
Computational Linguistics in the Netherlands Journal 3 (2013) 19-33 Submitted 06/2013; Published 12/2013

Delemmatization strategies for Dutch

Louis Onrust l.onrust@let.ru.nl
Hans van Halteren hvh@let.ru.nl

Radboud University Nijmegen, CLS, Linguistics / Computer Science

Abstract

In this paper we investigate whether, for Dutch open class words, it is possible to generate the
surface form on the basis of the lemma and the POS tag, using a lexicon and a machine learning
system. When testing on an annotated corpus, we are able to generate more than 97% of the gold
standard types correctly and over 99% of the gold standard tokens. The most efficient strategy
appears to be the pure machine learning one, even for those words that do occur in the lexicon.
Apart from overall statistics, we look at specific machine learner settings in more detail and also
investigate the errors made by the best scoring strategy.

1. Introduction

In recent years, more and more attention is given to text generation, e.g. in applications such as
summarization, translation, reformulation, and subtitle generation. The final stage of the generation,
however, the creation of surface forms from a lemma and desired morphosyntactic properties, has not
received much attention in the literature. In this paper, we describe and evaluate various strategies
for what we call delemmatization for Dutch. Our primary reason to start this project was that we
have a system which annotates 14th century Dutch texts with POS tags and modern lemmas (van
Halteren and Rem 2013), and we would like to extend this into a system which can rephrase such
texts into modern form. However, the component we are building can be used in any application
where surface form generation is needed for an open-ended vocabulary, and not just for a static
(and possibly limited) lexicon. In principle, this includes all the abovementioned applications. A
possible exception might be translation, as this is mostly statistical these days, and translation is
therefore directly to the surface form, rather than to a lemma. However, one can also imagine a
kind of statistical translation where the transfer step is at a more abstract level than surface forms,
for which our surface generation system would become useful again. Another application, which
we had (perhaps naively) not originally envisioned, is quality control and correction of lexicons
and annotated corpora. As we will see below, discrepancies between system output and existing
corpora rather often point to errors in the corpus annotation or in the lexicon used for creating the
delemmatizer. In this paper, though, we will not perform any extrinsic evaluation by investigating
any actual applications of the delemmatizer, but will restricting ourselves to an intrinsic evaluation.

As for many other languages, the words in Dutch can be separated into closed and open class
words (Booij and van Santen 1998). The closed class words, such as articles, pronouns and auxiliary
verbs, show often idiosyncratic forms and delemmatization will have to done simply by lexicon
lookup. As the list of closed class words is indeed closed and well-described, the task is known to
be feasible. Open class words, on the other hand, cannot be expected to always be present in a
lexicon. Fortunately, their inflection tends to be regular in Dutch. There are irregular inflections
also for neologisms, but these would be applied only when the word in question is a compound
containing a known irregularly inflected word. An example would be winstgenomen (“sold stock to
realize profit”) as the past participle of winstnemen. A special class is formed by loan words and
their compounds, which might be inflected with Dutch morphology as well as with the morphology
of the source language, e.g. the plural of centrum (“center”) can be either centra (Latin) or centrums

c©2013 Louis Onrust and Hans van Halteren.



Onrust & van Halteren

(Dutch). We want to investigate how we can generate the surface form from a lemma and a POS
tag for open class words, so that we can perform this task also for unseen proto-text, potentially
containing unknown lemmas or lemma-tag combinations.

We expect that software for this task must have been implemented many times before. However,
publications relating to such implementations and their testing prove hard to find. For Dutch, e.g.,
we do know of work by Vandeghinste (personal communication), and of course there are various tools
using Finite State Transducers, e.g. those from Xerox (Beesley and Karttunen 2003, Beesley 2004).
Mostly, it is remarked that tools are bidirectional, but experimental results are generally based on
analysis tasks. As an example Vaneyghen et al. (2006) generate surface forms on the basis of lemmas
from Celex (Baayen et al. 1995), using an FST system and restrictions on the output, but then
measure the quality of the system in an analysis setting, namely in terms of coverage on corpus texts.
As another example, for English, Carl et al. (2005) present a rule-based delemmatisation system for
English within the context of a corpus-based machine translation system. They too assume a process
in which lemmatisation and delemmatisation are reversible. They report an accuracy of 99.5% for
delemmatising lemmas into tokens, but do not explain their experimental setup, nor discuss any of
the results. Taking the 99.5% at its face value, we should remark that English is less susceptible to
nominal inflection than Dutch, which means that noun inflection is an easier task for English than
for Dutch. Finally, most of the reported work involves manually constructed rules, while we want
to focus on machine learning from existing resources, with the option of adding in further resources
if and when they become available.

To be precise, we study the surface form generation for nouns, with specific number, case and
diminuization, for adjectives, with specific degree and conjugation, and for verbs, with all possible
verb forms. We investigate three strategies. In the pure lexicon strategy, we simply look up the
desired form in a lexicon, for which we have chosen e-Lex (see http://tst-centrale.org/nl/producten/
lexica/e-lex/7-25). In the pure machine learning strategy, we learn transformation rules from the
information in the same lexicon and apply the rules to generate forms. In the hybrid strategy,
we use the lexicon information for known words and apply the learned rules for unknown words.
We evaluate the strategies on the basis of the manually corrected part (one million words) of the
syntactically annotated Lassy corpus (van Noord et al. 2006). We supply our system with the lemma
and the desired morphosyntactic information that is present in the annotation and compare the form
suggested by the system with the form actually present in the corpus.

In the following sections, we first (Section 2) describe our experimental data in more detail and
outline the evaluation method. We then (Section 3) describe the various delemmatization strategies
that we investigated. We continue with a discussion of the results, starting with a comparison of the
main strategies (Section 4) and following with a comparison of various settings for the best strategy
(Section 5). Then we examine the difference between the forms suggested by the best system and
the (gold standard) forms in the test corpus (Section 6). Section 7 concludes the paper.

