (WSD) tasks, achieving F1 scores between 0.50 to 0.55.
Nonetheless, path2vec, in its initial form, is limited to support noun synsets only.

Wnet2vec builds on the intuition that the more edges between two synset nodes exist and
the shorter the edges are, the stronger the semantic similarity between two words is. The model
constructs an adjacency matrix of words where the cells are set to 1 if there is an edge between
two word nodes, and 0 otherwise. Then the matrix vectors for each word are iteratively adapted
until convergence to an inverted matrix, using Positive Point-wise Mutual Information (PMI)
matrix transformation, in addition to L2 normalization, and Principal Component Analysis
(PCA) for dimensionality reduction. The evaluation is done using six testsets, three of which
for semantic similarity, i.e. SimLex-999, RG1965, and WordSim-353-Similarity; and three for
semantic relatedness, i.e. WordSim-353-Relatedness, MEN, and MTurk-771. In contrast to
path2vec, wnet2vec covers all the four parts-of-speech from WordNet, i.e. nouns, verbs, adjectives
and adverbs. However, this method does not provide multiple embeddings for a word with
multiple synsets (or meanings); instead, it expresses all synsets related to a given word in one
single embeding vector. For this reason we call wnet2vec embedings, WordNet word embeddings –
whereas we stick to synset embeddings for path2vec.

2.2 Embedding-based BERT ensembles

To combine our WordNet embeddings with BERT, we build on the work of Ostendorff et al.
(2019) and Lu et al. (2020).

Ostendorff et al. (2019) enrich BERT in their approach with external author embeddings by
adding a 2-layer multilayer perceptron (MLP) top-classifier. On a classification task of German
books, they achieved up to 4.21 % points higher micro-F1 score than a BERT-German baseline.

VGCN-BERT, on the other hand, follows a completely different approach. To provide global
information, Lu et al. (2020) construct a vocabulary graph (VG) of word co-occurrences and use
a convolutional network to represent the information by embeddings. They concatenate these
embeddings with BERT embeddings and feed them into BERT model starting from the first
layer. This way local and global information would interact with each other through all layers.
The authors presented slightly better F1-scores (< 1% point) for sentiment analysis, binary
single-sentence classification and hate speech compared to the baselines.

3. Method

In this section we describe our methodology. First, we describe the techniques used to transform
WordNet to a suitable format for integration with BERT. Second, we determine WordNet coverage
for datasets that will be used later on in the process for evaluation. Third, we go into the method
for WordNet-BERT integration. In this, we distinguish between two approaches; one used
externally, and the other internally.

3.1 From WordNet to Word Embeddings

BERT represents its textual knowledge by distributed representations of dense vectors, called
word embeddings. Consistently, we convert WordNet information also to a dense embeddings
format for the purpose of compatibility between the two models. In this work we rely on two
prior methods for representing WordNet as embeddings, i.e.: path2vec (Kutuzov et al., 2019) and
wnet2vec Saedi et al. (2018).
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We use the path2vec model based on shortest paths as this yielded the best results in the
original paper. The published model4 contains embeddings of noun synsets only. These synsets
cover both monosemous and polysemous words, meaning that multiple embeddings are available
for words with multiple meanings. For selecting synset nodes related to our input words, we
adjust the code used by path2vec for evaluation on SensEval and SemEval WSD tasks5, such that
any input text is accepted and all parts-of-speech are supported – instead of being dependent on
the evaluated tasks and having support for nouns only.

In contrast to path2vec, the published pre-trained model of wnet2vec6 covers all parts-of-
speech supported by WordNet (i.e. nouns, verbs, adverbs and adjectives). However, due to
memory limitations in the original paper, the model was trained to contain only about 60k word
embeddings. In addition, this model compresses all synsets connected to unique words to single
embeddings, resulting in the incapability of dealing with lexical ambiguity. For quick access, we
first convert the output file of wnet2vec to a dictionary with the terms as keys and the embeddings
as values. Initially, after tokenization of the input text, we retrieve the embeddings for each input
token by looking for a match with terms in the dictionary.

3.2 WordNet Coverage

WordNet 3.0 covers with 117k synsets around 155k words.7 This is a number far below the total
number of English words, which is approximated between 600k (Oxford English Dictionary, 1989)
and 1M (Michel et al., 2011). Using the initial pre-trained models of path2vec and wnet2vec,
covering each 82k and 60k words respectively, we find that the word count coverage on the GLUE
datasets is on average 27.6% in path2vec and 24.5% in wnet2vec (Table 1 (a)). Although path2vec
only covered nouns, while wnet2vec also included verbs, adverbs and adjectives, path2vec found a
little more synsets. There are two differences that affect the search results: the model size, and
the way each model is queried. Path2vec finds the words through lemmas with NLTK’s WordNet
implementation8, while we initially query wnet2vec by looking for exact word matches in the
published embeddings file.6 The reason for this is that wnet2vec is not prepared – by design – to
support querying the output file by using NLTK’s WordNet API, like path2vec does.

