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Abstract

The advent of large language models (LLMs) has significantly improved performance across various
Natural Language Processing tasks. However, the performance of LLMs has been shown to deteri-
orate over time, indicating a lack of temporal generalization. To date, performance deterioration of
LLMs is primarily attributed to the factual changes in the real world over time. However, not only
the facts of the world, but also the language we use to describe it constantly changes. Recent stud-
ies have indicated a relationship between performance deterioration and semantic change. This is
typically measured using perplexity scores and relative performance on downstream tasks. Yet,
perplexity and accuracy do not explain the effects of temporally shifted data on LLMs in practice.

In this work, we propose to assess lexico-semantic temporal generalization of a language model
by exploiting the task of contextualized word definition generation. This in-depth semantic as-
sessment enables interpretable insights into the possible mistakes a model may perpetrate due
to meaning shift, and can be used to complement more coarse-grained measures like perplexity
scores. To assess how semantic change impacts performance, we design the task by differentiating
between semantically stable, changing, and emerging target words, and experiment with T5-base,
fine-tuned for contextualized definition generation.

Our results indicate that (i) the model’s performance deteriorates for the task of contextualized
word definition generation, (ii) the performance deteriorates more for semantically changing words
compared to semantically stable words, (iii) the model exhibits significantly lower performance and
potential bias for emerging words, and (iv) the performance does not correlate with cross-entropy or
(pseudo)-perplexity scores.1 Overall, our results show that definition generation can be a promising
task to assess a model’s capacity for temporal generalization with respect to semantic change.

1. Introduction

Large language models (LLMs) are increasingly employed for linguistic tasks that require advanced
language understanding and generation such as question answering, text summarization, and ma-
chine translation. These models are typically pre-trained on large text corpora, from which they learn
the intricate patterns of human natural language use. Despite their overall impressive performance,
LLMs exhibit degradation over time, indicating a lack of temporal generalization, i.e., the ability
to transfer their capabilities to data beyond their training period (Biesialska et al. 2020, Lazaridou
et al. 2021, Loureiro et al. 2022b). This is not surprising, as the predominant paradigm of language
modeling is static (Bender et al. 2021, Lazaridou et al. 2021). (Pre-)training methods lack con-
sideration for the temporal dimension (Biesialska et al. 2020, Dhingra et al. 2022), and evaluations
commonly adhere to a temporally aligned setup, where training and test data overlap chronologically
(Luu et al. 2022). In contrast, in real-life natural language processing (NLP) applications, models

1. Code and data available at https://github.com/IrisLuden/Beyond_Perplexity-TemporalGeneralization-Def
initionGeneration
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are often pre-trained on data from one time period and then deployed for tasks which inherently
involve temporally shifted data.

To date, research on performance deterioration due to lack of temporal generalization has pri-
marily involved analyzing the impact of factual changes in the real world on LLM performance
(Lazaridou et al. 2021, Agarwal and Nenkova 2022, Dhingra et al. 2022). However, not only the
facts of the world, but also the language we use to describe it changes over time. Language is a
dynamic system undergoing constant evolution, marked by the emergence of new words and phrases,
others falling out of use, and shifts in word meaning and usage. For instance, the interpretation of
the word ‘zoom’ varies depending on the time and context of inquiry: before 2020, ‘zoom’ primarily
referred to the act of making a continuous humming, buzzing, or droning sound while moving quickly.
However, with the widespread use of the video conferencing platform Zoom Video Communications,
the term gained a new meaning associated with virtual meetings.2 Ideally, an LLM’s output for,
say, a text summarization task, should adapt to such a shift accordingly.

To what extent does LLM performance deteriorate over time due to semantic change, and what
potential errors may arise when outdated LLMs are used for practical applications? Factual changes
are easily assessed through tasks like question answering, e.g.: “Who is the president of the US?”,
whereas accurately evaluating an LLM’s representation of word meanings demands fine grained se-
mantic analysis. Recent studies point to a relationship between semantic change and performance
deterioration as measured with (pseudo)-perplexity scores (Ishihara et al. 2022, Su et al. 2022). How-
ever, perplexity is not necessarily a proper measure of performance deterioration because a model’s
high perplexity on a text sequence does not necessarily imply poor performance on a downstream
task (Röttger and Pierrehumbert 2021, Agarwal and Nenkova 2022). Nor is it an exhaustive mea-
sure due to its intrinsic nature: increased perplexity scores offer limited insight into the practical
mistakes that an LLM can make in real-life applications. Given the potential societal impact of
NLP applications, it is essential to understand how performance deterioration, particularly caused
by semantic change, is manifested in LLM output.

In this work, we propose to provide deeper understanding of LLM’s lexico-semantic temporal
generalization through the task of contextualized word definition generation. The task is defined
as follows. Given a context sentence c in which a target word w is used, provide the definition
of the word w specifically in context c. Moving beyond perplexity, this semantic assessment offers
human-interpretable insight into the ability of LLMs to infer the correct interpretation of words with
changing or emerging meanings. Thus, contextualized definition generation offers a dual perspective:
on the one hand, it allows for a quantitative measurement of a model’s lexical understanding, and on
the other hand, it gives qualitative insight into LLM’s ability to process lexical semantic information
through human-interpretable generated definitions. Therefore the task can be used to complement
more coarse-grained measures like perplexity.

We measure temporal generalization by comparing the performance of a model on the task of
contextualized word definition generation in two setups: a temporally aligned setup, where the
test input overlaps in time with the model’s training period, and a temporally misaligned setup,
where the test input originates from a time period beyond the training period. To assess temporal
generalization in the face of semantic change in particular, we differentiate between three different
word categories: semantically stable words, semantically changing words, and neologisms. This
enables the separate analysis of a model’s performance for instances where semantic change is, and
is not present. The LLM under scrutiny is T5-base, pre-trained until April 2019. T5-base is fine-
tuned for contextualized definition generation following Huang et al. (2021). We collect a diachronic
corpus C1∪C2 of Twitter and Reddit data, such that C1 is temporally aligned with T5’s pre-training
period, and C2 is temporally shifted (i.e., it only includes data from later times periods). We apply
methods for detecting lexical semantic change to this diachronic corpus to select a set of 20 stable
and 20 changing target words, and use a heuristic strategy to find emerging new words. Using

2. See https://www.oed.com/dictionary/zoom_v2?tab=meaning_and_use#1310257030
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these three sets of target words, we create a diagnostic task of 400 <context, word> pairs in total
and conduct a human evaluation study. We use human evaluation to assess whether the generated
definitions for these <context, word> pairs are correct. Additionally, we analyse how T5-base,
fine-tuned for contextualized definition generation, performs on this diagnostic task, and how this
performance relates to the perplexity scores of the pre-trained model on the corresponding input.

Our results show that (i) the model’s performance is adversely affected when processing tempo-
rally shifted input compared to input that is temporally aligned with the model’s pre-training period,
(ii) the performance deterioration is stronger for semantically changing and emerging words as op-
posed to semantically stable words, and (iii) cross-entropy loss and (pseudo-)perplexity scores do
not reliably detect poor lexico-semantic temporal generalization. Our findings demonstrate that the
proposed framework provides a promising and intuitive methodology to evaluate an LLM’s ability to
adapt its lexical knowledge to changing meaning conventions when semantic change has taken place.
Our findings also underline the importance of assessing the capacity for temporal generalization
of fine-tuned LLMs more explicitly than through perplexity scores, as perplexity is not necessarily
representative of how well LLMs perform on downstream tasks.

2. Related Work

2.1 Temporal generalization

Hupkes et al. (2023) define ‘good generalization’ as the ability to successfully transfer representations,
knowledge and strategies from past experience to new experiences. They explain that systematic
generalization testing is not the status quo in the field of NLP. For decades, generalization was
evaluated by training and testing models on different but similarly sampled data, assumed to be
independent and identically distributed (iid). As a consequence, models do not generalize robustly in
non-iid scenarios, causing performance to deteriorate when the evaluation data is different from the
training data, for instance in terms of genre, topic or domain. The capacity to generalize over time is
called temporal generalization, and is considered a form of domain adaptation, considering different
time periods as distinct domains. Hupkes et al. (2023) propose the GenBench taxonomy describing
five axes along which generalization studies can differ: the motivation, the type of generalization they
aim to solve, the type of data shift they consider, the source from which this data shift originated,
and the locus of the shift. We include a GenBench card for our proposed assessment in Appendix A.