2. Experimental data and evaluation

In this section, we first describe the tagset that we will use in our delemmatizer (Section 2.1). Then
we describe our experimental data, being the e-Lex lexicon for development (Section 2.2) and the
Lassy Klein corpus for testing (Section 2.3), and finally how we evaluate the various strategies and
settings (Section 2.4).

2.1 Tagset used in the experiments

In our experiments, we are attempting to apply specific types of inflection. It is therefore these types
of inflection which we must express in a tagset so that we can supply a POS tag together with a
lemma as complete input for the system.

20



Delemmatization strategies for Dutch

We indicate nouns with the major class N, adding attributes for diminutive or not (dim=dim
and dim=norm), for singular and plural number (num=sing and num=plu), and for nominative,
dative and genitive case (case=nom, case=dat and case=gen). Not all combinations occur and
especially the dative is limited as it occurs only in a few archaic expressions in modern Dutch. A
full list of occurring tags can be found in Section 6.2, where we examine the error rate per tag. For
adjectives and adverbs, which largely overlap, we use the main POS tag Adjv, with attributes for
positive, comparative and superlative degree (deg=pos, deg=comp and deg=sup), as well as for the
syntactically determined suffix (form=norm, form=e, form=en). For verbs, indicated with V, there
are more options. The finite forms (fin=fin) have attributes for present or past tense (tense=pres
and tense=past), and for singular or plural number (num=sing and num=plu). In addition, there
is an attribute for form, which is normally unused (form=norm), but becomes active for 3rd person
singular present tense (form=t). Then there is the infinitive (fin=infin), which in principle can have
the basic form (form=norm) as well as a suffix -s (form=s), which might occur in expressions like tot
huilens toe (“until she was crying”), but which we have not found in our data. Finally we have the
present and past participles (fin=part, with tense=pres and tense=past), which can get the same
forms as adjectives when used adjectively, leading to a final attribute (form=norm, form=e and
form=en).

This tagset being the basis of our experiments, we projected the POS tags found in both e-Lex
and Lassy, which are in principle already mutually compatible as they are based on the CGN tagset
(Van Eynde et al. 2000). Although this may mean some loss of information, it makes it easier
to add further lexicons and corpora in potential later experiments. As an example, the tag for
woordje (“little word”) was mapped from N(soort,ev,dim,onz,stan) (i.e. Noun, common, singular,
diminutive, neutral, standard form) to N(dim=dim,num=sing,case=nom).

2.2 e-Lex

Our training material is taken from e-Lex (v1.1), a large lexicon for Dutch, based mostly on Celex
(Baayen et al. 1995) and the CGN (Oostdijk 2000), but also incorporating information from various
other sources. It can be ordered via http://tst-centrale.org/nl/producten/lexica/e-lex/7-25.

For the word classes we are interested in, we find the statistics in Table 1. For each statistic,
we list the number for the original e-Lex lexicon as well as for the version we created by removing
diacritics and transforming all letters to lower case (normalization, see Section 2.4). As we can see,
normalization mostly affects nouns. On the other hand, nouns are hardly affected by the projection
of the POS tag. Here, the main impact is on adjectives/adverbs, for which the CGN tagset includes
e.g. attributes indicating the syntactic use.

Word class Lemmas Lemma-tag pairs Lemma-tag-form Lemma-tag-form
(e-Lex tags) triples triples

(e-Lex tags) (projected tags)
original normalized original normalized original normalized original normalized

Noun 153,510 149,979 237,982 236,841 243,381 241,388 238,773 234,345
Verb 17,894 17,869 163,745 163,716 194,486 194,283 121,983 121,806

Adj/Adv 18,958 18,839 133,913 133,748 143,427 143,036 57,578 57,230

Table 1: Open class words in e-Lex

Of the various information fields in e-Lex, we only use the lemma-tag-form triples and their
corresponding frequency counts, which have been derived from, among others, the Corpus of Spoken
Dutch (CGN; Oostdijk 2000). Note that, because of its use of corpus material, e-Lex also contains
non-conventional forms encountered there, e.g. ademhalingsmoeilijkheid (“trouble breathing”) not
only has the normal plural ademhalingsmoeilijkheden, but also ademhalings-uh-moeilijkheden. As a

21



Onrust & van Halteren

result, the listed frequency becomes important information. Generally, more frequent forms should
give a more reliable picture of inflection than rare forms. Then there are some forms that were
present in source lexica but have not been observed in corpus material. As a result, e-Lex also lists
these, but with frequency zero. We do use these forms in our experiments. To handle competition
between observed and unobserved forms, we add one to all frequencies.

2.3 Lassy Klein

Our test material consists of the Lassy Klein corpus, a subset of about 1Mw of the Dutch Lassy
corpus (van Noord et al. 2006). It was automatically tagged with the Tadpole tagger (van den
Bosch et al. 2007) and parsed with the Alpino parser (Bouma et al. 2001, van Noord 2006),
and subsequently completely manually verified and corrected. It can be ordered at http://tst-
centrale.org/nl/producten/corpora/lassy-klein-corpus/6-66.

For the word classes we are interested in, we find the statistics in Table 2. The relative numbers
of the various word classes is as expected, as is the number of types and the form ambiguity. None of
these is overly important for our current experiment, though. For that, we need to know whether the
word forms in the corpus can be generated, and here a comparison of the rightmost two columns is
necessary. Here we see that a substantial percentage of the lemma-tag-form triples that we encounter
in Lassy cannot be found in e-Lex.

Now we know that especially the noun class is very open, so that a high percentage of unseen
nouns is likely, but we had not expected that almost half the nouns would be absent from the
lexicon. It should be noted, of course, that we are examining types here and not tokens. For
adjectives/adverbs and especially verbs, the situation is better, but still not very good. Even without
running any experiments, we can already conclude that a pure lexicon lookup strategy will not be
sufficient for a production system that is supposed to process unseen text.