In order to increase the coverage, we retrain both WN models to cover all 155k words from
WordNet. As adverbs and adjectives are disconnected, path2vec’s vocabulary size only increased
to 88k, comprising 75k noun9 and 13k verb synsets. For wnet2vec, we also take lemmatization
into account. If a word is not found directly in the provided file, we fall back to using lemma
embeddings. We first perform a search through the synsets() function of NLTK’s WordNet and,
if any result is found, we retry to get the embeddings from wnet2vec.

After retraining both models and adding support for lemmas in wnet2vec, the total coverage
increased on average to 42.2% in path2vec and 56.1% in wnet2vec, with a respective PoS coverage
of 67.4% and 88.0% (Table 1 (b)).

3.3 WordNet–BERT

For integrating WordNet with BERT, we distinguish two types of ensembles: ‘external combination’
and ‘internal inclusion’. The external approach combines the outputs of two independent models

4. https://github.com/uhh-lt/path2vec/#pre-trained-models-and-datasets
5. Starting from def sentence wsd(ids list, sentences, poses): https://github.com/uhh-lt/path2vec/blob/

master/wsd/graph_wsd_test_v2.py#L66

6. https://github.com/nlx-group/WordNetEmbeddings
7. https://wordnet.princeton.edu/documentation/wnstats7wn
8. See def synsets() in: https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
9. The difference of 7k with the initial version is for disconnected noun synsets that are included with initial

weights.
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Table 1: WordNet coverage in % for used datasets.

SST-2 CoLA STS-B RTE avg.

Initial WN models (a)

p
2
v
ec All 23.2 24.1 33.8 29.1 27.6

PoS 37.2 40.3 52.0 46.0 43.9

w
n
2
v
ec Exact 26.3 24.5 24.1 23.2 24.5

Lemma 38.2 43.2 38.8 39.7 40.0
PoS 61.2 72.4 55.1 62.8 62.9

After retraining the models (b)

p
2
v
ec All 35.3 44.3 47.4 41.6 42.2

PoS 56.6 74.1 72.9 65.8 67.4

w
n
2
v
ec Exact 45.7 38.9 38.7 37.5 40.2

Lemma 56.3 55.1 57.2 55.7 56.1
PoS 90.2 92.1 81.4 88.1 88.0
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Figure 1: The model with external learning of
embeddings combination using a 2-layer MLP
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Figure 2: The model of internal inclusion in-
tegrating WordNet embeddings into BERT,
based on the approach of VGCN-BERT (Lu
et al., 2020).

in an additional 2nd level classifier, while internal inclusion incorporates the representation
produced by one model into the internal architecture of the other one. We use the uncased
BERTBase model with 12 self-attention layers.

3.3.1 External Combination

To combine embedding vectors on the outside, we follow the approach of Ostendorff et al. (2019).
We concatenate BERT and WN embeddings to provide them as one input chain to the MLP.
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Figure 3: Vertical concatenation of BERT word embeddings (a) and WordNet embeddings (b)
used in the internal ensemble. The simple input sentence “This is a nice orange.” is used as
example for illustration.

For this, we adjust the input layer, such that in addition to text input, also embeddings from
WordNet are accepted. This is illustrated in Figure 1.

Sentence embedding representation. Both path2vec and wnet2vec provide the embeddings
for individual words. However, keeping the embeddings in their raw format will lead to a horizontal
dimensional explosion. We therefore suggest to reduce the dimensionality by converting the words
to sentence embeddings.

Obtaining sentence embeddings can be accomplished in several ways, e.g., by concatenation,
averaging (Coates and Bollegala, 2018) or meta-learning (Yin and Schütze, 2015). We combine
averaging with meta-learning of the MLP, as the first does not suffer from dimensionality explosion,
and the second learns the combination with BERT embeddings, making them, in contrast to
horizontal concatenation at word level, a more efficient method.

Before concatenation, we first fine-tune the BERT embeddings in 3 epochs, as we found this
to yield better performance in experimental runs. We then take the vectors from the [CLS] tag
in the output layer, corresponding with all tokens produced by the WordPiece tokenizer, and
average them to represent ‘BERT sentence embeddings’. The [CLS] tag is used by BERT for
classification tasks at the sentence level.

3.3.2 Internal Inclusion

In the internal approach, we include WN embeddings in BERT, similar to VGCN-BERT (Lu
et al., 2020). The benefit this model has over external combination is the utilization of BERT’s
self-attention. This allows the included embeddings to influence the attention scores, which in
turn also helps with interpretation of the importance of the input embeddings.