LLMs are commonly trained and tested on data from overlapping time periods, while in practice,
LLMs are first trained on data from one time period and thereafter applied to temporally shifted
data (Sinha et al. 2021, Luu et al. 2022, Jang et al. 2022, Su et al. 2022, Hupkes et al. 2023).
This phenomenon is often called temporal misalignment. Luu et al. (2022) showed that temporal
misalignment has strong effects on performance deterioration of several LLMs for eight different
tasks. They also showed that temporal (domain) adaptation by continued pre-training of the LLMs
can improve performance, but that this effect is rather small compared to task specific fine-tuning
on data overlapping with the test period.

Lazaridou et al. (2021) described temporal generalization as a model’s ability to generalize well to
future data from beyond their training period. ‘Good generalizing’ means that performance should
remain consistent regardless of the time period it is tested on: if a model is capable of temporal
generalization, performance should not deteriorate for data from beyond their pre-training period. To
inspect LLM capacity for temporal generalization, Lazaridou et al. (2021) measure the performance
deterioration of a Transformer-XL over time on temporally shifted data. Deterioration of a LLM is
defined in terms of the relative performance between two setups. A “time-stratified-setup” where the
LLM is tested on temporally shifted data, and a control-setup where the test data overlaps in time
with the LLM’s pre-training period. They compute perplexity scores for texts of different categories
in both setups. The resulting ‘relative perplexity’ increases most for (1) texts containing emerging
new words that have rarely been used in the training period, (2) texts covering politics and sports, (3)
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proper nouns and numbers, and (4) open-class nouns. The model’s performance is also assessed for
two downstream tasks: closed-book question answering, where performance is observed to decrease
significantly, and reading comprehension, where performance remains consistent. This difference is
somewhat surprising: Is performance deterioration for the question answering task solely caused by
lack of factual information about the unseen time period? Or is it due to lack of lexico-semantic
temporal generalization?

Röttger and Pierrehumbert (2021) showed that even big changes in perplexity may lead to small
changes in downstream task performance. They experiment with ‘temporal domain adaptation’,
considering different time periods as different data domains, and perform extra training of models on
data from later time periods. They find that temporal adaptation improves upstream and temporal
fine-tuning downstream task performance. Moreover, time-specific models generally perform better
on past than on future test sets. However, they also show that adapting BERT to time does not
improve performance on the downstream task over only adapting to domain. Lastly, they show that
temporal adaptation captures event-driven changes in language use in the downstream task, but not
necessarily those changes that are actually relevant to task performance.

Dhingra et al. (2022) observe that state-of-the-art language models are generally poor at con-
necting factual information to the temporal scope it applies to. LLMs are not trained to take into
account the temporal context of the training data (Dhingra et al. 2022, Loureiro et al. 2022b). Un-
derstanding how facts relate to time can be seen as a prerequisite for temporal generalization: if a
model generalizes its performance over time, it should be able to connect information it learns to the
temporal period this information applies to. Again, this raises the question of what causes perfor-
mance deterioration over time in question answering tasks: Has the model not been exposed to the
correct facts during training? Or is the model architecture simply not designed to take temporality
into account?

A few attempts have been made to take the temporal dimension into account when training
LLMs. Rosin et al. (2022) make an interesting attempt towards training “time-aware” language
models. They propose to train what they call a ‘temporal contextual language model’, which uses
the timestamp of a text as an additional context to the texts. In this way, the model is not only
trained to predict the text sequences based on the context words, but also on the time at which the
text was written. They show a positive effect on performance in the “sentence time prediction task”
and also on semantic change detection.

Loureiro et al. (2022b) train a set of language models called TimeLMS that are specialized on
diachronic twitter data. They first pre-train a ‘base’ RoBERTa model on data up to 2019. Next,
they continually train a new model from the base model every three months. The process of updating
the base model follows the same procedure as the initial pre-training. Their work allows the NLP
community to use up-to-date LMs of any period of time, which can be useful to compare performance
in the quest to alternatives to the current static language modeling paradigm.

Jang et al. (2022) introduce a benchmark called TemporalWiki that is collected by an algorithm
that detects which facts have been newly added to Wikipedia at a certain point in time. This
benchmark is used to continually train LMs only on an ‘updated’ portion of English Wikipedia
data, such that a LM only needs to be ‘updated’ on a smaller portion of data that is considered
relevant because it contains new information. This would reduce the amount of extra training of
an outdated LM. They find that training an LM on this TemporalWiki data set achieves better
perplexity than on the entire Wikipedia with 12 times less computational costs.

2.2 Temporal generalization and semantic change

Several works have indicated that semantic change is related to temporal performance deterioration.
Su et al. (2022) examine the impact of semantically changing words on the performance of a language
model. They do so by showing that extra training on data containing semantically changed words,
opposed to just a random set of words, improves the perplexity scores of pre-trained language models
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significantly. Their method even yields performance improvement over domain adaptation methods
on two different pre-trained language models and four data sets. This indicates that language models
suffer from performance deterioration due to lack of understanding of semantically shifted words.

Ishihara et al. (2022) show a negative correlation between semantic change and perplexity for
Word2Vec and RoBERTa. They show that a large time-series performance degradation occurs in
the years when the so-called semantic shift stability is smaller. The degree of semantic shift is
approximated by performing lexical semantic change detection between Word2Vec models created
from corpora of different time periods. A low degree of semantic shift between two time periods
implies semantic shift stability between these time periods.

Loureiro et al. (2022a) present a benchmark called TempoWic. This benchmark consists of
tweets containing ‘trending words’, as trendiness of a word is an indicator of semantic change. For
each trending word, the benchmark provides ground truths about whether its meaning is identical
or different in two tweets. This benchmark can thus be used to assess how well a model predicts
whether the meaning of a target word is identical, or different in two different contexts.

Eisenschlos et al. (2023) experiment by ‘mimicking’ the scenario that new words enter a language.
They test how the performance of an LLM is impacted on the task of part-of-speech tagging, when
the LLM is not acquainted with the key verb phrase in a sequence to be tagged. They simulate
neologisms by replacing existing nouns in the agent/object relation with a verb with made-up words.
They show that the performance of the model is decreasingly worse when it is presented with input
containing unknown words. However, performance increases tremendously if the LLMs are provided
a definition for the new words, indicating that LLMs are capable of temporally generalizing as long
as they are provided with the necessary information.

In sum, prior work has indicated that LLMs suffer from temporal performance deterioration,
and that this deterioration is at least partially a consequence of temporal semantic change. So
far, results are mainly based on perplexity scores, bet these do not give insight into the possible
semantic mistakes a LLM can make when it is outdated. A lexico-semantic analysis as to why an
LLM deteriorates over time is lacking.

3. Lexico-Semantic Temporal Generalization: Hypotheses

We propose to assess the temporal generalization of a language model in the face of lexical semantic
change by exploiting the task of contextualized word definition generation. Recall that the task,
exemplified in Figure 1, can be defined as follows: given a target word w in a context c, the task
consists in generating a dictionary-style natural language definition of w‘s meaning in c. Autore-
gressive LLMs can be directed to perform this task through methods such as fine-tuning or few-shot
in-context learning, and their performance can be evaluated using reference-based natural language
generation (NLG) measures (when reference contextualized definitions exist) or human evaluation.
For instance, Mickus et al. (2019) fine-tune a Transformer model (Vaswani et al. 2017) for this task,
and use perplexity to evaluate the model.

More recently, Giulianelli et al. (2023) use Flan-T5 to generate word definitions using prompts
consisting of an example usage followed by an instruction, and they evaluate their approach with
human evaluation.

Definition generation models have proved promising, but they may still struggle with part-of-
speech mismatching, lack of fluency, finding the appropriate specificity for a definition, and avoiding
self-referential definitions (Noraset et al. 2017) and hallucinations (Mickus et al. 2022). Yet, we argue
that the in-depth semantic assessment offered by this task provides interpretable insights into the
possible mistakes a model may perpetrate due to meaning shift, and therefore is a useful complement
to more coarse-grained measures like perplexity scores.

