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Abstract
We are presenting the Belgian Federal COVID-19 corpus, nicknamed the BeCoS (Belgian Covid
Sign language) corpus. It consists of the entire archive of official press conferences from the Belgian
Federal Government concerning the COVID-19 pandemic. The speakers speak mostly in Dutch
or French and occasionally in German, and nearly all speech is accompanied by a deaf signer who
performs live interpreting from what is being said. We have preprocessed the corpus with speaker
diarisation, applied Belgian Dutch ASR, and post-ASR language identification and punctuation
prediction as well as signer diarisation, sign language identification and sign language keypoint
recognition. The corpus is made publicly available.

1. Introduction

Bridging the communicative gap between the deaf, the hard of hearing, and the hearing by providing
automatic translation services between sign languages and spoken languages is the main goal of the
SignON project.1 Building such sign language translation (SLT) engines is a very challenging task,
for a number of reasons, related to the lack of high quality parallel training data for SLT.

A first reason is the fact that sign languages usually do not come in writing, i.e., there is no
standardized written form for sign languages which is used commonly within sign language com-
munities, and machine translation (MT) systems usually suppose written language as their training
data. It is therefore required to apply computer vision techniques to turn sign language videos into
a form usable as source language in machine translation.

A second reason is the fact that there are not many freely available parallel datasets for sign
languages. Flemish Sign Language (VGT – Vlaamse GebarenTaal) in combination with Dutch is a
very low resource language pair, and the available data do not provide enough food for the current
data hungry neural MT approaches.

A third reason is the fact that for most parallel datasets the sign language is a translation or inter-
pretation of the spoken language. It is therefore a form of translationese sign language, as the spoken
language is the source and the sign language is the target of the original translation/interpretation.

A fourth reason is the fact that the signer needs to sign authentic sign language. In the case of
interpreting of spoken languages, it is normal professional practice that the interpreter is a native

1. https://signon-project.eu/
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speaker of the target language (just as is the case with translators). This, of course, poses difficulties
in the case of interpretation into sign languages, as the interpreters have to hear the source they
have to interpret. Therefore, the interpreter is most often not a first-language (L1) signer and not
part of the authentic sign language community.

During the COVID-pandemic (2020 - 2022?) sign languages suddenly became very visible to
the general public, as the governmental press conferences, aimed at all citizens, were live and in
real-time interpreted into sign languages. This was one of the triggers to collect these data and use
them within the SignON project.

With the dataset described in this paper we address most of the aforementioned reasons. The
first reason (lack of a standardized written form) is partially addressed by providing automatically
extracted keypoints from the sign language interpreters, providing the corpus user with a first,
admittedly still very raw, reduction of the signer’s data compared to the video signal. The second
reason (scarcity of parallel datasets) is addressed by making this corpus freely available for further
research. The third reason (sign language as a target language) is not addressed as it still concerns
an interpretation from spoken Dutch into VGT. The fourth reason (the need for authentic signing),
though, maybe surprisingly, is addressed. The SL interpreters are members of the deaf community.
The spoken language utterances are first interpreted by a hearing SL interpreter, and this signal
is re-interpreted by a deaf SL interpreter, resulting in authentic L1 SL. Whether this chain of
interpretation leads to information loss or change would be a topic of study in its own right, but
unfortunately we could not get hold of the videos of the intermediate interpretation.

Section 2 describes where to find resources for SLT. Section 3 describes the BeCoS corpus and
how it was processed. Section 4 draws some conclusions, sketches possible future work and describes
the availability of the corpus for researchers.

2. Related work

There are several, albeit rather small, datasets that contain sign language. A recent overview can
be found in Kopf et al. (2021) and a compendium containing updated information was presented
in Kopf et al. (2022). It has to be noted, though, that many of these data resources are not easily
accessible and downloadable, let alone suitable, for NLP research (De Sisto et al. 2022).