To include WN embeddings, we adjust the base model architecture, see Figure 2. First, we
feed the input text with n tokens and get initial word embeddings of m dimensions from BERT
and WordNet.10 Then, we combine both and send the new representation through the network of
BERT, starting from ‘Embedding’ (first) layer. Internally, we combine WN embeddings at token
level, while utilizing the attention mechanism. For efficiency, we concatenate the embeddings

10. BERT uses its own tokenizer; for WordNet we use NLTK’s TreebankWordTokenizer.
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vertically. Then, the whole combined chain of embeddings is fine-tuned at once. (See section 4.2
for experimental setup, e.g., of batch size and the number of epochs.)

For example, consider the sentence “This is a nice orange” for which we want to combine the
embeddings for a classification task. BERT calculates the embeddings for the seven individual
tokens {[CLS], this, is, a, nice, orange, [SEP]}, see Figure 3 (a). Suppose that for the same
sentence WordNet embeddings were found for only the words ‘is’ (lemmatized as ‘be’ ), ‘nice’
and ‘orange’ (Fig. 3 (b)). The three vector embeddings can be simply added at the tail of word
embeddings matrix −1. BERT will then treat these WordNet embeddings as part of the sentence.

In cases where an input consists of two sentences, the enrichment is implemented analogously as
{[CLS] [BERT tokens 1st sentence], [WN tokens 1st sentence] [SEP] [BERT tokens 2nd sentence],
[WN tokens 2nd sentence] [SEP]}.

4. Evaluation

Given that we aim to complement BERT with external semantic knowledge from WordNet, for
evaluation we consistently opt for tasks that are strongly semantically driven. We approach this
from ‘understanding’ point of view, where meaning is crucial, which in turn relies heavily on
semantics. One type of tasks that are suitable for this are Natural Language Understanding
(NLU) tasks, on which BERT itself has also been evaluated (Devlin et al., 2019).

4.1 Datasets

We evaluate our model on the SST-2, CoLA, STS-B and RTE datasets from the General Language
Understanding Evaluation (GLUE) (Wang et al., 2018) benchmark. These concern Sentiment
Analysis, Linguistic Acceptability, Sentence Similarity and Natural Language Inference tasks. We
consider the four datasets as relevant for evaluation of our methods, since sentiment is strongly
dependent on adjectives, acceptability and inference on semantic relationships, and similarity
on synonyms and semantic distance between words. All these aspects are covered by WordNet.
Hence, BERT gets the potential to benefit from any additional semantic (global) knowledge that
is missing locally.

SST-2. The Stanford Sentiment Treebank 2 (Socher et al., 2013) for binary sentiment classi-
fication is constructed on partial phrases of positive and negative movie reviews, labeled using
Amazon Mechanical Turk. The original dataset contains 9,613 examples in total; 6,920 for
training, 872 for dev, and 1,821 for test. The GLUE benchmark provides a much bigger version
of the dataset, where the training-set is extended to 67,349 instances.11 We will refer to the
original SST-2 as ‘SST-2’ and to the GLUE version as ‘SST-2 (GLUE)’. SST-2 is evaluated using
weighted average F1-Score, SST-2 (GLUE) by accuracy.

CoLA. The Corpus of Linguistic Acceptability (Warstadt et al., 2019) consists of 9.5k text
phrases that can be linguistically either correct or incorrect. The dataset is subdivided in 8,553
train, 277 dev, and 1,063 test phrases. However, as the labels for the testset are not publicly
available, we use the dev set as testset, and optimize our training on 5% of the training set. The
output is evaluated using Matthews correlation.

STS-B. The Textual Similarity Benchmark (Cer et al., 2017) provides a collection with 8,628
sentence pairs extracted from different text sources, divided into train, test and dev sets of
sizes 5,749, 1,500 and 1,379, respectively. The corresponding task is to express the similarity

11. After inspection we found (additional) partial phrases split from original sentences.
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between two sentences on a scale of [0, 5]. The models are evaluated using Pearson and Spearman
correlations with human scores.

RTE. The Recognizing Textual Entailment concerns textual entailment of sentence pairs
collected from different NLP sources. GLUE combines RTE1, RTE2, RTE3 and RTE5 from 2006,
2007 and 2009 in one single dataset, where a pair is labelled as entailing or contradicting. The
dataset contains 5.5k pairs in total – 2,494 for training, 277 for dev and 3,000 for test. Like CoLA,
as test labels are not published, we use 5% of the training set for optimization, and the dev set
for final evaluation. Model quality is evaluated by accuracy.