Given a model trained on data up to time t, we assess its temporal generalization by testing its
performance on the task of contextualized word definition generation using test sentences originating
after its training period. In particular, we compare its performance in a standard temporally aligned
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word:bank context:I need to withdraw money from the bank ⟨/s⟩

LLM

an institution that invest money deposited by costumers ⟨/s⟩

input

output

word:bank context:a bank of snow ⟨/s⟩

LLM

a slope, mass or mound of a particular substance ⟨/s⟩

input

output

Figure 1: Two examples of contextualized word definition generation.

setup, where all datapoints in both train and test sets have a timestamp t− <= t, to its performance
in a temporally misaligned setup, where all the sentences in the test set originate at some time t+ > t.
A model is able to temporally generalise in the presence of semantic shift if its performance does not
deteriorate in the temporally misaligned setup compared to the standard temporally aligned scenario.

As mentioned in the Introduction, we distinguish three categories of target words for the task
of contextualized word definition generation: Semantically stable words are words that have not
undergone semantic change since time t; semantically changing words are words that have undergone
semantic change since time t; finally, emerging words are words that have either newly entered a
language’s vocabulary after t or occur significantly more frequently since t. These three categories
allow us to formulate three hypotheses:

Hypothesis 1 Performance on the contextualized word definition generation task will be higher
for texts with timestamps t− <= t than for texts with timestamps t+ > t for any of the target word
categories. That is, we hypothesise that models will show poor temporal generalization: a model’s
understanding of word meaning will decline when word usages are sampled from temporally shifted
time periods.

Hypothesis 2 Performance deterioration in the temporally misaligned setup will be more preva-
lent for changing target words than for stable target words. Since previous studies have indicated
that there is a correlation between semantic change and performance deterioration, we expect that
semantic change will impact a model’s performance on contextualized word definition generation.

Hypothesis 3 Performance on emerging target words will be lower than for stable target words.
Since emerging words are words that have newly appeared or rapidly increased in frequency since t,
it is likely that the model has not been exposed to many training instances containing the emerging
target word, making it more difficult to generate adequate definitions for them.

Besides quantitative scores, the task also enables qualitative analysis of the generated content: the
generated definitions themselves reflect “semantic information” that a model emulates. Analysing
output in the form of definitions makes it possible to get human-interpretable insight into the
implicit semantic information that a model represents of the words under investigation. This can
also provide insight into the possible subtle semantic mistakes that a model can make when applied
to other (generative) tasks such as text summarization.

4. Experimental Setup

In this section, we describe the setup in which we explore the use of the task of contextualized
word definition generation to assess lexico-semantic temporal generalization. First, we collect two
corpora: one temporally aligned with the model’s training period and another temporally misaligned.
Using these corpora, we gather target words for each of the three categories (stable, changing, and
emerging) with the assistance of a lexical semantic change detection system. For each target word,
we also extract a selection of usages to obtain ⟨word, context⟩ pairs that can be used as input for
the task of contextualized word definition generation. Next, we detail the pre-trained LLM and the
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fine-tuning method employed to perform the task. Finally, we explain the evaluation process. We
will make available both the corpora we created and our experimental code upon publication.

4.1 Corpus creation

We create two corpora, C1 and C2, to identify candidate target words for our three categories of
interest: stable, changing, and emerging words. As explained in more detailed in Section 4.3, we
experiment with T5-base (Raffel et al. 2020). Since T5-base was pre-trained on data until April
2019, we set t as the 1st of May 2019. We set tend at the latest possible time of conducting the
experiments, February 2023. Thus, our temporally shifted corpus, C2, covers data from 46 months
in total. To keep the periods of both corpora equal, we set tstart := 1 July 2015, such that C1 also
covers data over 46 months.

The corpora are constructed from Tweets and Reddit posts and comments. We use the pipeline
developed by Loureiro et al. (2022b) to request Tweets using the academic Twitter API. They have
published a pipeline that allows users to request tweets per month, filter out tweets by unauthorized
users, and anonymify the user accounts. This yielded a total of 4,5 million tweets. We use the
Pushshift Reddit API (Baumgartner et al. 2020) to collect sentences from Reddit. For each day
between July 2015 to February 2023, we request at most 500 posts and 500 comments. Only the
posts and comments that consist of at least 10 words (and contain at least one English stop word
from nltk.stopwords, following Loureiro et al. (2022b)) are included. This results in roughly one
million posts and comments. We make sure that C1 and C2 are (roughly) the same size.

Data pre-processing and cleaning We use NLTK (Loper and Bird 2002) to split documents
into sentences and to tokenize sentences into words.3 Words are stripped from punctuation and made
lower case, and emoji’s are removed. Basic statistics for the two corpora are provided in Table 1.

dataset start date end date # docs # words
C1 01.07.2015 01.04.2019 3.4M 70M

Twitter 2.2M 46.2M
Reddit 1.2M 23.9M

C2 01.05.2019 01.02.2023 3.4 M 79M
Twitter 2.2M 55.6M
Reddit 1.2M 23.6M

Table 1: Corpus statistics.

4.2 Target word selection

We design the task for the three word categories: stable, changing, and emerging target words.

We consider as candidate stable and changing target words any words in the shared vocabulary
of C1 and C2 which have an entry in the WordNet database (Fellbaum 1998),4 do not contain any
digits (e.g., a term like ‘2022’ is excluded), and are not proper nouns or abbreviations. We then apply
one of the best-performing lexical semantic change detection systems according to Schlechtweg et al.
(2019): SGNS+OP+CD. This system uses SkipGram with Negative Sampling (SGNS) to construct
a vector space model for each corpus separately. The two vector space models are aligned using
Orthogonal Procrustes (OP). For each word, the semantic change score is calculated by computing
the cosine distance (CD) between its word embedding from each of the aligned vector space models.
This results in a semantic change score per word.

3. In particular, we use NLTK’s sent tokenize, TreebankWordTokenizer and nltk.TweetTokenizer.
4. Following Su et al. (2022).
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Stable target words To collect a set of stable target words, we use a random selection of 20
words that have a semantic change score below 0.25, displayed in Table 2a. Examples of stable
target words are look, settings and idea.

Word CD
1 look 0.12
2 lose 0.12
3 player 0.13
4 morning 0.14
5 population 0.17
6 option 0.17
7 idea 0.17
8 settings 0.18
9 opinions 0.18
10 statement 0.19
11 families 0.20
12 realise 0.20
13 community 0.22
14 asparagus 0.22
15 art 0.22
16 talks 0.22
17 beginning 0.22
18 outcome 0.22
19 groceries 0.22
20 performance 0.22

(a) Stable

Target Word CD
1 corona 0.98
2 lockdown 0.96
3 manifesting 0.92
4 closeness 0.91
5 pandemic 0.90
6 quarantine 0.88
7 navigator 0.86
8 distancing 0.83
9 ape 0.81
10 checkmate 0.79
11 masking 0.78
12 peacock 0.78
13 polygon 0.76
14 anchor 0.75
15 shanks 0.74
16 tracing 0.73
17 pinks 0.72
18 moot 0.72
19 hag 0.72
20 yacht 0.72

(b) Changing

Emerging word
1 copium
2 covidiots
3 plandemic
4 vaxed
5 gatekeeping
6 grifting
7 gaslight
8 non-binary
9 femboy
10 quarantining
11 covid
12 transphobe
13 simp
14 wokeness
15 sapphic
16 spreader
17 goated
18 k-pop
19 vax
20 anti-vax

(c) Emerging

Table 2: Target words for each category with their semantic change score.

Changing target words To collect a set of changing target words, we first make a pre-selection
according to the trending scores of this vocabulary, as word trendiness is an indicator of semantic
change (Chen et al. 2021, Loureiro et al. 2022a)). The trending score is defined as follows:

score(w) =
fw,C2

− fw,C1

fw,C2 + k
(1)

where fw,Ci
is the highest monthly frequency of word w in corpus Ci. k is a normalization term

used to mitigate the frequency of highly-frequent terms in the recent data sets. We compute the
semantic change score for all words with a trending score above 1. Of these, the top 20 words with
the highest change score are selected as semantically changing target words. Table 2 displays the
20 selected target words of each category and their semantic change scores.