For VGT, there is the Corpus Vlaamse Gebarentaal (Van Herreweghe et al. 2015). This corpus
has the advantage of being an ‘SL as the source’-corpus. It is largely built from elicited material,
and was built for the purpose of linguistic study of VGT, not for machine learning. It is rather small
according to NLP standards. It is also not (yet) fully translated nor annotated, and is therefore of
limited use in the context of SLT. This corpus (currently) contains 2737 parallel sentences between
glosses and Dutch text, which is insufficient for SLT systems. We have made this corpus available
for download at http://hdl.handle.net/10032/tm-a2-v6.

Another VGT dataset, explicitly geared towards machine learning is the Content4All dataset
(Camgöz et al. 2021). This dataset consists of television broadcasts, covering the domains news
and weather, associated with sign language interpretation. Downsides of these data are that the
SL is the target language, and the interpreters are hearing interpreters. An upside in the context
of SLT is that pose information of the signers, which was automatically extracted with OpenPose
(Cao et al. 2019), is made available for download. Another plus is that the closed caption subtitles
are also made available, providing a written representation of what is being said, leading to a truly
parallel corpus.

Within the SignON project we are collecting more resources containing VGT, such as the pro-
ceedings of the plenary sessions of the Belgian Federal Parliament, which have been interpreted for
some time. Processing of these data in a similar way as the BeCoS dataset is ongoing and can be
expected in the near future, but the data suffers from several drawbacks, such as VGT as a target,
and hearing non-L1 interpreters.
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We are also in the process of collecting VGT-as-a-source material, but this process is still too
premature to provide more details.

3. The corpus

3.1 Dataset description

The videos that constitute the raw source material of this corpus have been downloaded from https:

//news.belgium.be/nl/corona, which contains the Belgian federal COVID-19 press conference
streaming archive.

A total of 220 videos of press conferences are available, for a total running time of 7 days, 9
hours, 34 minutes, 23 seconds. All but seven videos contain sign language interpretation. There are
multiple speakers per press conference.

The corpus is multilingual, in the sense that, as typically is the case at the federal level in
Belgium, speakers may speak Dutch, French or (to a much lesser extent) German. A single speaker
may switch language, leading to parts which are in non-native speech. When the original speech is
in Dutch, it is interpreted in VGT; when the original speech is in French, it is interpreted in LSFB
(Langue des Signes de Belgique Francophone – Sign Language of Francophone Belgium).

3.2 Preprocessing

Ideally, we could perform some processing on the audio, such as audio language identification, audio
transcription for Belgian Dutch, audio transcription for Belgian French, speaker diarisation, and
utterance segmentation. Section 3.2.1 presents the audio processing.

Concerning the sign language interpretation, ideally we could perform sign language recognition,
signer diarisation and utterance segmentation. Sign language preprocessing is described in section
3.2.2.

3.2.1 Audio processing

We did not find any freely available tools that would allow us to perform language identification on a
multilingual audio signal, indicating from when to when which language was used. The approach of
Valk and Alumäe (2021) for language identification2 classifies a wave file according to the language
spoken, with an error rate of 6.7%. But in our case the data consist of long multilingual files, and
building a language classifier based on Valk and Alumäe (2021) that classifies a sliding window of
audio in order to determine the exact moments of code switching was beyond the scope of the current
work. Future releases of the automated corpus annotations may use such an approach. For now, we
had to come up with a work around for this problem.

For the audio transcription of Belgian Dutch, we could rely on Van Dyck et al. (2021), which is
a Kaldi-based (Povey et al. 2011) ASR system, with an acoustic model for Belgian Dutch, trained
on the Spoken Dutch Corpus (Oostdijk et al. 2002) and a general language model, trained on
newspapers and Dutch corpora. It outputs files in the ctm3 format which contains the recognized
words, timestamps, and confidence values per word. This information is converted into ELAN
annotation format as a separate tier. ELAN (Wittenburg et al. 2006) is a well known software
environment for linguistic annotation, and is also often used in the sign language corpus community.

The result of the previous step is that we sometimes apply a Belgian Dutch ASR onto spoken
French, which results in rather non-sensible Dutch output with relatively low confidence values. By
filtering out low confidence word sequences we can determine with reasonable accuracy where French
audio occurs.