4.2 Experimental Setup

For the experimental setup we follow largely the same hyperparameter and training settings as
used in prior work, i.e., Lu et al. (2020) for internal inclusion and Ostendorff et al. (2019) for
external combination. Since BERT is not deterministic in each run, we perform 5 runs for each
experiment and report averages. In the external approach, we first fine-tune BERT in 3 epochs
before combining the embeddings. On average, 5 epochs were sufficient to optimize the training
on the dev set. In the internal inclusion model, we use 3 epochs for SST-2 (GLUE), CoLA and
STS-B, the same number as used by BERT (Devlin et al., 2019). For RTE we achieved better
results with 9 epochs (the default of VGCN-BERT). The sentence pairs in STS-B and RTE led
to a high dimensionality, making the 11GB GPUs that were used run out of memory. For this
we reduced the batch size to 12. Furthermore, we set up the task of STS-B as regression with 1
output node, using ReLU activation function with MSE loss.

4.3 Results

The results are shown in Table 2. We take BERT and VGCN-BERT as baselines and compare
our own combined models to their results. Besides using results as reported in reference papers
(indicated in the table with ‘ref.’), we run both models ourselves with the same experimental
setup for a fair comparison (‘ours’). STS-B and RTE tasks are excluded for the external combined
model, as its architecture is not suitable for sentence-pair tasks.

The best scores of the integrated models are achieved with WN2V-BERT on sentiment analysis
(SST-2 (GLUE)), improved by 0.29% point, and with P2V-BERT on linguistic acceptability
(CoLA), improved by 3.36 correlation points. On sentence-pair tasks of sentence similarity (STS-B)
and language inference (RTE), BERT remained better.

The scores of our implementation of the baselines (except CoLA) are on average slightly
lower than reported in the respective papers. This could be a result of the random behavior
of BERT and the average we take over multiple runs. On CoLA and RTE the scores are not
comparable to prior work because we used the dev set as testset instead (see Section 4.1). For
the BERT-only baseline model we did the experiments with the same architecture used for
VGCN-BERT, but we only use BERT embeddings. This architecture, with the experimental
setup from Section 4.2, could have influenced the lower score, but it has also made the comparison
with our WordNet-BERT models more fair.

It is notably that our best two relative improvements, on CoLA and SST-2, were achieved with
models following two different approaches, namely the one of external combination P2V-BERT
and the one of internal inclusion WN2V-BERT, respectively. A possible explanation for this is
that in the case of CoLA the complete sentence construction is more determinative for linguistic
acceptability, while in case of SST-2, sentiment usually depends on individual adjectives (such as
‘good’, ‘bad’, ‘happy’, etc). In the external model we learn the combination at sentence level and
internally at word level.
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Table 2: Results for the four GLUE tasks. For the baseline, both the published results and the
average result of our 5 runs are included. The results of the integrated models with WordNet
– following internal inclusion and external combination strategies – follow below. (Standard
deviation between brackets.). * As reported by Devlin et al. (2019); and ** by Lu et al. (2020).

Model SST-2
SST-2
(GLUE)

CoLA STS-B RTE

Metric F1 acc. Matt. corr. P/S corr. acc.

B
a
se
li
n
e

BERT (ref.)* - 93.50 52.1 - / 85.80 66.4
VGCN-BERT (ref.)** 91.93 - - - -

BERT (ours) 91.56 (0.13) 92.94 (0.35) 58.35 (1.59)
83.66 (0.22) /
82.55 (0.28)

61.81 (2.14)

VGCN-BERT (ours) 91.33 (0.15) 92.99 (0.19) 58.01 (1.61)
83.53 (0.24) /
82.32 (0.23)

51.70 (2.02)

In
te
rn

a
l

P2V-BERT 91.22 (0.32) 92.92 (0.17) 56.68 (2.18)
82.98 (0.62) /
81.70 (0.69)

59.42 (1.67)

P2V-VGCN-BERT 91.51 (0.29) 92.98 (0.20) 55.56 (1.09)
83.19 (0.36) /
81.98 (0.39)

58.34 (1.13)

WN2V-BERT 91.36 (0.45) 93.23 (0.37) 58.44 (1.43)
82.91 (0.29) /
81.65 (0.40)

60.36 (3.05)

WN2V-VGCN-BERT 91.42 (0.29) 93.10 (0.11) 57.47 (1.64)
83.12 (0.33) /
81.95 (0.39)

59.42 (2.74)

E
xt
. P2V-BERT 90.41 (0.29) 92.53 (0.19) 61.71 (0.64) - -

WN2V-BERT 90.34 (0.10) 92.51 (0.10) 61.01 (0.49) - -

4.4 Analysis

One of the challenges of (deep) neural networks nowadays is the explainability of the results
obtained by the internal structure of the models, while they are a black-box for their workings.
However, one approach that helps trace clues that lead to a given output is the inspection of the
attention weights – given that BERT is built on the Transformers architecture, which is in its
core attention-driven. Vig (2019) has already shown that different lexical patterns can be found
in attention heads throughout the network layers of BERT (and GPT-2), e.g., patterns related to
co-reference, subject-verb pairs, and dependency relations. In our case we inspect the attention
weights of the SST-2 task, since this has shown the best result by the internally combined model.
We use BertViz12 for the visualization of the heads.