Many of the changing target words were related to the COVID-19 outbreak, e.g., corona,
lockdown, pandemic, quarantine and distancing. This is not surprising, as the COVID-19
outbreak happened by the end of 2019, which started after the pre-training period of T5-base. For
instance, before the outbreak, corona was either used to refer to a Mexican beer brand, or to a city
in the US. The word Manifesting has likely received a high semantic change score because of the
emergence of a new sense: a definition was added to the Urban Dictionary on December 6th of 20205,
defining it as ‘a term used by subliminal users meaning to hope for a desire until it comes true using

5. See https://www.urbandictionary.com/define.php?term=manifesting
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the law of attraction’. In C1, manifesting was probably used as simply the present participle of
the verb To manifest, which describes the process of making something visible or apparent.6

Other changing target words likely owe their high change score to a growing prevalence of the word
due to cultural events. This is particularly prominent for words that are used as proper names, but
were not detected by our proper-name filter because they can also be common nouns. For example:
Polygon is increasingly used to refer to an online gaming platform; shanks is increasingly used
to refer to a Japanese Manga character in C2; hag is frequently used to refer to the Dutch football
coach Eric Ten Hag : 40% of the sentences in C2 contain the n-gram Ten Hag, compared to less
than 1% in C1.

Emerging target words We define emerging words as words that either (i) have a document
frequency in C2 of at least 50, while having a document frequency of 0 in C1, or (ii) have a document
frequency that is at least five times as much in C2 compared to C1. This resulted in a total of 1585
emerging words. Since newly emerging words are likely not present in the WordNet database, we
manually select 20 words that (i) do not contain any digits, (ii) are not named entities (i.e. places,
persons, brands) (iii) are not abbreviations.

Many of the emerging target words, like the changing target words, relate to COVID-19: covid,
covidiots, plandemic, vaxed, covid, spreader, vax, anti-vax. Other emerging words re-
late to gender identity: non-binary, femboy, sapphic, transphobe. A particularly interesting
emerging word is goated, which is an example of grammatization from the noun goat, which was
initially an abbreviation for Greatest Of All Time. Emerging words that originate from blends
are copium (cope + opium), covidiots (covid + idiot), and plandemic (plan + pandemic).
The word gaslight is the result of the concatenation of two already existing words.7

Diagnostic dataset For each target word, and each corpus in which they occur, 4 sentences are
randomly sampled as input sentences to the task.8 This results in a total of 160 instances of stable
target words, 160 instances of changing target words, and 80 instances of emerging words (only from
C2). This provides us with a total of 400 context-target pairs that can be used as input to the task.
To illustrate, we list six examples, two of each category, in Table 3.

word context
population they’re experimenting on the population and it needs to stop.
population approximately 16.5 million tourists visit greece each year. that’s more than the

entire population of greece!
distancing i can feel you distancing from me and it sucks because i only got eyes for you
distancing social distancing and covid 19 health precautions may be hard to abide by

when the epl resumes next week
wokeness also being able to read and write well and having some reasonable sense of

history would be powerful inoculation against wokeness.
wokeness an actual good tweet against the wokeness only gets 2.5k likes but your reply

guy ugly tweets against republicans get thousands and thousands of likes?

Table 3: Target words and example context sentences.

4.3 Pre-trained model and fine-tuning

In our setup, the model under investigation is T5-base (Raffel et al. 2020). There are three main
practical reasons to choose this model. Since T5 is a sequence-to-sequence model, it is compatible

6. See https://www.oxfordlearnersdictionaries.com/definition/english/manifest_1?q=manifesting

7. Other notable examples not selected as target words, include the acronym prod for product, and the abbreviation
ima for I’m going to.

8. We acknowledge that random selection may not be optimal. Section 7 includes a discussion of this point.
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with the contextualized definition generation task. Secondly, the time period from which its pre-
training data originates is well documented (opposed to some other large pre-trained models where
the pre-training data is undisclosed). Third, since the model was pre-trained on data until 2019, there
exists enough temporally shifted data on which the model can be tested on temporal generalization.

Generating definition with a suitable level of specificity can be tricky (Noraset et al. 2017, Mickus
et al. 2019). In our setup, we choose to fine-tune T5-base for contextualized definition generation
according to the method proposed by Huang et al. (2021), who designed a definition modeling
procedure optimized to produce definitions of appropriate specificity. Huang et al. (2021) fine-
tune three T5 models—T5-base, T5-specific, and T5-general—which are combined to select the
definition with the most appropriate level of specificity given the provided context. T5-base is the
main language model under analysis, a version of T5 fine-tuned to generate definitions for a given
target word and context. T5-specific is used as an over-specificity estimator. It is fine-tuned to
generate a usage example for a given target word w∗ conditioned on a reference definition. Under
this model, pairs of highly specific definitions and respective contexts are assigned high probability.
The third model, T5-general, is used as an under-specificity estimator. It is fine-tuned to generate
a definition conditioned on a target without any usage examples. Under this model, pairs of generic
definitions and the respective target words are assigned a high probability.

The three models are fine-tuned to minimize the cross-entropy loss for their respective tasks
on the Oxford dataset, consisting of definitions and usage examples collected by Gadetsky et al.
(2018) from the Oxford Dictionary. The target words that also occur in the Oxford training data set
were removed. For specificity-enhanced generation, n definitions are decoded from the main model,
T5-base, and then re-ranked according to a linear combination of the probability scores assigned by
the three models. The resulting definition generator will henceforth be referred to as T5-base-DG.

4.4 Evaluation

We evaluate the quality of the definitions generated by T5-base-DG given a word-context pair with
help of human annotation. This allows us to obtain accuracy scores for each target word category
(stable, changing, and emerging words), and each time period. Furthermore, we investigate how the
quality of the generated definitions on a word-context input relates to the (pseudo)perplexity and
log-likelihoods on these input context sentences.

Human evaluation To determine whether the generated definitions are correct, we conduct hu-
man evaluation on the 400 generated definitions for a given target word and usage example. Three
human annotators (fluent English speakers) were presented with a total of 400 (word, example
sentence, definition) triplets. For each triplet, the annotators judged correctness of the generated
definition on a four-point scale between 0 and 3, where a score of 3 corresponds to a completely
correct definition, i.e., one that is both truthful and fluent, and a score of 0 corresponds to a com-
pletely incorrect definition. A special case for incorrect definitions is self-reference: a definition is
self-referring whenever it includes the target word itself to define the target word. In this case, the
annotators were instructed to assign the score -10. The judgements were aggregated via majority
vote into binary correctness scores, where the labels -10, 0, 1 are considered incorrect, and the
labels 2, 3 are considered correct. This allows computing quality in terms of the percentage of
correct definitions. Full annotation guidelines can be found in the Appendix 7.3. The inter-rater
agreement is measured using Krippendorff’s α coefficient, which quantifies the extent to which the
observed agreement goes beyond what would be expected by chance. The coefficient ranges from 0
to 1, with higher values indicating greater agreement.

Perplexity We also investigate the relation between model perplexity of usage examples and
definition quality. We are interested to see whether high model perplexity on sentences containing
a target word indicates performance deterioration when these sentences are used as usage examples
in the definition generation task. Besides perplexity, we also compute the cross-entropy loss, and
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pseudo-log-likelihood of the model on the context sentence. Perplexity is a measure of how well
a language model predicts sequences of words, with lower values indicating better performance.
Perplexity is derived from the cross-entropy loss, by taking the exponentiation of the cross-entropy
loss, and yields a value that is easier to comprehend and compare.

Since an LLM can be considered a probability distribution over all possible text sequences of a
language, the cross entropy loss (H) and perplexity (PPL) and can be used to estimate how well the
language model predicts a sequence of words S (Ranjan et al. 2016). The cross entropy measures
the degree of ‘uncertainty’ when encountering a text sequence, while the perplexity measures the
degree of ‘surprisal’ a model has in predicting a text. The two measures are closely related, as
PPL(S) = eH(S).