Word class Tokens Form Types Lemma-tag-form Lemma-tag-form triples
triple types present in e-Lex

original normalized original normalized original normalized
Noun 246,765 44,075 40,028 44,540 40,363 24,266 (54.5%) 24,818 (61.4%)
Verb 142,294 11,283 10,502 12,537 11,761 11,153 (89.0%) 11,251 (95.6%)

Adj/Adv 80,398 8,952 7,750 9,060 7,846 6,240 (68.9%) 6,276 (79.9%)

Table 2: Open class words in Lassy Klein

2.4 Evaluation

During development, we only access the e-Lex lexicon and any parameters learned by the machine
learning system are also based on the lexicon. Where appropriate (see e.g. weighting in Section 3.2),
we do access frequency information provided in the lexicon. When testing, we process each token
in the Lassy Klein corpus individually. We provide each system with the lemma and the tag and
let the system suggest a surface form. For the main evaluation, we will take the surface form in
the Lassy Klein corpus as the gold standard. Later (Section 6.1), though, we will find that some
discrepancies between system and corpus find their cause in corpus errors.

There is some orthographic variation that hinders a straightforward evaluation. Upper case may
be a characteristic of a word, but often is also just caused by the start of a new sentence, a desire to
stress a word or the word being part of a name. Similarly, use of diacritics greatly varies with the
medium or the personal writing style of an author. As we are interested in morphology rather than
syntax, discourse and orthographic ideolect, we ignore case and diacritics in most of our evaluation.

22



Delemmatization strategies for Dutch

We remove all diacritics and transform all letters to lower case. However, in Section 5.4, we will
specifically investigate the effect of normalization on the accuracy of the system.

3. Delemmatization strategies

In this section, we describe the three main strategies that we investigated for the delemmatization
task. We start with the Lexicon Strategy (Section 3.1), continue with the Machine Learning Strategy
(Section 3.2). In addition, we use a Hybrid Strategy (HYB) which combines the first two. It uses
the form provided by LEX if the input lemma-tag pair is known and the form provided by ML
otherwise. The idea is that, when present, the information in the lexicon is more exact than the
suggestions from the machine learner.

3.1 Lexicon strategy

The lexicon strategy consists, simply, of looking up the lemma-tag pair in the projected e-Lex lexicon.
If the pair is present, the form with the highest noted corpus frequency is chosen. In case of ties,
we choose randomly from among the tying forms. If the pair is not present in the lexicon, we use
the heuristic fallback of taking the lemma itself as the form. A great many of the unknown words
in running text should be singular nouns and non-inflected adjectives/adverbs, and for both these
classes, the lemma is exactly what we need.

3.2 Machine learning strategy

In the machine learning strategy, we treat delemmatization as a classification problem, with the
classes representing the edit script that must be applied to the lemma to create the surface form.
As an example, plural formation could be with the script +.s (with the dot representing the body
of the word) to form molens (“windmills”) from molen or +.en to create boeren (“farmers”) from
boer. However, there may be more needed than suffixation of the plural suffix, as e.g. +.ten to create
katten (“cats”) from kat, -.s/+.zen to create huizen (“houses”) from huis, or -.ot/+.ten to create
boten (“boats”) from boot. The most complex operation for normal words is the creation of the past
participle, which may involve prefixation of ge- in addition to a suffixation. For example, -.en/+ge.d
will create the past participle gebouwd (“built”) from bouwen. In case of a separable verb, the prefix
ge- becomes an infix -ge- and more has to be taken off, e.g. -.bouwen/+.gebouwd is needed to
create opgebouwd (“built up”) from opbouwen and uitgebouwd (“extended”) from uitbouwen. This
approach, using the current lexicon, yields around 8,500 different edit scripts and therefore machine
learning classes. The classes show a mostly Zipfian distribution. At the top we find the null-script
(almost 200,000 occurrences), then plural noun formation with straightforward addition of -s and
-en (both about 25,000 occurrences) and further regular forms. At the bottom we find over 6,000
classes with only one occurrence, among which many past participle forms.

With this number of classes, and given the expected number and type of features (see below),
there are still various machine learning systems that could be used. We decided to use Timbl (v6.4.2;
Daelemans et al. 2004), mostly because of ease of availability (but we should note that an excursion
to support vector machines yielded far lower accuracy). Our choice for Timbl does force us to provide
a fixed number of columns with feature information for each case. We represent the tag as a single
feature, just containing the tag itself. No attempt at splitting the tag into different information
fields is made. The most important features for the lemma are taken to be various substrings at the
end of the lemma. As an example, the lemma generaal (“general”) leads to the features “l”, “al”,
“aal”, “raal”, “eraal”, etc. The maximum length is a system setting. In the experiments below we
have used a maximum of 40, which should be enough to cover the whole word for practically all
tokens in the corpus. Note that even “eraal” would not be sufficient for generaal, as its plural is
generaals, while the plural of mineraal (“mineral”) is mineralen. And, as already indicated above,

23



Onrust & van Halteren

for verbs it may be necessary to address the whole word. In addition, there is a feature indicating a
possible prefix, such as “op” in the example opbouwen above, and a feature indicating whether the
lemma starts with a capital letter. The latter is not used in our experiments as we have transformed
all words to lower case.

As has already been explained above, e-Lex may contain several possible surface forms associated
with the same lemma-tag pair, and some of these forms may be rare corpus occurrences. As a result,
we want to be able to weight the importance of the various training cases. Unfortunately, Timbl
does not allow user weighting of cases. The only way to provide weights is by including the same
case more times. Including each case as many times as the corpus frequency listed in the lexicon
would lead to a case base which is far too big for efficient processing. We have therefore decided
to count the frequency of each suggested form relative to the sum of all frequencies listed with the
corresponding lemma-tag pair, and then round this fraction to the nearest 10 percent. For each 10
percent covered, the form receives one case in the case base. This means that every lemma-tag pair
leads to 10 cases and the case base as a whole is 10 times the number of lemma-tag pairs. This
multiplication by 10 is also done for lemma-tag pairs for which only a single form is present, as we
want the weight also taken into account in the generalization over all lemma-tag pairs.