4.4.1 Local token attention

We examine the attention contribution of all tokens to the [CLS] token in the last layer. The
embeddings of this token are used by BERT for final classification. We are especially interested
in the differences in the [CLS] token with the addition of WordNet embeddings. The assumption
is that any difference between the BERT-only model and the BERT-WordNet integrated model
is due to the addition of WN embeddings. We first present examples where WN embeddings
had positively influenced the final prediction, i.e., giving the expected label while BERT-only

12. BertViz GitHub repository: https://github.com/jessevig/bertviz.
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Table 3: Top 5 sentences with positive contribution from WordNet. In Label column you can see
the expected sentiment, either positive = 1, or negative = 0, and in the columns to the right you
can see the number of times each model got the prediction right.

Sentence Label BERT WN2V-BERT P2V-BERT

director rob marshall went out gunning to make a great
one.

1 1/5 5/5 4/5

-lrb- howard -rrb- so good as leon barlow ... that he hardly
seems to be acting.

1 2/5 5/5 5/5

a teasing drama whose relentless good-deed/bad-deed
reversals are just interesting enough to make a sinner like
me pray for an even more interesting, less symmetrical,
less obviously cross-shaped creation.

1 2/5 4/5 4/5

not every animated film from disney will become a classic,
but forgive me if i’ve come to expect more from this studio
than some 79-minute after-school “cartoon”.

0 1/5 5/5 1/5

home alone goes hollywood, a funny premise until the kids
start pulling off stunts not even steven spielberg would
know how to do.

0 2/5 5/5 4/5
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]

[CLS]

director

rob

marshall

went

out

gunn

##ing

to

make

a

great

one

wn_director

wn_rob

wn_marshall

wn_travel

wn_out

wn_gun

wn_make

wn_great

[SEP]

(a) (b) (c)

Figure 4: Token attention to the output [CLS] token for the first sentence from Table 3 that has
correctly received a positive label by WN2V-BERT (c) and P2V-BERT (b) and was mislabeled
by BERT-only (a).

label was incorrect. Second, we show opposite cases where WN-BERT was deteriorating the
BERT-only output. Running the model 5 times each, the models all agreed on the output in
91.7% of the cases, and differently disagreed on the rest. For the analysis we specifically look at
the top disagreements, i.e. where there is the most deviation in the given results.
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Positive Contribution Table 3 shows the top 5 sentences where there was a positive contribu-
tion to the final output from the WN embeddings. In the first example “director rob marshall went
out gunning to make a great one”, a positive sentiment label is expected. The BERT-only model
classified this sentence as negative in 4 out of 5 cases, while WN2V-BERT and P2V-BERT were
respectively in 5/5 and in 4/5 cases correct. The attention to [CLS] is visualized in Figure 4. This
gives us an indication of the tokens importance for the [CLS] token. In the case of WN2V-BERT
(c), we see that, in addition to BERT tokens, WN embeddings also give a reasonable color density
towards [CLS]. This means that they also affect the output.

However, based on the coloring only, it is hard to tell which tokens provide more attention
than others. For that reason, we quantify the attention weights for the sentence. We sum over
all attention weights (of the 12 heads in the last layer) per token, normalize by the number of
heads, and rank them by highest value. The resulting ranking is shown in Table 4. For BERT,
[CLS] in itself is the most important token in this sentence. P2V-BERT only shows a different
arrangement of BERT tokens. Interestingly, the wnet2vec token ‘wn great’ turned out to provide
the most attention in WN2V-BERT model. The adjective is very much in line with the expected
positivity. From this point of view, therefore, we consider ‘wn great’ to be the most influential
token embedding to determine the positive sentiment for the given sentence.

In the second sentence “-lrb- howard -rrb- so good as leon barlow ... that he hardly seems
to be acting.” from Table 3 also a positive sentiment is expected. Here, the inference of ‘good
acting’ is determinative. Again, WN2V-BERT (and P2V-BERT) succeeded to predict the correct
label in each run, whereas BERT failed to pick up the right pattern in 3 runs. Looking at the
visualization of the attentions in WN2V-BERT, in Figure 5 we can see a balanced contribution
from the WN tokens (a). While in BERT more density seems to come from the tokens [CLS],
‘so’, ‘as’, and ‘that’ – where the last three are quite neutral –, in the WN model, ‘wn acting’

Table 4: Ranked aggregated token attentions for the example from Fig. 4.