Let P(S) denote a language model’s probability of the sequence S = w1, w2, . . . , wn, where each
wi is a word in the vocabulary, and n ∈ N is the number of words in the sequence. The higher
the cross entropy loss, the more surprised the model is to encounter the sequence S. The cross-
entropy score is calculated by: H(S) = − 1

n logP(S). Perplexity is defined as the language model’s
inverse probability of the sequence S, normalized by n. The PPL score of a text S = w1, w2, . . . , wn

is calculated using PPL(S) := n

√
1

P(S) ≡ 1
n logP(S). The higher the perplexity score for a given

sequence is, the more ‘surprised’ the model is to encounter this sequence.

The perplexity and cross-entropy loss scores of a text sequence disregard how the presence of each
word in the sequence contributes to the sequence likelihoods. For instance, it could be the case that
only one word in the sequence is particularly unlikely, while the rest of the sequence is relatively likely.
Therefore we also compute the pseudo-log-likelihood, which subsequently computes the cross-entropy
loss of each individual term within the entire sequence (Salazar et al. 2020). A model’s pseudo-
perplexity for a document T containing N tokens is: PPPL(T ) := exp− 1

N

∑
S∈T PLL(S) where PLL

is the pseudo-log-likelihood of the sequence S = (w1, . . . wn): PLL(S) =
∑n

t=1 logP(wt|S\wt
), where

S\wt
represents the sentence where wt is masked.

Additionally, we compute the cross-entropy loss for the masked-word-prediction task to get an
indication how the appearance of a target word wt in the context sentence S contributes to the
sentence perplexity: Loss(wt, S) := − logP(wt|S\wt

). Again, this is computed by replacing the
target word in the sentence with the special <extra id 1> mask token (which results in the masked
sequence S\wt

), and computing the model’s cross-entropy loss for predicting the target word in that
position. We compare these scores along three dimensions: (1) human-annotated definition quality,
(2) the time period of the usage example and (3) the target word category.

5. Results

Using the definition quality scores obtained with help of human evaluation, we calculate the perfor-
mance deterioration of T5-base-DG for each category of target words. Comparing definition quality
for the stable vs. changing and emerging target words provides insight into how word usage change
impacts performance deterioration. Furthermore, we compare the performance on the contextual-
ized definition generation task with the cross-entropy loss and perplexity scores of T5-base for the
same example contexts to investigate the relation between these standard metrics of model fit and
lexico-semantic generalization.

5.1 Performance deterioration on the contextualized definition generation task

Human judgements of definition quality per category, aggregated by majority vote, are shown in Ta-
ble 4. Krippendorff’s α inter-rater agreement is 0.62.9 The performance of T5-base-DG deteriorates
by 19% (from 52.5% to 42.5%) between C1 and C2, confirming our first hypothesis that the perfor-
mance on the input ⟨word, context⟩ pairs from C1 is higher than for those from C2. Performance

9. And 0.68 if we reduce the labels to four, mapping the -10 judgement to 0 (incorrect).
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deterioration is especially strong for semantically changed words, with a decrease in performance of
36.7% (from 37.5% to 23.75%), compared to 7.5% (from 66.25% to 61.25%) for the stable target
words. This confirms our second hypothesis that the performance deterioration is more prevalent
for semantically changing words compared to stable words. Finally, as expected, we observe a dras-
tic drop in generation quality for emerging words, compared to both stable and changing words,
confirming our third hypothesis that the performance deterioration is stronger for emerging words
compared to stable words.10

Overall, performance deterioration between C1 and C2 in all categories reveals that T5-ba se-DG

lacks strong temporal generalization capabilities.
Beyond these main trends, two other aspects of the human evaluation results are worth a note.

First, while performance deterioration is stronger for changing and emerging words, it is still visible
for stable words. This implies that lexico-semantic temporal generalization can suffer not only from
clear-cut semantic shifts occurring for a certain target word, but also when context words in the
usage examples change their meaning (which we are currently not tracking in our setup) or when
the word usage distributions change in more subtle, less semantically determined ways over time.
Second, in the time period C1, which is temporally aligned with the training data by design, we find
generation quality to be lower for changing words than for stable words. This suggests the lexical
meaning of the changing words under analysis may be inherently more difficult for the model to
grasp due to other properties, such as their degree of specificity. Nevertheless, the drastic decrease
in performance for the emerging and changing words, substantially stronger than that of stable
words, indicates that semantic change and performance deterioration are related.

Category C1 C2 C1 ∪ C2

stable 66.25% 61.25% 63.75%
changing 37.5% 23.75% 30.625%
stable + changing 52.5% 42.5% 47.5%
emerging - 8.75% 8.75%
total 52.5% 31.25% -

Table 4: Accuracy on the contextualized definition generation task, expressed as the percentage of
definitions judged by human annotators as correct.

5.2 Perplexity as an indicator of temporal generalization

If perplexity were a reliable indicator of performance deterioration, we would expect the perplexity
of the input sentences from C2 to be on average higher, as these originate from a time period that
the model was not trained on. However, we observe that on average the input from C2 does not yield
higher perplexity scores. We also fail to find substantial differences in perplexity between target word
categories (Table 5), with stable words obtaining, in fact, slightly higher perplexity than changing
and emerging ones.

If perplexity were a reliable indicator of performance deterioration, we would also expect usage
examples with higher perplexity scores to correspond to incorrect definitions. Instead, the correlation
between the perplexity scores on usage examples and the correctness of the respective definitions
is either not significant or very moderate (Table 6). Figure 2 illustrates how the perplexities are
distributed over usage examples for each word category, split by correctness label. We can indeed
see that some input sentences have relatively high perplexity but still yielded correct definitions,
and vice versa.

Overall, perplexity seems to be a poor indicator of lexico-semantic temporal generalization.

10. These trends, that performance deterioration is stronger for changing and emerging target words than for stable
target words, persist when aggregating the judgements by consensus voting. The results aggregated by consensus
voting can be found in Appendix D
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(a) Sentence PPL (b) Sentence PLL (c) Word prediction CEL

Figure 2: Intrinsic scores of the perplexity (PLL), pseudo-log-likelihood (PLL), and target word
prediction cross-entropy loss (CEL), versus the correctness of the generated definition

6. Qualitative Analysis

We conduct a detailed analysis of the generated definitions of T5-base-DG. First, we illustrate
that the model T5-base-DG can generate context-specific definitions for input ⟨word, context⟩ pairs.
Next, we discuss the errors that occur for the changing and emerging target words. This qualitative
error analysis shows us what the possible reasons are for incorrectly generated definitions.

Success analysis: context-specific definitions We begin with two examples which demonstrate
that T5-base-DG is capable of generating context-specific definitions, displayed in Table 7. In the
first usage example of the stable word look, example a), the word is used in the context of look
out to see. . . , for which the generated definition is ‘expect something to happen or be the case’.
A different use of the word look, as in ‘looks like. . . ’, is displayed in example b); for this usage
type, the generated definition is ‘have the appearance of being’. Both definitions are judged to
be correct by all three annotators. Similarly, example c) of the stable word option shows that
T5-base-DG has generated a remarkably precise, fluent and correct definition, namely ‘an item in
a list or other collection of data displayed on the screen which can be selected’. For example d) of
option, the definition ‘an idea or way of doing something’ is not judged sufficiently correct by the
annotators. Nonetheless, even though the generated definition is not sufficiently precise, we can still
distinguish a different word sense of option compared to example c). Examples e) and f) show
correctly generated definitions for the changing target word lockdown. Definition e), ‘a state of
isolation or seclusion by the police’, refers to a situation where someone is under strict control or
confinement, potentially as a response to a legal or security issue. Definition f), ‘a period of isolation
or separation from other people’ for the input from C2 does not necessarily imply police enforcement
but rather emphasizes the idea of being confined or restricted, leading to the person’s son feeling
bored and lonely. Thus, these cases exemplify that model is capable of generating context-specific
definitions for a target word.

