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Abstract

Simulated Annealing for Optimality Theory (SA-OT) updates Optimality Theory by
adding a model of performance to a theory of linguistic competence. Our aim is to show that
SA-OT can contribute to language change simulations. Performance �errors� are considered
to be one of the causes of variation and change. We have chosen to model the evolution
of sentential negation (SN). The descriptive background adopts Jespersen's Cycle, accord-
ing to which the evolution of sentential negation follows three main stages (1. pre-verbal,
2. discontinuous, and 3. post-verbal). Therefore, we advance a novel model for SN, based
on SA-OT. It reproduces the three pure and the two observed mixed stages, whereas it
correctly predicts the lack of an intermediate stage between 3 and 1. The success of the ap-
proach corroborates the computational, performance-based approach to the data. Finally,
we employ the iterated learning paradigm to reproduce historical changes in a �simulated
corpus study�. This enterprise turns out to be more di�cult than one would naively believe.

1. Introduction

Linguistic systems change over time, this is a well-known fact. Many theoretical attempts
have been laid down in order to explain the process of change. This paper discusses the role
of imperfect mental computation (�performance errors�) in the history of one particular syn-
tactic phenomenon, sentential negation. For that purpose, we employ Simulated Annealing

for Optimality Theory, a recently developed computational implementation of Optimality
Theory (Biró 2006, 2005, 2009). Our aim is in fact twofold: On one hand, to study the
evolution of sentential negation, taking as starting point both the seminal works of Jes-
persen (1909, 1917) and Dahl (1979) and the recent optimal theoretical analysis advanced
by de Swart (2010). On the other hand, we want to test SA-OT as a computational model
of not only linguistic performance, but also language variation and change.

This paper is structured in six principal sections. Section 2 will introduce Simulated
Annealing for Optimality Theory, comparing it to traditional OT and how it can incorpo-
rate performance. Section 3 will then introduce our case study, sentential negation (SN),
Jespersen's historical stages, and de Swart's approach. In this section we also raise some
criticism against her analysis, arguing that SA-OT may do better than traditional and
Stochastic OT in reproducing language typology and historical change. Section 4 will out-
line our model and introduce the candidate set, the topology, the set of constraints and
the hierarchies employed in the simulation. Section 5 will describe the results of these sim-
ulations, comparing them with Jespersen's observed or postulated stages and de Swart's
account thereof. Section 6 turns to the dynamics driving the change, presenting the results
of a multiagent iterated learning experiment. Finally, section 7 will conclude the paper.
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2. Simulated Annealing for Optimality Theory (SA-OT)

In order to understand what SA-OT is and how it handles variation, we compare it to
traditional OT (Prince and Smolensky 1993/2004). We assume that competence and per-
formance are two distinct concepts (Chomsky 1965), one represented by a grammar (in our
case, a set of ranked constraints) and the other being its implementation (Smolensky and
Legendre 2006, Bíró 2006). Traditional OT is a theory of grammar, determining what forms
are grammatical : those that are optimal for a list of ranked constraints. SA-OT, an im-
plementation of OT, is an algorithm that searches for these best candidates, but may fail
to �nd them. Thereby, it predicts the forms produced, including �performance errors�. The
term `error' refers to anything that is ungrammatical with respect to the grammar, but still
produced: fast speech forms, acceptable irregular forms and other variations. SA-OT does
not aim at accounting for all types of variation, as small random divergences are sometimes
better reproduced by other stochastic variants of OT (Boersma 1997).

More speci�cally, a grammatical form is a global optimum, i.e., a candidate that optimizes
a harmony function (speci�ed by the constraint ranking) on the set of all possible candidates.
At the same time, a produced form may be both a global optimum, but also a local optimum

that is globally not optimal: a candidate that is more harmonic than its neighbors, as we
shall explain soon.