Given the resulting size of the case base, we would prefer to use the decision tree algorithm in
Timbl (IGtree; Daelemans et al. 1997), which is much faster than the normal k-nn algorithm (IB1;
Daelemans et al. 1999). However, before taking a final decision, we first want to test whether the
increased speed comes at the cost of decreased accuracy. We therefore test both algorithms, and
moreover IB1 with k=1, 2, 3 and 5. As testing will show that IGtree sometimes suggests classes
whose edit script cannot actually be applied to the lemma in question, we furthermore add a fallback
mechanism which takes the suggestion of IB1 in cases where IGtree supplies an impossible script.

4. Results, the main strategies compared

We measured the effectiveness of all strategies with various settings on Lassy Klein. In this and the
following section, we present the results. In all tables, we show the percentage of agreement between
the system suggestions and the form found in Lassy Klein, even though we will see in Section 6.1
that this measurement is less exact than we had hoped.

Strategy Types Tokens
Nouns Verbs Adjectives/Adverbs Nouns Verbs Adjectives/Adverbs

LEX 88.70 95.79 85.79 97.09 98.96 97.26
ML 97.43 97.00 97.77 99.18 99.16 99.26

HYB 97.43 96.98 97.77 99.17 99.07 99.26

Table 3: Accuracy scores for the main strategies

Strategy Types Tokens
Nouns Verbs Adjectives/Adverbs Nouns Verbs Adjectives/Adverbs

LEX 98.25 97.64 98.21 99.53 99.35 99.41
ML 98.25 97.66 98.21 99.54 99.44 99.41

Table 4: Accuracy scores for known words for LEX and ML (HYB is not included as, for these
words, HYB is equal to LEX)

24



Delemmatization strategies for Dutch

In Table 3 we compare the overall results for the main strategies. The rows present the various
strategies and the columns the agreement with Lassy Klein for the three types of open class words.
For all strategies, the best scoring settings are represented; below we will examine the settings in
more detail.

As we can see, the lexicon strategy is not doing badly, especially given the coverage shown in
Table 2. Apparently, the fallback option of using the lemma if the lexicon contains no information
is effective. Still, the lexicon strategy is clearly outperformed by both the machine learning and the
hybrid strategy, with statistically significant differences with all p < 0.00001, except for LEX-HYB
for verb tokens where we find a mere p = 0.003. If we do the comparison for only those lemma-tag
pairs which are present in e-Lex (Table 4), the differences are much smaller, and only statistically
significant for the verb tokens (p = 0.002). Furthermore, when we look at the differences, we mostly
see lemma-tag pairs where both suggested forms are possible (see also Section 6.1). After removing
these, we are left with 9 types (13 tokens) where HYB does better than ML and 8 types (11 tokens)
where ML does better than HYB. For all practical purposes, the two perform equally well. The
main cause for the apparent difference is the past tense of willen (“to want”), where LEX and hence
HYB choose the more informal form wou and ML the more formal form wilde. And since the corpus
contains 124 more occurrences of wilde than of wou, ML scores 0.09% better on verbs.

The difference between ML and LEX also translates directly into a difference between ML and
HYB, and explains why the pure machine learning strategy appears to perform slightly better than
the hybrid strategy. This too is a data-based illusion. The important point, though, is that HYB
does not yield an improvement over ML, so that we can choose the less complex pure machine
learning strategy. Furthermore, even though the ML strategy is already extremely effective with
error rates well under 1% of the tokens in running text for all three open class word types, it can
still be improved. The lexicon strategy on the other hand is fixed and hence limits both lexicon and
hybrid strategies. The only improvement could lie in cleaning up errors in the lexicon, but from this
the machine learning strategy would improve equally.

5. Results, settings for the machine learner

Now we have seen that the machine learning strategy is (at the moment) the best one, it becomes
all the more important that we examine which settings to use. We first look at the basic search
algorithm within Timbl (Section 5.1). Then we continue with the use of frequency weighting (Section
5.2) and the length of word-end substrings to be taken into account (Section 5.3). Finally, we examine
whether normalization of case and diacritics is as important as we expected (Section 5.4).

5.1 Learning algorithm

The main choices one has to make when using Timbl are for the matching algorithm and the size
of the case neighbourhood that will be examined (k). Although the basic matching algorithm, the
lazy learning algorithm IB1, is usually preferred, it is slower than the more greedy decision tree
algorithm IGtree. As the delemmatizer will tend to be embedded in a larger system, with varying
speed requirements, processing time may be important. Similarly, the larger k, the more time will
be needed for processing. We therefore measured the processing time and delemmatization quality
of IGtree as well as IB1 with k=1, 2, 3 and 5. As we found that IGtree will sometimes suggest an
edit script that is inappropriate for the lemma in question, we add a fallback mechanism that uses
the opinion of IB1 when this happens. We test this fallback mechanism with k=1, 2 and 3.

As we can see (Table 5), we are lucky in that speed and quality go hand in hand in these
experiments. By itself, IGtree works not only faster but also better than IB1. And IB1 works better
with smaller rather than larger k. The fallback option does help solve most of the problem with the
inappropriate scripts, which however does not turn out to be very frequent. In the 469,457 cases
processed, we run into this problem 109 times (0.02%). Fallback to IB1 with k=1 often does not

25



Onrust & van Halteren

Algorithm/k Processing time Types Tokens
Nouns Verbs Adjectives/ Nouns Verbs Adjectives/

Adverbs Adverbs

IB1-1 27 min 96.71 96.81 97.08 98.96 99.14 99.01
IB1-2 1.5 hr 96.23 80.78 96.48 97.12 69.33 97.30
IB1-3 2 hr 96.28 86.55 96.30 97.36 68.14 96.83
IB1-5 4 hr 95.50 85.17 95.63 96.09 65.77 93.97
IGtree 16 min 97.34 96.80 97.69 99.16 99.14 99.25

IGtree/IB1:k1 97.37 96.95 97.69 99.16 99.16 99.25
IGtree/IB1:k2 97.43 97.00 97.77 99.18 99.16 99.26
IGtree/IB1:k3 97.43 96.98 97.77 99.18 99.16 99.26

Table 5: Accuracy scores per algorithm and neighbourhood size k (in bold are shown the highest
accuracy, plus all that are not significantly different at the p < 0.05 level)

help as it too chooses the inappropriate script (46 times). Going to k=2 brings new options, not
always correct, but often. All in all, the fallback to IB1 with k=2 brings correct results for 78 of
the 109 problematic cases. In all further experiments, we will therefore use IGtree with a fallback
to IB1 with k=2.