Error analysis: changing target words Table 8 displays examples of two changing target words
(corona and polygon) and their generated definitions. These target words are examples of words

Category Corpus Sentence CE loss Sentence PPL Word prediction CE loss

stable C1 0.757 2.399 11.34
C2 0.734 2.303 11.69

changing C1 0.695 2.177 10.69
C2 0.700 2.190 11.40

emerging C2 0.688 2.184 10.82

Table 5: Average scores of cross-entropy and perplexity on the usages per category.
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Point Biserial Spearman
Word prediction CE loss 0.13 (0.009) 0.14 (0.000)
Sentences PPL -0.02 (0.752) -0.04 (0.336)
Sentences CE loss -0.03 (0.551) -0.04 (0.336)
Sentences PLL 0.08 (0.117) 0.03 (0.521)

Table 6: Correlations with correctness of the contextualized definition generation task.

Target look

a)
Example C1 in heroes and generals there you have limited sight as gunner but you

can look out to see more with the danger of getting shot.
Definition expect something to happen or be the case

Judgement 2, 2, 3

b)
Example C2 looks like russia had exposed to the world that they are not a military

might.
Definition have the appearance of being

Judgement 3, 3, 3

Target option

c)
Example C2 selecting the aa option is now in loadout screen as opposed to being a

modification.
Definition an item in a list or other collection of data displayed

on the screen which can be selected
Judgement 3, 3, 3

d)
Example C2 also if an address is required then is there another option other than

providing my address?
Definition an idea or way of doing something

Judgement 1, 1, 1

Target lockdown

e)
Example C1 imagine being on lockdown up until you get to college ... boom !
Definition a state of isolation or seclusion by the police

Judgement 3, 3, 2

f)
Example C2 this lockdown needs to end foreal my son is so bored and lonely now he

is demanding for a baby sister ...
Definition a period of isolation or separation from other people

Judgement 3, 2, 3

Table 7: Examples of context-specific generated definitions, with human evaluation judgements.

for which a new meaning has emerged in t+ > t. One would expect that the generated definitions
would be correct for the ⟨word, context⟩ pairs retrieved from C1, as these sentences originate from a
corpus that is temporally aligned the model’s pre-training period. However, the generated definitions
are by and large incorrect for both C1 and C2. We choose to discuss these two examples, because
they clearly illustrate three different phenomena.

The first phenomenon is that we observe that the poor quality of the generated definitions
from C1 input seem to be of a different nature than the definitions generated from C2 input. The
definitions for ⟨word, context⟩ pairs from C1 do display knowledge of semantic relatedness to the
intended sense of the target word (even though the generated definitions incorrect). For instance, for
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the word corona, three of the input usages refer to the Mexican beer ‘Corona’, and one usage refers
to the city of Corona (‘I live in corona. . . ’). Thus, in each of these examples, the generated definition
is semantically related to the correct sense. Likewise, generated definitions from the usages of C1

for polygon are each semantically related to the correct sense of the target word referring to ‘a
plane figure with many straight sides and the same number of angles’.11 Even though the generated
definitions for the usages from C1 are factually incorrect, they are still semantically related to the
correct sense of the target word.

The second phenomenon that we observe is that when generating a definition for a changing
target word with a new sense, the model relies largely on the provided context words. This is for
instance apparent in ‘a strain of arnovirusses . . . ’ to define corona, and a ‘computer graphic . . . ’
to define polygon. It seems that here, T5-base-DG does detect a ‘new’ sense. However, the model
seems to rely too much on the given contexts words to generate the definition, resulting in the
generation of an incorrect definition.

The third phenomenon that we observe is that the definitions generated for the ⟨word, context⟩
pairs from C2, remain semantically related to the pre-existing sense of the target word from t− <
t. For instance, the definition ‘a cigar’ is likely generated because corona is also a brand of
Havana cigar.12 Thus, the definition refers to a different, pre-existing sense of the target word.
Likewise, in the case of polygon, two of the definitions generated for usages from C2 are still
semantically related to the pre-existing sense of the target word. These definitions are: ‘more
than three dimensional elements’ and ‘many-dimensional’. These definitions once again refer to a
geometrical plane figure, while the correct definition should refer to the newer sense of polygon,
which refers to an entertainment website. It seems that for these examples, the model does not
recognise a new word sense, but rather keeps relying on prior knowledge about the target word to
generate a definition.

To summarize, the incorrect definitions generated for input from C1 display similarity to the
correct word sense (phenomenon 1), while the incorrect definitions generated on input from C2

display similarity to the context words (phenomenon 2), or display similarity to the pre-existing
sense of the target word (phenomenon 3).

Success analysis: emerging target words Out of the 80 usages of emerging words, only 7 of
the generated definitions were judged to be correct.

Let us first discuss why these 7 instances were actually correct. Two of these are for usages
of gaslight, and two of anti-vax. The two correctly generated definitions for anti-vax are (1)
‘antipathy or aversion to vax’, and (2) ‘a person who has no vaccinations or is actively anti-viral’.
The first definition is correct, as it is fluent and factual. However, the model still incorrectly defines
vax in all cases, with definitions like ‘a disease caused by an infection of the vagina’, and ‘ask for
or obtain as a vaex’. In contrast, definition (2) is surprisingly correct, apart from the fact that
the term ‘anti-viral’ is slightly ambiguous. The correctness of this definition can be explained by
the informativeness of the example sentence that was provided, which was: ‘swagenknecht okay go
ahead you call this guy anti-vax because he is not vaccinated!’. This example sentence is largely a
definitial sentence itself, as it explicitly states why a person is anti-vax. Incorrectly generated for
anti-vax are (3) ‘exaggerated or anti-vox’, and (4) ‘hostile or obnoxious’. Thus, T5-base-DG is
capable of generating a correct definition for an emerging words if the provided usage provides with
sufficient information to deduce the defininition.

The correct definitions for gaslight were (1) ‘the light of a gaslamp’, and (2) ‘manipulate
(someone) by psychological means into doubting their feelings’. Both definitions refer to a different
sense of the word gaslight; the first being the traditional use of gas + light, while the latter
corresponds to the emerged sense, which is defined correctly by the generated definition. Contrary
to anti-vax, the example sentences of gaslight are not as informative that the model can copy

11. See https://www.oed.com/dictionary/polygon_n?tab=factsheet#29555477

12. See: https://www.britannica.com/topic/corona-cigar
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corona C1 Correct?
1. a cocktail made with aromatic spices and fruit juice no
2. a deep red or yellowish-brown colour no
3. a cold drink served with drinks such as fruit or vegetables no
4. a small lake or valley no

corona C2

1. the identification of a kite or other mammal by its markings and colours no
2. a cigar no
3. a divinely conferred blessing or beneficence no
4. a strain of arnoviruses found in many tropical and subtropical areas no

polygon C1

1. a solid or cylindrical object having at least three straight sides and angles yes
2. more than three dimensional parts or elements no
3. a very large number or amount no
4. a word or phrase used by several people no

polygon C2

1. a three-dimensional recreation in which players use two or more lines to move
around one another

no

2. many-dimensional no
3. denoting a conceptual system in which data is represented by two or more

discrete units
no

4. a computer graphic or display device that supports several different configura-
tions

no

Table 8: Changing target words and their generated definitions

the definition from the example sentence. An explanation for this is that the term gaslight, and its
corresponding emerging sense of ‘manipulate (someone) by psychological means into doubting their
feelings’ is not completely new, as it originates from the British theater play ‘Gas Light’ of 1938, and
was added to the Urban Dictionary in 2009.13 This makes it likely that this sense of gaslight was
already used in the pre-training corpus of T5-base. Thus, the generated definitions for emerging
word gaslight are likely correct because these usages do not actually display new language use.

Error analysis: emerging target words Examples of incorrectly generated definitions can be
viewed in table 9 below. These illustrate some other common errors that T5-base-DG makes.

Firstly, when presented with new words, T5-base-DG in turn also produces definitions containing
non-existing new words. This was the case for vaex when defining vax, for anti-vox when defi-
nition anti-vax, plandelia and plandisone when defining plandemic, and a-femboy to define
femboy.

Secondly, many of the emerging words trigger some weak or strong form of self reference. This
seems to happen more than for the stable target words. This was the case for gatekeeping,
spreader, plandemic, non-binary, femboy, wokeness and quarantining.