R BERT P2V-BERT WN2V-BERT

1 [CLS] 0.0678 one 0.0917 wn great 0.0866
2 director 0.0548 [CLS] 0.0912 a 0.0767
3 one 0.0546 a 0.0911 wn director 0.0665
4 marshall 0.0522 great 0.0894 great 0.0645
5 a 0.0496 make 0.0783 one 0.0642
6 great 0.0478 to 0.0579 to 0.0641
7 went 0.0452 director 0.0570 went 0.0598
8 rob 0.0435 rob 0.0543 out 0.0574
9 ##ing 0.0435 out 0.0524 make 0.0573
10 out 0.0435 went 0.0505 wn gun 0.0558
11 to 0.0421 ##ing 0.0457 ##ing 0.0521
12 make 0.0393 marshall 0.0455 [CLS] 0.0503
13 gunn 0.0317 gunn 0.0411 rob 0.0470
14 [SEP] 0.0267 p2v marshall 0.0304 gunn 0.0457
15 p2v went 0.0296 marshall 0.0453
16 p2v gunning 0.0144 director 0.0440
17 [SEP] 0.0129 wn marshall 0.0389
18 p2v director 0.0126 wn make 0.0353
19 p2v make ’0.0117 wn travel 0.0294
20 wn rob 0.0262
21 wn out 0.0213
22 [SEP] 0.0138
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wn acting 0.0852
[CLS] 0.0793
as 0.0774
so 0.0755
that 0.0712
##b 0.0699
good 0.0691
##rb 0.0674
he 0.0603
leon 0.0563
wn leon 0.0544
rr 0.0528
howard 0.0473
acting 0.0450
barlow 0.0436
wn seems 0.0416
seems 0.0415
wn be 0.0408
l 0.0399
wn hardly 0.0367
wn so 0.0344
to 0.0297
hardly 0.0272
wn good 0.0267
be 0.0188
[SEP] 0.0128

(a) (b) (c)

Figure 5: Attention to the output [CLS] token (a) for the second sentence from Table 3 using
WN2V-BERT model. In the middle (b) the tokens are ranked by attention weights in descending
order. On the right (c) the visual attention from the top-ranked token ‘wn acting’ is shown.

provided the most attention (b). Zooming in on the ‘wn acting’ token to see which other tokens
are receiving attention from it (c), we see that it now focuses very much on the part ‘so good as’,
where the other main term ‘good’ for determining the sentiment is also covered.

Negative Contribution The contribution of path2vec and wnet2vec embeddings is not always
positive. In Table 5 we show 5 sentences from the top where WordNet is negatively influencing
the output, i.e. providing a wrong sentiment when BERT is relatively often correct.

For example, as shown in Figure 6, P2V-BERT and WN2V-BERT assign, in contrast to the
BERT-only model, a positive label, while a negative sentiment is expected. This example is
tricky, as it consists of a positive first part and a negative second one. Path2vec with a very
low attention contribution only seems to confuse the model here. Wnet2vec on the other hand

Table 5: Top 5 sentences with negative contribution from WordNet.

Sentence Label BERT WN2V-BERT P2V-BERT

and if the hours wins ‘best picture’ i just might. 1 5/5 0/5 2/5

rather quickly, the film falls into a soothing formula of
brotherly conflict and reconciliation.

1 5/5 2/5 0/5

i kept thinking over and over again, ‘i should be enjoying
this.’

0 4/5 2/5 0/5

if melville is creatively a great whale, this film is canned
tuna.

0 2/5 0/5 0/5

the whole damn thing is ripe for the jerry springer crowd. 0 2/5 0/5 0/5
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gives the most attention to ‘wn tuna’ (see Table 6) – in itself a neutral word –, for which it can
be inferred from context that this combined with ‘canned’ gives a sarcastic negative sentiment.
The negativity is determined by the word combination of “canned tuna”. In both models this
combination is not highlighted, while in BERT-only the words are among the top 5 tokens.
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[SEP]
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[SEP]
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[SEP]
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Figure 6: P2V-BERT and WN2V-BERT
[CLS] token attention when a wrong output
is given.

Table 6: Top tokens for the example from Fig. 6.