We can conclude that a production system should use the IGtree algorithm with, if speed re-
quirements permit, a fallback to IB1 with k=2 for those cases where IGtree is misbehaving.

5.2 Frequency weighting

As explained in Section 3.2, we tried to improve the generalization quality of the machine learning
algorithm by using various lexicon suggestions for lemma-tag pairs, weighted with the observed
frequency of the suggestions. Since this too increases processing time, and since the weighting could
only be implemented rather coarsely, we wanted to measure whether weighting was indeed effective.

Weighting Types Tokens
Nouns Verbs Adjectives/Adverbs Nouns Verbs Adjectives/Adverbs

unweighted 97.01 95.70 97.31 98.22 82.25 92.41
weighted 97.35 96.80 97.69 99.16 99.14 99.25

Table 6: Accuracy scores with and without frequency weighting

As we see in Table 6, the effect does not seem very pronounced when looking at types (and not
even always statistically significant, with p = 0.002, p = 0.00001, and p = 0.1, respectively), but all
the more so when looking at tokens (all p < 0.000001). Especially the high frequency types profit
by the generalization. The reason is that e-Lex, being based partly on annotated corpus material,
contains various erroneous forms. These are of course marked as having a low frequency, but may
be selected if we do not apply frequency weighting. The most influential errors are the production of
the plural zijn instead of is as the third person singular present of zijn (“to be”) for verbs (leading
to 10,522 token errors), kinder instead of kinderen as the plural of kind (“child”) for nouns (454
token errors) and ander instead of andere as the +e form of ander for adjectives and adverbs (1,567
token errors).

In a production system, weighting should certainly be applied. It might even be worthwhile to
use more fine-grained weighting, but this would mean either a much larger Timbl case base or a
switch to another learning system.

26



Delemmatization strategies for Dutch

5.3 Word-end substring length

As already mentioned above, one of the reasons that ML manages to be as good as, if not better
than HYB, is that ML takes into account up to 40 characters from the end of the lemma. For most
lemmas in the experiment, this is simply the whole string so that this is in fact equal to what can be
found in the lexicon. The question is, therefore, how important the characters at the various points
in the lemma are. To measure this, we repeated the experiments for the best scoring ML strategy
with word-end substring length gradually decreasing from the original 40 all the way down to 1.

Maximum Types Tokens
Word-end Substring Length Nouns Verbs Adjectives/ Nouns Verbs Adjectives/

Adverbs Adverbs
1 88.24 53.89 90.70 89.61 44.52 88.80
2 91.93 54.87 95.48 93.49 49.94 96.62
3 95.60 66.67 97.54 97.18 63.43 98.57
4 96.69 81.06 97.80 98.47 74.42 99.58
5 97.16 87.60 97.83 98.88 81.30 99.26
6 97.40 92.26 97.85 99.07 94.12 99.27
7 97.51 95.15 97.82 99.15 97.45 99.27
8 97.49 96.43 97.81 99.14 98.64 99.26
9 97.46 96.87 97.78 99.17 99.09 99.26
10 97.44 96.95 97.77 99.17 99.15 99.26
11 97.44 96.97 97.78 99.18 99.16 99.26
12 97.44 96.97 97.78 99.18 99.16 99.26
13 97.44 96.98 97.78 99.18 99.16 99.26
14 97.44 96.99 97.78 99.18 99.16 99.26
15 97.44 97.00 97.77 99.18 99.16 99.26
16 97.44 97.00 97.77 99.18 99.16 99.26
17 97.44 97.00 97.77 99.18 99.16 99.26
18 97.44 97.00 97.77 99.18 99.16 99.26
19 97.44 97.00 97.77 99.18 99.16 99.26
20 97.44 97.00 97.77 99.18 99.16 99.26
21 97.44 97.00 97.77 99.18 99.16 99.26
22 97.43 97.00 97.77 99.18 99.16 99.26
23 97.43 97.00 97.77 99.18 99.16 99.26
...

...
...

40 97.43 97.00 97.77 99.18 99.16 99.26

Table 7: Accuracy scores for varying maximum word-end substring length (in bold are shown the
highest accuracy, plus all that are not significantly different at the p < 0.05 level)

We present the results in Table 7. We see that the full 40 characters are not needed for optimal
quality. In fact, we see a slight degradation when moving into the higher ranges of word-end substring
length. As more characters become available, the system may choose a different class, using more
specific rather than more general scripts. Sometimes this is better but sometimes also not. As the
numbers show, from some point on there are more changes for worse than for better, although it
must be said that the number of changes involved is extremely low.

The measurements peak at various points, depending on POS as well as on the choice between
types and tokens. For Adjectives/Adverbs, around 5 characters of word-end substring appears to
be enough. Nouns need more, 7 when looking at types and 11 when looking at tokens. We expect

27



Onrust & van Halteren

that between 7 and 11 there are both new forms going right and new forms going wrong, but with
the ones now going right having higher frequency. For verbs, the peak is clearly reached at 15, with
the higher number probably connected to past participle formation.

With the current data, we would tend to vary the word-end substring length for a production
system: 5 for Adjectives/Adverbs, 10 for Nouns and 15 for Verbs. However, as we will see below,
various improvements can be made to lexicon, learner and evaluation data, and it would be wise to
repeat this measurement after these improvements are in place.

5.4 Effects of normalization

Another choice we made for our experiments is that we normalized all strings by removing diacritics
and transforming all letters to lower case (see Section 2.4). In Table 8, we see that this was indeed
necessary. Without normalization, the system would not be usable in a production environment.
With the current, limited data, delemmatization should be performed on normalized strings and
application of diacritics and case should be separate processes. Furthermore, as we will see in
Section 6.1, there are a few more processes that might be split off, such as spelling conventions and
partial bracketing.