2. As available on https://huggingface.co/speechbrain/lang-id-voxlingua107-ecapa

3. CTM stands for time-marked conversation file.
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We used a sliding window Wk = {wk, wk+1, ..., wk+n} of ASR output words W = {w1, ..., wz}
of length n = 5, and a threshold θ = 0.9. If within Wk there are more than l = 3 words that have
a confidence value c where c > θ, we consider the language to be Dutch. If only two words have a
c > θ, we check whether the words previous to the current Wk, i.e. wk−2 and wk−1 were classified
as Dutch. Otherwise the language for the words in Wk was classified as non-Dutch. The values of
these parameters were determined on a small development set. Determining the exact borders of
these sequences proves to be more difficult. A formal evaluation on how well the filtering works, and
whether a different threshold might yield better results remains to be done.

For Belgian French speech recognition, we did not find any freely available tools that could run
on our hardware and deal with rather long audio sequences (often more than 1 hour). For future
versions of the automated corpus annotations, we will test whether the approach of Grosman (2021)
available at https://huggingface.co/jonatasgrosman/wav2vec2-large-fr-voxpopuli-french
provides a viable solution.

For speaker diarisation we used a web service through the CLARIN Infrastructure at https://
clarin.phonetik.uni-muenchen.de/BASWebServices/interface/SpeakDiar (Bredin et al. 2019)
that takes audio as input and returns an ELAN annotation file with a speaker diarisation tier. We
have not formally evaluated how well speaker diarisation works for Dutch, but spot checks showed
good results.

Utterance segmentation is performed on the basis of the recognized speech, taking the diarisation
into account, and is using the approach described in Vandeghinste and Guhr (2022). It is a transfer
learing approach which finetuned the RobBERT transformer language model (Delobelle et al. 2020)
onto a punctuation and segmentation classification task.

The total number of utterances, be it delimited through speaker diarisation, silence (threshold
of two seconds), or segmentation prediction amounts to 52,799, totaling 671,326 recognized words
that have been classified as Dutch. The outputs of each of the audio processing steps are available
in separate ELAN tiers, and can be used for further research.

We have also extracted all text in txt files and processed them with the Frog linguistic analysis
suite (Van den Bosch et al. 2007), making the data available in FoLiA (van Gompel and Reynaert
2013) and tab-separated form.

3.2.2 Sign Language Processing

Sign Language Identification The identification of which sign language is being signed is a
challenging problem. It is compounded in the case of this corpus, as VGT and LSFB are related
languages that share many similarities (Vermeerbergen et al. 2013). However, the persons interpret-
ing VGT in the COVID-19 press conferences are different from those interpreting LSFB. Therefore,
we can rely on signer diarisation to detect changes in the sign language.

Signer Diarisation The first stage in sign language processing is signer diarisation, i.e., deter-
mining when there is a signer change. In the current corpus, this usually indicates a change in
sign language as well. Signer diarisation on this corpus comes with several challenges. The deaf
interpreter is shown picture-in-picture in the bottom right of the press conference video: this box
needs to be extracted. The image quality of this picture-in-picture video differs between videos: the
resolution (including aspect ratio) and frame rate can differ. An additional difficulty is that the
interpreters for VGT and LSFB walk in and out of frame when the spoken language changes.

We take a multi-step approach towards signer diarisation to account for these difficulties. First,
we detect the coordinates of the picture-in-picture view: more specifically we employ a person
detector and crop the video according to the resulting coordinates. Second, we automatically segment
the video whenever the interpreter changes. We do this by comparing face embeddings in a latent
space.

The picture-in-picture view of the interpreter is always in the bottom right. We use YOLOv5
(Jocher et al. 2021) to detect all people in one frame of the video. By applying YOLOv5 to a
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frame of the video, we obtain a set of bounding boxes B. A bounding box b ∈ B is a 4-tuple:
b = (xmin, ymin, xmax, ymax). The interpreter bounding box b is determined as,

bi = a

(
argmax
ymin,xmin

B

)
, (1)

that is, it is the bounding box with the highest values for the top left coordinate from among all
bounding boxes in B. The function a in equation 1 adapts the bounding box to account for the
interpreter moving around in the duration of the video. It sets the maximum x and y values (i.e.,
the bottom right coordinate) to the full pixel resolution of the video. It also decreases the top left
coordinate by 10% of the full pixel resolution of the video. Let w and h be the (constant) width and
height of the video. Then,

a(b) =

(
xmin − w

10
, ymin − h

10
, w, h

)
. (2)

This approach can be performed automatically on all videos in the corpus. The results are then
visually inspected and corrected where necessary. In case no interpreter was present in the recording
(and thus there is no SL information), this is spotted during the visual inspection stage, and such
files are not processed further. This is the case for seven out of 219 files (3%).