Thirdly, some of the incorrect generated definitions reflect an implicit polarity (positivity or
negativity) towards the target word. This polarity seems to be inferred from the provided context
(the example sentence). For instance, the generated definitions for the word simp are considerably
negative: ‘a weak or ineffectual person’, ‘a stupid or contemptible person’, ‘a servile or impudent
woman’, and ‘an impudent or insincere man’. In fact, according to the online dictionary, the defi-
nition of simp is: ‘a slang insult for men who are seen as too attentive and submissive to women,

13. See: https://www.urbandictionary.com/define.php?term=Gaslighting; https://www.washingtonpost.com/wel
lness/2022/04/15/gaslighting-definition-relationship-abuse-response/
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especially out of a failed hope of winning some entitled sexual attention or activity from them’.14

Likewise, femboy is defined as ‘a lame or mischievous person’, while in fact, it means ‘a young,
usually cisgender male who displays traditionally feminine characteristics’.15 Thus, the model does
catch on to the negative polarity of the context, however, attributes incorrect qualities to the word.
Likewise, the definitions for covid reflect negative (‘a term of abuse’) or positive (‘a term of endear-
ment’) connotations, depending on the sentiment of the input context. Arguably, these definitions
display a form of bias.

covid
1. used as a general term of abuse
2. divergence from sex in the sexual activity of women
3. used as a term of endearment
4. an entertaining or amusing person

k-pop
1. denoting a category of words in radio and television programmes that are in-

tended to attract attention
2. pop music or dance to a popular song of australian origin
3. a style of popular music intended for people who are secretly seeking to attract

attention
4. relating to or denoting unrestrained folk music of us black origin

femboy
1. a showy or frivolous woman
2. a-femboy
3. a person who shares popular misconceptions
4. a lame or mischievous person

covidiots
1. any of the old world scottish precociously elected officers and pensioners
2. a person who behaves in an unfriendly and cowardly manner
3. a person who believes that their tastes or behaviour are superior to those of

other people
4. a person who is secretly willing to obey others

plandemic
1. of or relating to plandelia
2. an outbreak of a plan demic
3. a period of plandisone
4. an act of spreading plandisone

Table 9: Emerging target words and incorrectly generated definitions

In sum, when T5-base-DG is presented with new usages from t+ > t, it may (1) produce def-
initions that are semantically related to an older sense of the target word, (2) rely largely on the
context words to generate a definition, (3) adapt the polarity reflected in the usage, (4) generate
new made-up words, or (5) use self-reference.

7. Discussion and Conclusion

A language model is capable of temporal generalization if its performance does not deteriorate in a
temporally misaligned setup compared to the standard temporally aligned scenario. Lexico-semantic

14. https://www.dictionary.com/e/slang/simp/
15. https://www.dictionary.com/e/gender-sexuality/femboy/; https://www.urbandictionary.com/define.php?t

erm=femboy&page=9
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temporal generalization in particular refers to a language model’s capacity to generalize its semantic
knowledge well to data from beyond the training period.

In this work, we fine-tuned T5-base, a Transformer-based language model, for the task of contex-
tualized word definition generation, and tested it on a diagnostic dataset of 400 ⟨word, context⟩ pairs
from two time periods. These test items concern either semantically stable, semantically changing,
or emerging target words. Our hypotheses were that (1) performance on the contextualized word
definition generation task would deteriorate for all three target word categories, (2) this deterioration
would be more prevalent for words that underwent semantic change in a time period that follows
the model’s training period, and (3) performance on emerging target words would be lower than for
stable target words.

We tested the model on each of the target word categories—stable, changing, and emerging—with
input from a temporally aligned and a temporally misaligned time period. If the model were capable
of temporal generalization, its performance should not deteriorate between these two time periods.
However, our results show an overall performance deterioration of 19.2% for T5-base on the task
of contextualized definition generation. Definition quality deteriorates drastically more for changing
target words (36.7%) compared to the stable target words (7.5%) and definitions of emerging words
were correct only 8.7% of the time, compared to an accuracy of 63.75% for the stable target words.
Taken together, these results indicate T5-base lacks strong temporal generalization abilities. Its
lexico-semantic understanding is negatively affected by diachronic lexical semantic change and it
suffers particularly when shifts in word usage distributions are more marked, as it is the case for
emerging words. Our three hypotheses are thus confirmed.

To understand whether a model’s inadequate lexico-semantic temporal generalisation would
also be revealed by standard language model evaluation metrics, we compared the performance
of T5-base on contextualized definition generation to its cross-entropy loss and perplexity scores
calculated on the same input examples. Our analysis revealed that cross-entropy loss and perplexity
are not consistently reliable indicators of lexico-semantic temporal generalization. Notably, instances
with high perplexity scores may still yield accurate definitions, while examples with low perplexity
do not necessarily result in accurate definitions. This puts into question the ability of standard
evaluation metrics to detect non-trivial temporal generalization failures, which has been posited in
related studies (Lazaridou et al. 2021, Ishihara et al. 2022). When reporting performance deteriora-
tion, we encourage LM developers and modelers to integrate metrics such as perplexity with more
fine-grained evaluations.

7.1 Failure Modes

Our qualitative analysis of the generated definitions sheds light on different types of failures. In some
cases, when presented with novel word usages, T5-base outputs definitions that are semantically
similar to the original word sense. In other cases, the model shows high sensitivity to usage examples,
resulting in over-specific and untruthful definitions. When presented with emerging words, T5-base
is more likely to output sentences containing neologisms, content that relates to the polarity that the
word usage context conveys, and self-referential language use. Interestingly, most of these generated
definitions were fluent, while the factual information that they convey is incorrect. A non-careful
reader may in some cases be deceived by such hallucinations (Mickus et al. 2019). This is particularly
problematic for practical applications of definition generation models: for example, users who use
such a tool to look up the meaning of words which they do not know, would be unable to verify
whether the output is correct.

Beyond the temporal generalisation failures on temporally shifted data, we also observe that
model performance on changing target words from the time period corresponding to the training
data is substantially lower than for the stable words in the same time period. At first sight, this is an
unexpected result, as usage examples for both word categories originate from a time period on which
the model was trained. One possible explanation is that these changing words were already unstable
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during that time period. This aligns with empirical evidence that words undergoing semantic change
typically go through polysemous stages before a dominant sense is established—the so-called ‘the
Law of Innovation’ (Tahmasebi et al. 2021). Alternatively, these findings can be explained by the
fact that the changing target words are relatively infrequent in the training time period compared
to an average stable word in the English vocabulary. This would negatively impact understanding
of unstable words in two ways. First, as a practical consequence, the pre-trained model T5-base
is likely exposed to fewer training instances for these changing words in the first place, resulting
in their representations to be of lower quality. Second, frequent words are known to change more
slowly than infrequent words—a phenomenon referred to as the Law of Conformity (Tahmasebi
et al. 2021), and the quality of their representations may benefit from their stable usage.

7.2 Limitations

To fully understand the scope of our findings, especially in relation to current trends in NLP, it is
important to discuss a few limitations of our experimental setup.

Transferability of findings to other language models Our experiments were conducted on
a single language model, so it is natural to question whether they would transfer to models with
different architectures and pre-training data. It is possible that other pre-trained LLMs would not
show the same degree of performance deterioration on the contextualized definition generation task.
More recent modern models such as GPT-3 (Brown et al. 2020), BART (Lewis et al. 2020), LLAMA
(Touvron et al. 2023) have been shown to outperform T5 in several scenarios and they might be
expected to be more robust to performance deterioration due to temporal misalignment. Still, these
more modern LLMs make use of similar Transformer architectures and are optimized via standard
language modelling training objectives. There are, therefore, no principled reasons to assume that
they more robustly generalise to temporally shifted data beyond the fact that their larger training
datasets might be more likely to cover word usages similar to those in the test set—which would
mean that weaker performance deterioration could be hardly considered a case of generalization
(Hupkes et al. 2023).

Fine-tuning as a testing interface We proposed assessing the lexico-semantic temporal general-
ization of a model using the definition generation task and we chose fine-tuning as a way to instruct
the model to perform it. This implies the temporal generalization test is conducted on a model
checkpoint that slightly differs from the target model. While the impact of our definition generation
fine-tuning on the model parameters is likely very low relative to the full pre-training phase, we did
not test whether adaptation resulted in the loss of prior knowledge. Alternative approaches that
are less prone to this issue could be based on in-context task learning, with the language model
being shown a few examples of the definition generation task at inference time, without any param-
eter update. Recent results on zero-shot definition generation (Giulianelli et al. 2023) and few-shot
word-in-context tasks (Periti et al. 2024) suggest these approaches might be suitable only for the
largest and most recent language models.