A grammar is thus a harmony function H over a set of possible candidates {w, w′, . . . }.
It is composed of elementary functions Ci called constraints (0 ≤ i ≤ N). A constraint
assigns a number of violation marks to the candidates according to certain requirements
(avoid a structure, similarity to input, etc.). Moreover, the constraints are ranked into a
language speci�c hierarchy:

CN � CN−1 � . . . � C0 (1)

In turn, the harmony function assigns a vector, called a violation pro�le, to each candi-
date w, consisting of the violation marks assigned by the constraints:

H(w) = (CN (w), CN−1(w), . . . C0(w)) (2)

The grammar determines the candidate that maximizes harmony. Maximization of har-
mony corresponds to minimizing the number of violation marks, at least for the higher
ranked constraints. Candidate w1 is more harmonic than candidate w2 if and only if H(w1)
is lesser than H(w2) by the lexicographic order. In other words, we �rst seek the fatal

constraint, that is, the highest ranked constraint that assigns a di�erent number of viola-
tion marks to the two candidates. Then, the candidate that suits this constraint better is
the more harmonic candidate with respect to the hierarchy (to the grammar). Optimality
Theory postulates that the most harmonic candidate in the entire candidate set, the global
optimum, is also the grammatical form.

The Simulated Annealing for Optimality Theory Algorithm (SA-OT) attempts to �nd
this global optimum, but sometimes fails to do so. A topology (or neighborhood structure)
is introduced, on which SA-OT performs a random walk. The topology is de�ned on the
search space, the OT candidate set, usually by neighborhood criteria called basic steps. It
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is the `horizontal component' of the landscape in which the random walk takes place. The
`vertical component' is provided by the harmony function, and thus, the random walk turns
into hill climbing. The random walk starts from an initial candidate winit in the search space.
At each iteration step, it proceeds by choosing a random neighbor w′ of its current position
w. Whether the random walker actually moves from w to w′ is governed by a transition

probability, which we return to in a moment. Initially, the random walker is free to move
anywhere; later, it will only move to more harmonic neighbors. The random walk terminates
in a local optimum, a candidate that is more harmonic than its neighbors, and this form
is �nally returned by the algorithm. Consequently, SA-OT, as a model of performance,
predicts that not only the global optimum, but also further local optima are uttered by
speakers. It also predicts their frequencies.

At any moment of the algorithm, the transition probability depends on w and w′ (in fact,
only on the `di�erence' of H(w′) and H(w)); as well as on the parameter temperature, a pair
of numbers 〈K, t〉, which decreases following a cooling schedule. Let us compare w to w′ in
the way it is usually done in OT, and let us identify the fatal constraint F . Let d be the
di�erence in violations of the fatal constraint: d = F (w′)− F (w). If d is negative, then w′

is more harmonic than w. Additionally, let f denote the rank (or, rather, the K-value) of
F : a value associated to each constraint, which is higher if the constraint is ranked higher
in the hierarchy.

Then, SA-OT de�nes the transition probability � the chance of the random walker ac-
tually moving from w to the randomly chosen neighbor w′ � as

P
(
w → w′| 〈K, t〉

)
=


1 if w′ is not less harmonic than w, else

1 if f < K

exp(−d/t) if f = K

0 if f > K

(3)

In other words, if the randomly chosen neighbor w′ is more harmonic than (or equally
harmonic to) the current position w of the random walker, then the new position becomes
w′. Otherwise, let us compare the rank (K-value) f of the fatal constraint to the �rst
component K of the temperature. If K is larger, the random walker moves to w′. If f
is larger, the random walker stays in w. Finally, if f = K, then a random number r is
generated with a uniform distribution on the [0, 1] interval, and if r < exp(−d/t), then the
random walker moves to w′.

Thus, we approach variation through performance. SA-OT maintains the traditional
dichotomy between competence and performance. Competence is modeled by the set of
universal constraints, their language speci�c ranking and the candidate set. Performance
emerges from the topology and the random walk heuristic, which will or will not return
the grammatical candidate. For background and details of SA-OT, please refer to previous
papers of the second author, as well as to the Appendix (pseudo-code and parameters). The
concrete case in sections 4 and 5 will further illustrate the content of this probably abstract
introductory section.
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3. Case study: Sentential Negation

Sentential negation (SN), as it is considered here, is the possibility to reverse the truth con-
dition of the main verb in the sentence. The study of the ways languages mark this function
dates back at least to the Danish linguist Otto Jespersen (1909, 1917), who observed three
main types of SN: pre-verbal, discontinuous and post-verbal sentential negations. These
types are also argued to be three historical stages, in this diachronic order. Later, Dahl
(1979) coined the term Jespersen's Cycle to describe the apparently cyclical nature of the
evolution of SN.