Normalization Types Tokens
Nouns Verbs Adjectives/Adverbs Nouns Verbs Adjectives/Adverbs

not normalized 85.49 89.65 82.76 91.96 97.30 92.27
normalized 97.35 96.80 97.69 99.16 99.14 99.25

Table 8: Accuracy scores with and without normalization of case and diacritics

6. Error analysis

In this section, we investigate the errors made by the best system (ML, weighted, IGtree with a
fallback to IB1 with k=2, using a maximum word-end substring length of 40). At the end of the
section, we will list the errors per POS tag (Section 6.2), but first (Section 6.1) we will classify the
types of errors in general, as this will also provide information that is useful for the interpretation
of the numbers per tag.

6.1 Error classes

When comparing the output of the best system with the actual forms in the Lassy Klein corpus,
we find 3,817 discrepancies (of 1,564 unique types). Within these discrepancies, we can distinguish
several, sometimes rather large classes. We present an overview in Table 9.

Class Types Tokens Tokens/Total Discrep.
Annotation Error 462 1,062 27.8%

Corpus Error 228 253 6.6%
Variants 436 1,543 40.4%

Non-Dutch, Abbreviations 90 314 8.2%
Lexicon Error 198 433 11.3%

ML Error 150 212 5.6%
Total 3,817 1,564 100%

Table 9: System-corpus discrepancy classes

28



Delemmatization strategies for Dutch

Interestingly, most of the discrepancies are not really errors of our delemmatizer. We find two
classes where the gold standard is wrong rather than the system output. In the first of these
classes (Annotation Error), the annotation in Lassy Klein is erroneous, either for the tag (e.g. the
plural liefhebbers (“amateurs”) being tagged as singular) or for the lemma (e.g. the noun Nederlands
being tagged as nominative but then receiving the lemma Nederland, which would only be correct
if Nederlands was interpreted as a genitive). In such cases, it is impossible for the delemmatizer to
create the desired form as it either starts with the wrong lemma or attempts to produce the wrong
inflection. The second kind of error in the gold standard is a deviating surface form (Corpus Error),
mostly typographical and orthographical errors such as kwamer instead of kwamen as past tense of
komen (“to come”) and perrimenteren instead of permitteren (“permit”).

Similar to the latter class is the class where corpus and system disagree, but they are both
right (Variants). The variation may be present in the standard Dutch, e.g. as it allows various
plurals (gemeenten vs gemeentes, “municipalities”) or allow more and less formal forms (wilde vs
wou, “wanted”; goede vs goeie, “good”). But we also find dialectal forms, especially for diminutive
formation; the dialect can be present both in the corpus (dialectal bollekes vs bolletjes, “little balls”)
and in the prediction (kapelletje vs dialectal kapelleke, “little chapel”). Then there are orthographical
variants. These tend to be present in the corpus (opge-eist (“demanded”) vs opgeeist ; al-qaeda vs al-
qaida; partij(en) (“party/parties”) instead of partijen). Finally, a rather special subclass of variants
is formed by homographs that show differing inflection. An example is bedelen (“beg” or “hand out”),
where the former sense (where word stress is on the first syllable) leads to the past tense bedelde
and the latter (where the word stress is on the second syllable) to bedeelde. Here a judgement on the
correctness of the delemmatizer would need an inspection of the context. We have not done this,
but the number of these cases is extremely low.

Another class where we could decide to be lenient is formed by non-Dutch words and abbrevi-
ations. One can hardly expect that a delemmatizer for Dutch knows that the plural of outlier is
outliers; knowing what it knows, it will predict outlieren. The same is true for abbreviations, espe-
cially when the lemma can be either the full or the abbreviated form. As an example, the corpus
form blz. is given the lemma bladzij (“page”), 28 times with singular number and 66 times with
plural number, which leads to the system producing the normal correct forms bladzij and bladzijden.

Moving on to discrepancies which are caused by system errors, we start with two large classes
of systematic errors. By far the largest is the formation of the genitive. Very often, we see that the
genitive produced by the system is just the nominative form. A look at the e-Lex lexicon quickly
brings to light the cause: 1,733 out of 2,868 genitives in e-Lex, about 60%, are not genitives at all
but nominative forms. The machine learner was taught the wrong forms. The same thing happens
with the adjective Engels (“English”), for which the form with suffix -en in e-Lex is Engelse, with
-e rather than -en. The system repeats this, leading to 19 discrepancies for Engels, but also to 45
discrepancies for Frans (“French”). And there are more system errrors that stem from erroneous
forms in e-Lex, such as winkelketen (“shop chain”) getting the singular form as plural instead of
winkelketens, or the name schultz getting the singular form schiltz.

However, not all system errors can be explained by blaming the data sets. The biggest subclass
concerns plural formation, 113 errors of 69 unique types, most of which by confusion of the two
standard Dutch plural formation suffixes -en and -s, 76 errors of 43 unique types. Another big
subclass is past participle formation, 60 errors of 54 unique types. This proved to be partly due
to a historical artefact in the software, which can be easily removed. The remaining errors are
rather varied, although it is mostly clear that for some reason the wrong edit script was applied.
Some improvement could still be reached in those cases where the predicted form contains n-grams
unknown in Dutch (e.g. tegenzittt with three t’s at the end as a 3rd person present tense of tegenzitten
(“not working smoothly”)), so that we can apply a similar fallback as with IGtree to IB1, but these
cases are rare.

All in all, only 348 type discrepancies can be confirmed as system errors, and only 150 of these
as system-based rather than data-based errors. On the other hand, we have only inspected those

29



Onrust & van Halteren

tokens where there was a discrepancy between the system output and the corpus. It is possible, even
likely, that there are also tokens where the system does make a mistake, but this is not observed
as the corpus form or annotation are also wrong. For now, we can only conclude that the error
rate is most probably well under 1%. Furthermore, we can observe that it would be fruitful to
clean up both e-Lex and Lassy Klein, in which experiments like ours can obviously be of assistance,
analogous to the identification of tagging errors by generating a tagger on the basis of the corpus
(van Halteren 2000).