R P2V-BERT WN2V-BERT

1 [CLS] 0.1141 wn tuna 0.0865
2 this 0.0953 is 0.0834
3 film 0.0874 this 0.0799
4 is 0.0815 [CLS] 0.0762
5 whale 0.0723 wn film 0.0648
6 if 0.0659 film 0.0608
7 canned 0.0596 wn be 0.0503
8 tuna 0.0571 tuna 0.0498
9 great 0.0544 whale 0.0490
10 a 0.0504 canned 0.0487
11 ##ly 0.0483 wn canned 0.0474
12 creative 0.0417 ##ly 0.0463
13 is 0.0409 if 0.0445
14 melville 0.0365 a 0.0396
15 p2v film 0.0205 great 0.0389
16 p2v is 0.0201 wn be 0.0380
17 p2v tuna 0.0156 is 0.0380
18 p2v is 0.0141 melville 0.0294
19 [SEP] 0.0093 creative 0.0282
20 , 0.0083 wn creatively 0.0281
21 p2v canned 0.0069 wn great 0.0253
22 p2v whale 0.0065 wn whale 0.0164
23 [SEP] 0.0075
24 , 0.0071
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Figure 7: P2V- and WN2-BERT global cumulative token attention to [CLS] in the last layer for
the SST-2 dataset ((a), (b)), in addition to mutual token attention through all layers ((c), (d)).
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Table 7: Top ranked tokens in SST-2, using P2V-BERT and WN2V-BERT.

R
path2vec wnet2vec

Unique Avg. Unique Avg.

1 ridiculous propelled proves wn.caricature
2 point dreadful wn.movie wn.manhattan
3 extremely confusing wn.ridiculous wn.table
4 a brit wn.caricature wn.infomercial
5 extremely extremely wn.idea wn.elsewhere
6 extremely moderately wn boring wn Nash
7 confusing model wn forgive wn security
8 dumb ##pha wn actress wn aberration
9 proves substitutes wn more wn unmolested
10 good ##zard wn make wn bothersome
11 boring guided wn confusing substitutes
12 and tremendous wn dumb wn evil
13 is succeeds wn status wn drizzle
14 good wildly wn clue wn unfaithful
15 movie rates wn deeply wn frenetic
16 fails diane ridiculous propelled
17 waste ##id no wn egg
18 , bears wn enjoy wn Pluto
19 , quick wn manhattan wn journal
20 but suffer wn better wn moot

4.4.2 Global token attention

To determine the overall attention contribution of path2vec and wnet2vec vs. BERT, we calculate
this for all tokens in the testset and rank the values in descending order. The cumulative attention
to [CLS] in the last layer is visualized in Figure 7 (a), (b). We can clearly see that the first 500
top tokens of wnet2vec provide more attention to the output than BERT, while path2vec lags far
behind.

For the attention development across all layers, we reduce the attention weight per type of
model to a single value, normalizing over all tokens, number of attention heads and model token
ratio. The attention from and to WordNet and BERT embeddings is visualized in Figure 7 (c),
(d). Here we see that both path2vec and wnet2vec give more attention to BERT than vice versa.
With wnet2vec’s highest attention in the last layers, its embeddings contribute more to the final
output than path2vec’s.

In Table 7 we show the top tokens for Fig. 7 (a), (b) using P2V-BERT and WN2V-BERT
models. We do this both for all tokens uniquely, and for tokens with weights averaged over all
occurrences, when there are multiple occurrences found of the same token. Here the finding that
wnet2vec tokens give much more attention than the path2vec tokens is confirmed. Some of the
top words are sentiment words (‘ridiculous, ‘caricature’); other (‘table’, ‘elsewhere’) might be
artefacts of small numbers of occurrences.

5. Discussion

While we have established a model integration where WordNet affects the functioning of BERT,
the question remains why the presented results in Section 4.3 are overall (except for CoLA) not
superior to BERT. There could be several reasons for this; we identified the following limitations.
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(1) Incomplete WN coverage allowing gaps of unfound synsets to change meaning of
sentences. With a WordNet coverage of 56% (including lemmas), we keep missing a lot of terms
from the input text. Although the assumption is that the terms found are complementary,
there are cases where the gaps can lead to completely different meanings, such as missing word
negations. (2) A limited F1 score for synset selection in path2vec when dealing with Word
Sense Disambiguation (WSD) for ambiguous words, e.g., for head, character, nature, etc. On
average, in 43.7% of the cases more than 1 synset are found for a given token in all datasets (with
standard deviation of 2.1%). Given an F1 score of path2vec of .555 for word sense disambiguation
(WSD) (Kutuzov et al., 2019), there is great room for selecting synsets that could change the
message in a piece of text. In addition, although the pruning thresholds set for neighborhood
and similarity speed up the training process of path2vec enormously, they would exclude synsets
that do not fall in the thresholds’ range. However, Kutuzov et al. have shown that the overall
impact is very small. A more concerning aspect is the disconnected synsets, which applies to all
adjectives and adverbs and partly to nouns and verbs. (3) Wnet2vec expresses all synsets
related to a word in one single embedding. This both avoids WSD as well as ensures that
a searched word is in any case represented in the embeddings. However, irrelevant synsets are
also included. Yet, the model appears to perform slightly better than path2vec.