3.1 Types of sentential negation

Languages such as Italian, Chinese, Russian and Hungarian (examples 1) mark sentential
negation pre-verbally. The language speci�c sentential negator (non, bu, ne, nem) is placed
on the left side of the main verb, appearing in a pre-verbal position in the linear order
of the constituents. Conversely, languages such as Lombard, Dutch, Turkish, and Japanese
(examples 2) mark sentential negation in a post-verbal position, the sentential negator (mia,

niet, -me-, -na-) being placed on the right side of the main verb (verbal root in Turkish and
Japanese). 1

Example 1

a. Giovanni
Giovanni

non

SN
mangia

eats
la

the
mela.

apple.
[Italian]

`Giovanni does not eat the apple.'

b. t	a
3sg

bu

SN
s��.

die.
[Chinese]

`S/he won't die.'

c. Katja
Katja

ne

SN
£itaet

reads
knigu.

book.ACC.
[Russian]

`Katja does not read the book.'

d. János
János

nem

SN
alsz-ik.

sleep-3sg.
[Hungarian]

`János does not sleep.'

Example 2

a. Giovanni
Giovanni

al

CL
maja

eats
mia

SN
la

the
mèla.

apple.
[Eastern Lombard]

`Giovanni does not eat the apple.'

b. Jan
Jan

eet

eats
de

the
appel

apple
niet.

SN.
[Dutch]

`Jan does not eat the apple.'

1. The Italian, Lombard and French examples are compiled by the �rst author, the rest is borrowed from
de Swart (2010).
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c. John
John

elmalar-i

apples-ACC
ser-me-di-ø.

like-SN-past3sg.
[Turkish]

`John didn't like apples.'

d. Taroo-wa
Taroo-TOP

asagohan-o

breakfast-ACC
tabe-na-katta.

eat-SN-past.
[Japanese]

`Taroo didn't eat breakfast.'

Discontinuous sentential negation is the third possible type observed by Jespersen. It
consists of two negators, one positioned on the left, and the other on the right of the main
verb, yielding a negator-verb-negator linear sequence. French, Cairese Piedmontese, Old
English and Welsh are among the languages that employ this type of sentential negation
(examples 3).

Example 3

a. Jean
Jean

ne

SN
parle

speaks
pas

SN
anglais.

English.
[French]

`Jean does not speak English.'

b. U
3.CL

n

SN
li

him
sent

hears
nent.

SN.
[Cairese Piedmontese]

`He can't hear him.'

c. Ne
SN

bið

is
he

he
na

SN
geriht.

righted.
[Old English]

`He is not forgiven.'

d. Doedd
SN.be.impf.3sg

Gwyn

Gwyn
ddim

SN
yn

PROG
cysgu.

sleep.
[informal Welsh]

`Gwyn was not sleeping.'

Jespersen noted that these three types of sentential negation often represent three evo-
lutional stages in the history of many European languages. He pointed out that pre-verbal
sentential negation was often replaced by discontinuous negation, which, in turn, developed
into post-verbal SN. This is particularly evident looking at the history of French and En-
glish. The table below, based on de Swart (2010:104), sums up the diachronic succession
of the three stages. Post-verbal sentential negation in French corresponds to contemporary
colloquial French, while in English, it represents Early Modern English.

pre-verbal discontinuous post-verbal
French Jeo ne dis Je ne dis pas Je dis pas

English Ic ne secge Ic ne seye not I say not

1. SN V 2. SN V SN 3. V SN

Beside these three stages, it is important to add that some languages represent mixed
stages, where two types of sentential negation are simultaneously produced by speakers.
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Figure 1: Jespersen's cycle: three pure stages and two attested mixed stages. The third
mixed stage and the corresponding transition from post-verbal to pre-verbal, al-
though questionable, are widely assumed.