6.2 Errors per POS tag

Apart from the reasons that errors are being made, it is also interesting to see which types of cases
go wrong. This lets us decide where effort should be concentrated to solve existing problems or,
when the problems cannot be solved, put a warning in the instructions for any future production
system that specific problems exist. In Tables 10 to 12, we list the number of errors made per tag.
In columns 3 to 5, we show all discrepancies. In columns 6 to 8, we show only those listed as Lexicon
Error or ML Error in Section 6.1, i.e. the ones confirmed as actual system errors.

Tag Tokens Discreps. Discreps./ Discreps./ System Sys.Errs./ Sys.Errs./
Tokens All Discreps. Errors Tokens /All Sys.Errs

N(dim=dim,num=plu,case=nom) 597 18 3.0% 0.9% 1 0.0002% 0.2%
N(dim=dim,num=sing,case=nom) 1,016 31 3.1% 1.5% - - -
N(dim=norm,num=plu,case=nom) 57,866 1,303 2.3% 62.8% 164 0.04% 36.2%
N(dim=norm,num=sing,case=dat) 596 3 0.5% 0.1% 2 0.0004% 0.4%
N(dim=norm,num=sing,case=gen) 1,860 388 20.9% 18.7% 279 0.06% 61.6%
N(dim=norm,num=sing,case=nom) 184,830 333 0.2% 16.0% 7 0.002% 1.5%

Total N 246,765 2,076 0.8% 100% 453 0.2% 100%

Table 10: Errors per noun tag for best ML system

Tag Tokens Discreps. Discreps./ Discreps./ System Sys.Errs./ Sys.Errs./
Tokens All Discreps. Errors Tokens /All Sys.Errs

V(fin=fin,tense=past,num=plu,form=norm) 7,176 41 0.6% 3.4% 6 0.001% 5.9%
V(fin=fin,tense=past,num=sing,form=norm) 20,585 131 0.6% 10.8% 5 0.001% 5.5%
V(fin=fin,tense=pres,num=plu,form=norm) 16,893 26 0.2% 2.1% - - -
V(fin=fin,tense=pres,num=sing,form=norm) 19,853 269 1.4% 22.1% 1 0.0002% 1.0%
V(fin=fin,tense=pres,num=sing,form=t) 22,286 233 1.1% 19.1% 15 0.003% 14.9%
V(fin=infin,form=norm) 25,659 100 0.4% 8.2% - - -
V(fin=part,tense=past,form=e) 2,908 51 1.8% 4.2% 22 0.005% 21.8%
V(fin=part,tense=past,form=en) 262 14 5.3% 1.2% 7 0.002% 6.9%
V(fin=part,tense=past,form=norm) 23,397 257 1.1% 21.1% 29 0.006% 28.7%
V(fin=part,tense=pres,form=e) 2,263 18 0.8% 1.5% - - -
V(fin=part,tense=pres,form=en) 32 1 3.1% 0.1% 1 0.0002% 1.0%
V(fin=part,tense=pres,form=norm) 980 76 7.8% 6.2% 15 0.003% 14.9%

Total V 142,294 1,217 0.9% 100% 101 0.07% 100%

Table 11: Errors per verb tag for best ML system

As already seen in Section 6.1, there are a few tags with larger numbers of errors, for which we
already found partial solutions, mostly consisting of lexicon cleanup. The other errors are spread
out over the remaining tags and will be harder to correct.

30



Delemmatization strategies for Dutch

Tag Tokens Discreps. Discreps./ Discreps./ System Sys.Errs./ Sys.Errs./
Tokens All Discreps. Errors Tokens /All Sys.Errs

Adjv(deg=comp,form=e) 1,030 3 0.3% 0.5% - - -
Adjv(deg=comp,form=en) 258 - - - - - -
Adjv(deg=comp,form=norm) 2,809 7 0.3% 1.2% 2 0.0004% 2.2%
Adjv(deg=pos,form=e) 40,815 408 1.0% 67.8% 10 0.002% 11.0%
Adjv(deg=pos,form=en) 880 71 8.1% 11.8% 65 0.01% 71.4%
Adjv(deg=pos,form=norm) 32,358 86 0.3% 14.3% 14 0.003% 15.4%
Adjv(deg=sup,form=e) 2,015 24 1.2% 4.0% - - -
Adjv(deg=sup,form=norm) 233 3 1.3% 0.5% - - -

Total Adjv 80,398 602 0.7% 100% 91 0.1% 100%

Table 12: Errors per adjective/adverb tag for best ML system

7. Conclusion and future work

In this paper we have investigated whether, for Dutch open class words, it is possible to generate the
surface form on the basis of the lemma and a POS tag. We have tested various strategies, combining
a lexicon (e-Lex) and a machine learning system (Timbl), against an annotated corpus (Lassy Klein).
We found that for all three parts of speech tested, nouns, verbs, and adjectives/adverbs, the best
strategy has an error rate well under 1% when comparing the system output against the form in the
corpus. Furthermore, when examining the errors, we find that only one in six discrepancies between
system output and corpus could really be counted as a system error. The other discrepancies are
due to errors in the annotation of the corpus, erroneous surface forms in the corpus, different choices
from possible variants rather than errors, or the fact that the words in question are not subject to
normal Dutch morphology. On the other hand, there may well be many other system errors which
we did not find because of similar errors in annotation and/or corpus forms. This means that an
exact accuracy score cannot be given, but in all probability the error rate is closer to 0% than to
1%.

We find that the pure lexicon strategy is not viable, seeing the unavoidable lack of coverage of
the lexicon. The two other strategies, involving a machine learning system, lead to equally good
results in the current experiments. For the words known to the lexicon, we can use either the lexicon
or the machine learner. Both make more or less the same number of mistakes. However, looking
something up in a lexicon cannot be improved upon, but a machine learning technique can, so that
we tend to prefer the pure machine learning strategy over the hybrid which first checks the lexicon
entries. For the machine learning strategy with Timbl, the best results are found when using IGtree
with a fallback to IB1 with k=2 in those cases where IGtree suggests an impossible edit script for
transforming the lemma to the form. In addition, all lemmas and forms should be normalized by
removing any diacritics and transforming the words to lower case. If desired, a separate module
could reinstate diacritics and upper case on the suggested form. The optimal maximum word-end
substring length appears to vary between the word classes, with around 5 for adjectives/adverbs,
10 for nouns, and 15 for verbs. Finally, the corpus frequencies of the various forms for the same
lemma-tag pair should be taken into account when learning, by some kind of weighting technique.