In relation to limitation 1 and 2, relevant related work is Loureiro and Jorge (2019) in which
results on state-of-the-art cross-domain tasks are improved using contextualized embeddings
models: Based on sense-annotated corpora, a pre-trained language model (e.g. BERT) is used to
get sense contextualized embeddings. Using a sense-annotated dataset like SemCor, tokens in text
sequences are annotated with the senses from WordNet. During evaluation, for an input token
embedding the closest neighbor is selected from the sense embeddings collection using k-NN. With
the best model an F1 score of 77.0 is achieved on SemEval2015, improving 5.8 points on the best
baseline score. In extended versions of the model, coverage from WordNet is gradually increased
to full by including, not only senses, but also synsets, hypernyms, up to lexnames, respectively.
For dealing with the limitations of path2vec this will help us to cover adjectives and adverbs as
well, while having much better WSD. In relation to limitation 2 (WSD) in particular, for a given
sentence with words to disambiguate, Huang et al. (2019) leveraged possible sense glosses13 from
WordNet for each ambiguous word and trained BERT (as GlossBERT) on multiple sentence-gloss
pairs, with one pair containing the gloss mapping to the right sense label. On some evaluation
sets, such as Senseval2 and SemEval2007, the results are even improved, reaching F1-scores up
to 0.78. Moreover, Yap et al. (2020) presented yet a more interesting addition for integrating
BERT with WordNet. Their approach is similar to GlossBERT, but instead of fine-tuning on
sentence-gloss pairs as binary classification, in this model a relevance score is computed for each
pair, using a single neuron linear output layer. Additionally, SemCor sense-annotated data is
extended with training sentences extracted from WordNet. On SemEval-15 a new state-of-the-art
F1 result of 84.4 is achieved. A potential solution direction addressing limitation 3 is that, when
the gaps between input words and found synsets change the meaning of the input sequence, one
could decide to leave out the supplement from WordNet for the given input, preventing negative
influence on the output (as shown in Section 4.4.1).

A more general limitation of our approach comes from the challenge that sentiment words
are strongly context-based. A word can be positive in one context and negative in another. By
design BERT uses context and WordNet does not. However, the idea was that with the internal
inclusion approach, WN embeddings would become contextualized as well. Given the attention
contribution shown, this is very likely, but we only include WN embeddings during fine-tuning,

13. Gloss is the formal term used by WordNet for a definition corresponding with one of its concepts, in this case
with a sense.
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while BERT is pre-trained with BERT tokens only. In a complete scenario, WN embeddings
should also be included during pre-training.

Finally, in our experiments with the VGCN-BERT model, on average we got a relatively lower
score for SST-2 (Table 2) than with BERT. This is in contrast to the result presented in the
paper of Lu et al. (2020), where the model scores slightly higher than BERT. The difference we
see is that we average over 5 runs, while the referenced work reports only one run. Based on our
experiments, the VGCN results confirm that it allows for interaction of external embeddings with
BERT word embeddings through the attention mechanism, but not that it necessarily leads to
superior results. The latter can be tested again when the aforementioned limitations have been
tackled.

6. Conclusions

In this paper, we have integrated BERT with WordNet for exploiting explicit lexical semantics
and understanding their role in natural language understanding. We have represented semantic
relationships in WordNet as synset embeddings using path2vec (Kutuzov et al., 2019), and as word
embeddings using wnet2vec (Saedi et al., 2018). We have retrained these models on all WordNet
synsets, increasing their coverage from 27.6% to 42.2% and from 24.5% to 56.1% respectively.

We find that internal inclusion of explicit semantic knowledge from WordNet in BERT gives
competitive results on sentiment analysis (SST-2), and external combination gives better results
on linguistic acceptability (CoLA). However, the model was not found to be outperforming on
the sentence-pair tasks STS-B and RTE. The architecture should be revised for better support.
Interestingly, analysing multi-head self-attentions of BERT has shown a substantial degree of
attention from WordNet embeddings to BERT. Wnet2vec made the strongest contribution.
The cases in which WordNet contributed positively are mainly positive or negative words that
determine the sentiment in a sentence.

In conclusion, this work is a first result showing the possibilities and limitations of the
combination of BERT and WordNet. The analysis of attention weights for the WordNet tokens
shows that the learned representations are promising as a method for injecting external knowledge
and influencing BERT’s attention inside sentences. Nonetheless, our findings require subsequent
research on increasing WN coverage and improving WSD.
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