Probably best-known is contemporary French, with both discontinuous (�ne dis pas� � SN

V SN ) and post-verbal negation (�dis pas� � V SN ).
Languages with patterns from both stage 1 and stage 2 (cf. Figure 1) are believed to

be in a diachronic process moving away from the pre-verbal to the discontinuous stage. A
similar story applies to languages, such as contemporary French, that can express negation
both in a discontinuous and a post-verbal fashion, and which may adopt a purely post-verbal
pattern in the future. Finally, post-verbal SN is hypothesized to evolve into pre-verbal SN,
closing thereby Jespersen's cycle.

Interestingly enough, there is no strong evidence for a mixed stage between post-verbal
and pre-verbal sentential negation; nor for a transition from stage 3 to stage 1. De Swart
provides a couple of examples, though. Among them the fact that, with the rise of the
do-support, the negative marker may be reanalyzed as pre-verbal in present day English.
The Shakespearean corpus testi�es to the mixed phase. Another example is the fact that pas
is placed before the main verb in some French-based creole languages. However, these cases
are quite controversial proofs for the transition from post-verbal to pre-verbal sentential
negation. In fact, the English negator still goes after the in�ected verb (auxiliary, dummy
do, or copular be), and a French-based creole language cannot be considered as the next
step in the organic evolution of some variety of French. Thus, the lack of proof for the third
mixed stage � or for a post-verbal to pre-verbal transition � undermines the very cyclical
nature of what has been traditionally termed Jespersen's cycle.

3.2 De Swart's analysis employing traditional and Stochastic OT

De Swart (2010) introduces three constraints also used in our SA-OT model (cf. section 4.2,
and the explanatory tableau there): *Neg, NegFirst, and FocusLast. Constraint *Neg prefers
candidates with less SN. Constraints NegFirst and FocusLast require an SN to occur before
and after the verb, respectively. She proposes to link each stage (pre-verbal, discontinuous
and post-verbal) to possible OT grammars expressed as rankings of these constraints. Ad-
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ditionally, she accounts for the grammar change following Jespersen's cycle by changing the
ranking of two neighboring constraints at each stage. Her analysis can be summarized thus:

Stage 1: pre-verbal 1.1 *Neg � NegFirst � FocusLast
1.2 NegFirst � *Neg � FocusLast

Stage 2: discontinuous 2.1 NegFirst � FocusLast � *Neg
2.2 FocusLast � NegFirst � *Neg

Stage 3: post-verbal 3.1 FocusLast � *Neg � NegFirst
3.2 *Neg � FocusLast � NegFirst

The six hierarchies will also reappear in our simulations, although corresponding some-
times to di�erent languages. In de Swart's model, each pure stage can be equally represented
by two hierarchies, without any visible di�erence in the language production. For instance,
both hierarchies 1.1 and 1.2 lead to a pre-verbal sentential negation type. Historical change
is accounted for by a series of constraint rerankings, and mixed stages are modeled us-
ing Stochastic OT (Boersma 1997). For instance, when *Neg and FocusLast are just being
switched between 1.2 and 2.1 � and ranked very close, having overlapping noise distributions
� the stochastic mixture of the two hierarchies yields both forms.

The symmetry characterizing de Swart's approach predicts that the transition from the
post-verbal stage to the pre-verbal one is exactly as simple as the other two transitions
(compare hierarchy 3.2 to hierarchy 1.1.). Moreover, that languages in the mixed stage
between post-verbal and pre-verbal are just as frequent among the languages of the world
as are languages in the other two mixed stages. Thus, the cycle would be indeed closed � as
suggested by so many linguists, but which seems to be supported by so few, if any, empirical
data.

4. An SA-OT model

Therefore, we introduce a novel model to account for the observations. Being based on an
OT framework, our approach also requires the basic components of OT: a candidate set and
constraints ranked into hierarchies. Additionally, we will introduce a neighborhood structure
(topology) to implement the SA-OT Algorithm.