Challenge sets and their scalability Our experimental setup is limited to 400 ⟨word, context⟩
pairs in total, 20 target words per category, and two time periods, due to the onus of collecting
human annotations for the model generations. The reliance on human annotations can in this sense
be considered a limitation of our approach, as it limits its scalability. Automatic evaluation of
the generated definitions would in principle be possible if the challenge set consisted of diachronic
dictionary data, i.e., a set of timestamped definitions of target words together with time-specific
usage examples—the English Urban Dictionary could for instance be a possible source of data
for this. However, automatic NLG metrics such as BLEU, BERTScore, or NIST have not been
validated against human definition quality judgements and are likely to produce evaluation scores
biased by stylistic mismatch between dictionary entries and generated definitions. In any case,
our proposed task is not merely meant as a substitute for other quantitative measures of temporal
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generalization. Our experiments provide us with targeted human interpretable assessments, which,
even if conducted at a small scale, can provide valuable qualitative insights. An aspect of our setup
where human annotation may have been appropriate is the selection of the example usages for the
target words. In this case, to avoid time-consuming manual inspection, we opted for selecting the
example sentences randomly, in contrast to the example usages from the Oxford data set on which
the model was fine-tuned, which were handpicked by expert lexicographers. This random selection
is not optimal, because the context sentences may contain ambiguous usages of the target words,
and there is no guarantee that the sentences sampled from C2 actually display new usages. This is a
limitation of our automatic approach, and we acknowledge that manual selection or filtering of the
context sentences may have led to more robust semantic change detection, albeit to a methodology
that is less scalable.

7.3 Outlook

Our findings regarding the fact that lack of temporal generalization relates to semantic change,
risking bias and hallucination, could carry over to other tasks such as summarization, question
answering, or translation, among others. If LLMs struggle more to generate accurate definitions
for input where semantic change is present, it is likely that other generative tasks are also nega-
tively affected over time due to semantic change, which could have a real impact on society through
practical applications. Notably, the proposed methodology of semantic assessment using the task
of contextualized word definition generation could also be used to examine lexico-semantic gener-
alization in types of domain shift that are not temporal. For instance, future work could use our
semantic assessment task to examine whether a model trained on news data is able to generalize well
to academic papers. Overall, the contextualized definition generation task is a promising seman-
tic assessment, demonstrating that performance deterioration is stronger for semantically changing
words, and providing interpretable insight into the possible mistakes that a model may perpetrate
due to meaning shift.
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Appendix A. GenBench evaluation card

Motivation
Practical Cognitive Intrinsic Fairness

□

Generalisation type

Compositional Structural Cross Task
Cross

Language
Cross Domain Robustness

□

Shift type
Covariate Label Full Assumed

□

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

□

Appendix B. Annotation guidelines

You are provided with a spreadsheet with four columns: Targets, Judgement, Example and
Definition. In every row, there is one English target word in the Target column, one example
sentence in which this target word is used in the Example column, and one definition sentence or
phrase in the Definition column. The definition has been generated by a large language model and
it is a context-specific definition for the target word in the example sentence.

Words can have different meanings, depending on the context in which they are used. The
possible meanings that a word in different contexts can have are called senses. A popular example
is the word bank, which is a polysemous word:

Sentence 1: I need to get some money from the bank
Sentence 2: I’m walking along the river bank.

In sentence 1, the sense of the target word bank can be defined as “An institution that invests
money deposited by customers or subscribers”. In sentence 2, on the other hand, the target word
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bank refers to the sense that can be defined as “the sloping, vertical, or overhanging edge of a river
or other watercourse”.

Your task is to judge for each row whether the definition of the target word in the example
sentence is correct. That is, the definitions must be:

• Truthful: i.e. should reflect exactly the sense in which the target word is occurring in the
example sentence. Ideally, the definition should be specific enough so as not to mix with other
senses, while general enough so as not to describe information of the example sentence that
does not concern the target word.

• Fluent i.e., feeling like natural English sentence or phrase, without grammar errors, utterances
broken mid-word, etc.

Task instructions

You have to fill in the Judgements column with one of five values:

0: The definition is incorrect; not truthful or not fluent

1: The definition is partially incorrect; it is either not truthful or not fluent, but it does reflect
some information related to the sense of the target word in the example sentence

2: The definition is mostly correct; it is truthful and fluent, but could be better nuanced

3: The definition is correct.

-10: The definition is self-referential; i.e. refers back to the target word itself.

Example

The word dress can be used as a noun, or as a verb. Consider the following pairs of example sentences
and (correct)definitions:

A Target word: dress
Example sentence: I am wearing my beautiful pink dress.
Definition: a one-piece garment, typically extending down over the legs in a skirt 16

B Target word: dress
Example sentence: I want to dress up nicely for the party.
Definition: to clothe oneself

The definitions above are correct; they are fluent and truthful, and therefore you would judge
them with a 3 in the ‘judgements’ column. If, however, the definition of B would be provided for
the example sentence of A (or vice versa), the definitions would be incorrect for the target word in
the example sentence, because it defines the wrong sense of the target word. In this case, you would
judge with the score 0.

Too specific or too general

Definitions can be too specific or too general to the context in which it is used. An example of a too
specific definition for Example sentence A is:

a one-piece garment that is pink and beautiful

16. The complete definition from the Online Oxford English Dictionary is:(https://www.oed.com/search?searchTyp
e=dictionary&q=dress&_searchBtn=Search)
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This definition is too specific because the sense of the target word dress does not necessarily require
the dress to be pink nor beautiful, the adjectives in this sentence only specify what the color of the
dress is. You should judge this with a 1.

An example of a too general definition for sentence 4 would be:

a piece of cloth

This definition is too general for this example sentence, because ‘a piece of cloth’ can also describe
many other objects, like a t-shirt or a towel, which are not possible in this sentence. You should
judge the generated definitions with a 1, as the definition is not sufficiently truthful.

Definitions could be fluent and truthful, but could be better nuanced, for example:

a one-piece clothing, often worn by women and girls

This definition is truthful and fluent, and undoubtedly refers to the correct sense of the target word.
However, it might be improved with some extra nuance or information. Therefore you would judge
this definition by a 2.

Self-reference

When self-reference occurs, the definition is considered incorrect and should receive the special label
-10. An example of a self-referential definition is:

Target word: self-conscious
Definition: the state of being self-conscious
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Appendix C. Top 20 trending words

Trending Word CD

1 pandemic 0.90

2 quarantine 0.88

3 vaccine 0.45

4 vaccinated 0.53

5 lockdown 0.96

6 moots 0.37

7 corona 0.98

8 distancing 0.83

9 vaccination 0.54

10 virus 0.52

11 airdrop 0.52

12 yacht 0.72

13 masks 0.60

14 ukraine 0.35

15 vaccines 0.42

16 mandates 0.60

17 ukrainian 0.43

18 doge 0.51

19 staking 0.61

20 bodybuilding 0.68

Table 10: Top 20 trending words and their cosine distance scores.
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Appendix D. Alternative judgement aggregations

Besides taking the ‘majority vote’ to aggregate judgements, we also computed the consensus vote.
In consensus voting, a definition is considered correct whenever all (three) annotators judged it to be
correct. Recall that judgement scores of 2 and 3 are considered correct, while the judgements -10, 0,
1 are considered incorrect. Aggregating the judgements by consensus voting generally displays the
same trends as in majority voting (see Table 4), except that the stable target words of C2 are judged
to better than those of C1. This would imply that the performance of T5-base does not deteriorate
for input that concerns stable target words.

Category C1 C2 C1 ∪ C2

stable 43.75% 47.50% 45.62%

changing 27.50% 12.50% 20.00%

stable + changing 35.625% 30.0% 32.81%

emerging - 2.50% -

total 35.625% 20.83% 26.75%

Table 11: Accuracy according to consensus vote
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