Although delemmatization errors have also been found in the learning mechanism, most errors
by far have been caused by noise in the e-Lex lexicon. It would seem wise to first clean up the
lexicon before attempting to understand and fix the remaining learning technique errors. After all,
at the moment we can only recognize the errors caused directly by lexicon noise, and not the errors
that have been caused by generalizing from that noise. However, we have already seen that even
with a perfect lexicon, the system would still make mistakes and we should consider how to adapt
our learning method so that these errors no longer occur.

Apart from improving the accuracy for the open classes, we also need to add the processing of
closed class words in order to build a full production system. Once that is in place, we can start

31



Onrust & van Halteren

considering actual applications. One application is already eagerly waiting, namely the generation of
modern word forms for 14th Century Dutch text. This work can start with the annotated corpus van
Reenen-Mulder (Rem 2003) and, if this is succesful, by creating a pipeline where as yet unannotated
14th Century Dutch text is tagged-lemmatized with Adelheid (van Halteren and Rem 2013) and
then extended with modern word forms by way of delemmatization.

References

Baayen, Harald R., Richard Piepenbrock, and Leon Gulikers (1995), The CELEX Lexical Database.
Release 2 (CD-ROM), Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
Pennsylvania.

Beesley, Ken (2004), Morphological analysis and generation: a first step in natural language pro-
cessing, Proc. of the SALTMIL Workshop at LREC 2004, pp. 1–8.

Beesley, Kenneth R. and Lauri Karttunen (2003), Finite-state morphology: Xerox tools and tech-
niques, CSLI, Stanford.

Booij, Geert Evert and Ariane van Santen (1998), Morfologie: de woordstructuur van het Nederlands,
Vol. 2e geheel, Amsterdam University Press.

Bouma, Gosse, Gertjan van Noord, and Robert Malouf (2001), Alpino: Wide-coverage computational
analysis of Dutch, Language and Computers 37 (1), pp. 45–59.

Carl, M., P. Schmidt, and J. Schütz (2005), Reversible template-based shake & bake generation,
Proceedings of the Example-Based Machine Translation Workshop held in conjunction with the
10th Machine Translation Summit, Phuket, Thailand, September 16, pp. 17–26.

Daelemans, Walter, Antal van Den Bosch, and Jakub Zavrel (1999), Forgetting exceptions is harmful
in language learning, Machine Learning 34 (1-3), pp. 11–41, Springer.

Daelemans, Walter, Antal van den Bosch, and Ton Weijters (1997), Igtree: Using trees for com-
pression and classification in lazy learning algorithms, Artificial Intelligence Review 11 (1-
5), pp. 407–423, Springer.

Daelemans, Walter, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch (2004), Timbl: Tilburg
memory-based learner, Technical Report ILK-0209, Tilburg University.

Oostdijk, Nelleke (2000), The Spoken Dutch Corpus: overview and first evaluation, Proceedings
of the 2nd International Conference on Language Resources and Evaluation (LREC), Vol. 2,
pp. 887–894.

Rem, Margit (2003), De taal van de klerken uit de Hollandse grafelijke kanselarij (1300-1340):
naar een lokaliseringsprocedure voor het veertiende-eeuws Middelnederlands, PhD thesis, Vrije
Universiteit, Amsterdam.

van den Bosch, Antal, Bertjan Busser, Sander Canisius, and Walter Daelemans (2007), An efficient
memory-based morphosyntactic tagger and parser for Dutch, Computational linguistics in the
Netherlands: Selected papers from the Seventeenth CLIN Meeting, pp. 99–114.

Van Eynde, Frank, Jakub Zavrel, and Walter Daelemans (2000), Part of speech tagging and lem-
matisation for the Spoken Dutch Corpus, Proceedings of the 2nd International Conference on
Language Resources and Evaluation (LREC), Vol. 3, pp. 1427–1433.

32



Delemmatization strategies for Dutch

van Halteren, Hans (2000), The detection of inconsistency in manually tagged text, Proceedings of
the COLING-2000 Workshop on Linguistically Interpreted Corpora, International Committee
on Computational Linguistics, Centre Universitaire, Luxembourg, pp. 48–55.

van Halteren, Hans and Margit Rem (2013), Dealing with orthographic variation in a tagger-
lemmatizer for fourteenth century Dutch charters, Language Resources and Evaluation,
Springer.

van Noord, Gertjan (2006), At Last Parsing Is Now Operational, TALN06. Verbum Ex Machina.
Actes de la 13e conference sur le traitement automatique des langues naturelles, pp. 20–42.

van Noord, Gertjan, Ineke Schuurman, and Vincent Vandeghinste (2006), Syntactic annotation
of large corpora in STEVIN, Proceedings of the 5th International Conference on Language
Resources and Evaluation (LREC).

Vaneyghen, Joris, Guy De Pauw, Dirk Van Compernolle, and Walter Daelemans (2006), A mixed
word / morphological approach for extending CELEX for high coverage on contemporary large
corpora, Proc. 5th International Conference on Language Resources and Evaluation, Genoa,
Italy, May 2006, pp. 931–934.

33


	Introduction
	Experimental data and evaluation
	Tagset used in the experiments
	e-Lex
	Lassy Klein
	Evaluation

	Delemmatization strategies
	Lexicon strategy
	Machine learning strategy

	Results, the main strategies compared
	Results, settings for the machine learner
	Learning algorithm
	Frequency weighting
	Word-end substring length
	Effects of normalization

	Error analysis
	Error classes
	Errors per POS tag

	Conclusion and future work