4.1 Candidates

In our in�nite candidate set, a candidate is a pair of underlying form and surface form (uf, sf).
The uf represents the semantics, namely, the polarity of the utterance to be expressed; hence,
it can be either negative or positive. The candidate's sf is a binary syntactic tree, including
the main verb (V) and zero or more sentential negation markers (SN). We have left out
all other possible sentence constituents, such as arguments (subject, object) and modi�ers,
since our goal is to focus on the bare expression of negation in the main clause. Figure 2
contains some examples of candidate surface forms.

4.2 Constraints

An OT system also requires a set of constraints that build up the harmony function to be ap-
plied on the candidates. Traditionally, there exist two categories of constraints: faithfulness
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Figure 2: A few surface forms from the in�nite candidate set of our model: binary trees
with one verb and zero or more sentence negators, placed in pre-verbal and/or
post-verbal positions. All other constituents of the sentence are omitted for the
sake of simplicity.

and markedness constraints. Faithfulness constraints check whether the output matches
certain features of the input (here sf and uf). Our faithfulness constraint is Faith[Neg].
Markedness constraints, on the other hand, punish candidates that display a certain feature
in their sf. Our markedness constraints are *Neg, NegLast, and NegFirst. This set of four
constraints is directly based on de Swart (2010; but note that we renamed FocusLast as
NegLast):

• Faith[Neg]: The polarity expressed by the uf must match the presence (for negative
polarity) or absence (for positive polarity) of SN in the sf. The constraint assigns one
violation mark in the case of mismatch.

• *Neg: It punishes any occurrence of SN in the sf. It assigns a number of violation
marks equal to the number of SN leaves in the surface form.

• NegFirst: It assigns one violation mark to candidates without an SN in pre-verbal
position.

• NegLast (FocusLast in de Swart): It assigns one violation mark to candidates without
an SN in post-verbal position.

We only used negative polarity as input. Let us have a look at what happens there.
Internal parsing brackets are omitted in the following (unranked) tableau, because candi-
dates with the same linear structure but di�erent parses are assigned the same number of
violation marks by all four constraints:

28



Language Change and SA-OT

/pol = neg/ Faith[Neg] *Neg NegFirst NegLast

[V] * * *
[SN V] * *
[V SN] * *
[SN V SN] **
[V SN SN] ** *
[SN SN V] ** *
[SN V SN SN] ***
. . .

As an example, consider candidates [V] and [SN V SN SN]. Candidate [V] is assigned
one violation mark by Faith[Neg], since it does not display a negative marker, while the
input (/pol = neg/) requires it. For the same reason, no violation mark is assigned by *Neg.
Yet, the candidate incurs the violation of both NegFirst and NegLast because it does not
express sentential negation either in a pre-verbal, or in a post-verbal position. Conversely,
candidate [SN V SN SN] is assigned no violation of Faith[Neg], because its surface form
matches the input polarity. However, it gets three marks from *Neg, as a consequence of its
three sentential negators. Constraints NegFirst and NegLast are simultaneously satis�ed by
this candidate, because [SN V SN SN] contains both pre-verbal and post-verbal markers.

4.3 Topology

The topology of our model is built on the candidate set described above. Each candidate is
connected to its neighbors on the basis of similarities at the sf level. The neighborhood of
a candidate is de�ned by referring to simple transformational rules, called basic steps. Our
model employed the following basic steps:

• Add an uppermost layer with an SN to the left.

• Add an uppermost layer with an SN to the right.

• Remove the uppermost layer.

• Reverse the linear order of the daughters of some node.

Figure 3 displays a small portion � the candidates known from Figure 2 � of the in�nite
neighborhood structure employed in our model. For instance, the neighborhood of candidate
[SN V] is composed of candidates [V], [V SN], [SN [SN V]], and [[SN V] SN], as a result of
applying the following steps:

• [SN [SN V]]: add SN marker to the left of the topnode of [SN V].

• [[SN V] SN]: add SN marker to the right of the topnode of [SN V].

• [V]: remove topmost SN marker from [SN V].

• [V SN]: reverse the linear order of the daughters of the top node in [SN V].
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Figure 3: A small portion of the neighborhood structure of the model, displaying the surface
forms on Figure 2. The edges of the graph connect the neighbors. Two candidates
are neighbors if the sf of the one can be transformed into the sf of the other in a
single step.