We use FaceNet (Schroff et al. 2015) to detect the face of the interpreter and compute a face
embedding. This allows us to effectively compare two face images by computing the distance between
two corresponding vectors. Whenever the face embedding changes by a sufficient amount, we create
a new segment. In order to account for small variations that may occur due to noise or due to the
arms or hands of the interpreter obstructing their face, we use a simple moving average to smooth
out the predictions.

We keep two buffers p (previous) and c (current). These buffers are equally long sequences of
face embeddings. The buffer length M is equal to the amount of frames per second of the video:
together, p and c account for two seconds in the video.

The buffers are filled in a first-in-first-out (FIFO) manner with a warm-up stage. In the warm-
up stage, first p is filled with the face embeddings e of N video frames. Then, c is filled with the
subsequent N face embeddings. If, for a given frame, no embedding is found, then that frame is
skipped. After the warm-up period, p and c are rotated. Let

p(N) = (e1, e2, . . . , eM ) (3)

and
c(N) = (eM+1, eM+2, . . . , cN ) (4)

be the buffers after N = 2M frames (e.g., after the warm-up period), then

p(N+1) = (e2, e3, . . . , eM , eM+1) (5)

and
c(N+1) = (eM+2, eM+3, . . . , eN , eN+1) (6)

are the buffers after N + 1 frames.
These buffers are used to implement the simple moving average of the Euclidean distance between

face embeddings of frames that are M apart. We thus compute a new sequence of M distances
d = (d1, d2, . . . , dM ), where di = ||ci − pi||2. When the average Euclidean distance exceeds a
threshold θ, we create a new segment. That is, when

1

M

M∑
i=1

di > θ. (7)
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We set θ = 1 (empirically found). At this point, the buffers p and c are flushed and a new warm-up
period is triggered to avoid satisfying the condition in Eq. 7 multiple times in short succession.

As a result, we get automatic boundary detection whenever the face embedding changes. This
means that we do not need to label the entire videos manually, but simply need to annotate individual
segments as VGT or LSFB. This is performed with a custom-made tool. Due to false positive
boundary detections, we may have two or more segments with identical language annotations. These
segments are merged automatically in a post-processing step.

The entire process of signer diarisation is illustrated in figure 1.

Figure 1: The signer diarisation process. Top: extracting the picture-in-picture view of the inter-
preter using YOLOv5. Bottom: detecting interpreter changes by comparing face embed-
dings obtained using Facenet.

Feature Extraction The second stage in sign language processing is providing a sign language
representation that can readily be used for sign language recognition or translation. Similar to
previous works, e.g., Camgöz et al. (2021), we provide human pose keypoints extracted from the
video. Such keypoints can be used as input features for recognition and translation models without
further processing by the user of the corpus. We use the MediaPipe toolkit (https://google.
github.io/mediapipe/) because it is easy to install and use, has a low computational cost, and
provides keypoints of sufficient quality to train recognition models with (Moryossef et al. 2021).

The MediaPipe toolkit extracts 75 keypoints per video frame, i.e. 33 body pose keypoints, see
figure 2, and 21 hand keypoints per hand, see figure 3. The keypoints are normalized with respect to
the image dimensions. Missing values (i.e., keypoints that MediaPipe could not predict) are indicated
as not-a-number (NaN) values. These values can be replaced using an imputation approach in the
SLT models that make use of this corpus.

These 75 keypoints, in three dimensions, amount to 225 datapoints per frame. The videos have
framerates of 25 frames or 30 frames per second, so that amounts to 5625 or 6750 datapoints per
second. It would be too much of a burden to put these datapoints on ELAN’s shoulders, so these
data is delivered in separate files.