4.4 Hierarchies

The above mentioned constraints are ranked in a hierarchy. Each constraint is assigned a
ranking value (see also the Appendix). The higher the constraint rank, the more costly its
violation. We kept Faith[Neg] �xed at the highest position (rank value 4) and played around
with the remaining three constraints. What we obtain are the six hierarchies already listed
by de Swart:

Hierarchy 1 Faith[Neg] � *Neg � NegFirst � NegLast
Hierarchy 2 Faith[Neg] � NegFirst � *Neg � NegLast
Hierarchy 3 Faith[Neg] � NegFirst � NegLast � *Neg
Hierarchy 4 Faith[Neg] � NegLast � NegFirst � *Neg
Hierarchy 5 Faith[Neg] � NegLast � *Neg � NegFirst
Hierarchy 6 Faith[Neg] � *Neg � NegLast � NegFirst

5. Experiments: Various grammars and performance patterns

Now, each of the six hierarchies are applied to the neighborhood structure (topology), eval-
uating the candidates. Thus, we obtain six landscapes on which the SA-OT algorithm
performs hill climbing in search for the optima.

The details of our simulations, the pseudo-code of the SA-OT Algorithm, as well as
the parameter settings are given in the Appendix. In what follows, we �rst discuss the
six landscapes in a �pen-and-paper� fashion; the predicted qualitative performance patterns
will have been con�rmed by the computer experiments. Subsequently, we turn to the most
interesting case, the mixed stages, and present the quantitative results obtained by using
the OTKit software package (Biró 2010).
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5.1 Hierarchies and optima

Figure 4 reproduces the most interesting subset of the topology, already presented in Fig-
ure 3. Arrows have been added that point to the more harmonic one of the two neighboring
candidates, with respect to each of the six hierarchies discussed above. Hierarchies 3 and
4 have been reproduced on the same graph, since they only di�er in how [V SN] relates to
[SN V]. These graphs help us �nd the local optima for each hierarchy. The reader is invited
to check that no candidate with three or more SN leaves can ever be locally optimal.

Hierarchies 1 and 6 rank constraint *Neg above NegFirst and NegLast. They yield
a single local optimum, which is also globally optimal: candidate [SN V] with pre-verbal
negation, in the case of Hierarchy 1, and its mirror image [V SN], in the case of Hierarchy 6.
We predict, and experiments con�rm, that SA-OT will produce these forms exclusively: the
performance pattern corresponds to the grammatical judgments, because there are no other
local optima, which could emerge as eventual performance errors.

Hierarchies 3 and 4 demote *Neg below NegFirst and NegLast, and thereby they yield
the discontinuous negation forms ([SN [V SN]] and [[SN V] SN]) as equally most harmonic.2

Our prediction is that both candidates will emerge in the output of SA-OT, as both are
local optima. Experiments show that Hierarchy 3 slightly prefers [[SN V] SN], whereas
Hierarchy 4 returns [SN [V SN]] a little bit more often, due to the asymmetry of [SN V] and
[V SN]. Moreover, the exact frequencies of the two forms slightly depend on the parameters
of the algorithm, as well. Note, however, that candidates [[SN V] SN] and [SN [V SN]]
correspond to the same overt form �SN V SN�, and we have no means of di�erentiating
between a population producing [[SN V] SN] more often than [SN [V SN]] from a population
producing these two forms with a reversed preference. Therefore, we conclude that both
Hierarchies 3 and 4 correspond to the languages with discontinuous negation.

Thus far, the SA-OT model runs parallel to de Swart's model. Yet, Hierarchies 2 and
5 behave di�erently. In traditional OT, adopted by de Swart, these grammars return their
global optima, [SN V] and [V SN], respectively. However, SA-OT also returns local optima
(as �performance errors�). Observe that the last two landscapes include globally non-optimal
local optima: candidate [SN [V SN]] for Hierarchy 2, and [[SN V] SN] for Hierarchy 5.
Therefore, we predict that these hierarchies correspond to languages in mixed stages. The
exact proportion of the discontinuous forms in the performance pattern can be determined
by computer experiments only, and this is the issue to which we turn next.