These datapoints can form the starting point for sign language recognition or translation. Exam-
ples of such “pose based” models can be found in scientific literature, e.g., (Moryossef et al. 2021),
(Camgöz et al. 2021), (Orbay and Akarun 2020). The conversion of an ELAN SL dataset to a
dataset that is ready for use in machine translation models is described in (De Sisto et al. 2022).
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Figure 2: MediaPipe Body Keypoints. Source: https://google.github.io/mediapipe/

solutions/pose.html. Accessed: September 12, 2022.

Figure 3: Mediapipe Hand Keypoints. Source: https://google.github.io/mediapipe/

solutions/hands.html. Accessed: September 12, 2022.
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3.2.3 Interaction between audio and sign language processing

Although one might think that when determining the time stamps of signer change, this information
could be used to determine the time stamps of language change in the speaker, this does not seem
to be the case. As it concerns unscripted live videos without post-editing, the signers have to follow
the order of speech events, and always lag behind.

4. Conclusions and future work

4.1 Conclusions

We have collected the videos of all the official COVID-19 press conferences of the Belgian Federal
government. These have been automatically annotated with Belgian Dutch speech recognition,
post-ASR language identification, speaker diarisation and segmentation.

Nearly all of these videos contain live sign language interpretation by deaf interpreters. Spoken
Dutch is interpreted into VGT, Spoken French is interpreted into LSFB. The signing signal has been
automatically annotated with signer diarisation and keypoint recognition. All but the keypoint
recognition have been integrated into a single ELAN file per press conference, with the different
annotation layers into different tiers.

With this dataset we hope to partially lessen the lack of sufficient resources for building an SLT
system from VGT to Dutch or the other way around. We are fully aware of the limitations of our
automatic processing but wanted to release the dataset as it is now, as SLT research is in dire need
of such data.

In order to use the dataset for training actual sign language translation from VGT into Dutch,
we advise the approach and tools described in De Sisto et al. (2022), which homogenizes different
formats sign language datasets come in into a format which can be and has been used for machine
learning purposes.

4.2 Future work

While the processing of the dataset as described was already a significant effort, some aspects leave
ample room for further improvement, and will hopefully be addressed in future versions of the corpus
annotations.

The Belgian Dutch ASR system was taken as it came, without domain adaptation with respect
to the language model or the lexicon. By training the ASR language model on domain specific data,
and extracting a lexicon from such data, recognition results could be improved.

The post-ASR language identification can surely be improved, although we have not yet been
able to formally evaluate the current approach. We expect that training a classifier that makes use
of pretrained language models could improve the results. An approach that uses spoken language
identification on the audio, as described in Valk and Alumäe (2021) and mentioned in section 3.2.1
or that combines both the post-ASR language identification with the spoken language identifica-
tion would probably be even better. If this is the case, we will rerun language identification and
subsequent processing steps in a next release of the automatic annotations.

We would also like to apply Belgian French ASR to the spoken Belgian French in order to also
preprocess the Belgian French-LSFB parallel pair in a similar matter than the Belgian Dutch-VGT
language pair. For future versions of the automated corpus annotations, we will test whether the
approach of Grosman (2021)4 provides a viable solution.

Another matter concerns the segmentation of sign language utterances. While there is research
on sign segmentation, i.e., detecting the borders of individual signs (Renz et al. 2020, Renz et al.
2021, De Sisto et al. 2021), segmentation at the utterance level is rarely discussed (Mesch and
Müller de Quadros 2019) and is not applied on these data.

4. Available at https://huggingface.co/jonatasgrosman/wav2vec2-large-fr-voxpopuli-french
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Furthermore, the recognition of the SL keypoints still results in rather raw data. Subsequent
annotations could interpret these keypoints into movement recognition or even lexicalized sign recog-
nition, leading to automatically generated glosses.

Additional automatic annotation of the transcribed Dutch with part-of-speech tagging and
lemmatization is also still on our to-do list.

Ideally, (part of) the dataset would be manually transcribed and annotated, to evaluate or even
train new and better models, but this is out of the scope of the SignON project.

4.3 Availability of the dataset

The dataset is available for download for researchers. The persistent identifier of the landing page
is http://hdl.handle.net/10032/tm-a2-v5.
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