To sum up, our model correctly reproduced the three pure stages and the two observable
mixed stages. There is no room, however, for a third mixed stage (between post-verbal and
pre-verbal), which was predicted by de Swart's traditional OT approach, and which have
not been observed in the historical data. Moreover, a mixed stage corresponds to a separate
grammar in our approach, and not to a stochastic mixture of two grammars. The presence of
two forms in the population is not (only) due to the simultaneous presence of `conservative
speakers' and `innovative speakers'; nor (only) to single speakers entertaining two registers
(for instance, a colloquial grammar and a formal one) in their head. But the same grammar
may produce both forms, because the computational implementation of the grammar in the
speakers' head will also return local optima.

2. In a more elaborate grammar, further constraints � which prefer, for instance, left or right branching
structures � might choose between these two candidates.
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Figure 4: Arrows pointing to the more harmonic form on the topology for each hierarchy.
Hierarchies 3 and 4 are combined into a single directed graph (middle panel), as
they only di�er in the relative ranking of [SN V] and [V SN].

5.2 Production in the mixed stages

Hierarchy 2, which we focus on now, introduces both a global optimum (the pre-verbal
negation [SN V]) and another local optimum (form [SN [V SN]] with discontinuous negation).
Hierarchy 5 corresponds to a mirrored story � due to the symmetry observable both in the
candidate set and in the constraint set � and therefore does not require separate treatment.

Simulated annealing applied to Hierarchy 2 produces the global optimum with frequency
p, and the other local optimum with frequency 1− p. If we call the global optimum `gram-
matical form', and other local optima `performance errors', then p is the precision of SA-OT:
the probability of �nding the grammatical form. The exact value of p depends on the param-
eters of the algorithm, and can only be determined with computer experiments. If historical
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Figure 5: Diminishing the rank (K-value) of the lowest constraint NegLast increases the
frequency of the pre-verbal form [SN V] in the performance pattern of Hierarchy 2.

change in Jespersen's Cycle from pre-verbal to discontinuous negation goes via the mixed
stage Hierarchy 2, then it is crucial to understand how to �ne-tune the frequency p.

The current model behaves in a novel way, if contrasted to past work on SA-OT. As
discussed in the Appendix, changing the parameters of the algorithm (t_step, K_max) does
not cause the model to output the global optimum [SN V] with a very di�erent frequency. It
is another factor, previously hardly investigated,3 that makes it possible to create systems
with p changing between slightly more than 50% and almost 100%: decreasing the rank (and
K-value) of the lowest ranked constraint NegLast increases the probability p of producing
[SN V] (see Figure 5).

From the point of view of traditional OT, decreasing the rank of the lowest ranked
constraint does not change the grammar: the order of the constraints stays the same, and
the harmony of the candidates are also una�ected. And yet, the performance pattern is
modi�ed. Namely, increasing the distance in rank (in K-value) between *Neg and NegLast
increases the number of iteration steps during which the random walker still can escape from
the local optimum [SN [V SN]] to its neighbor [SN [SN V]]; therefrom it may be trapped by
the (by then inescapable) global optimum [SN V] (either directly, or via [[SN V] SN]). Thus,
a larger di�erence in rank (in K-value) between *Neg and NegLast enhances the chances of
the random walker to end up in [SN V].

Unlike past SA-OT analyses of various phenomena, our current model resembles Stochas-
tic Optimality Theory (Boersma 1997, Boersma and Hayes 2001) in that the frequencies of
the di�erent forms (almost) directly �correlate� with the ranks of the constraints. Conse-
quently, learning from data with speci�c frequencies becomes feasible, and this is where we
continue in the next section.

3. With the exception of Bíró (2006), section 7.1.4.
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5.3 From individual performance patterns to population frequencies

The model correctly reproduces the 3+2 stages observed by the historical linguists, and
predicts the lack of the third mixed stage. It can also mimic a graded shift in frequency
in the mixed stages. Yet, a single individual with a mental grammar corresponding to the
mixed stage is predicted not to produce discontinuous negation with a frequency higher than
50%.

How can, then, our model reproduce the typical S-shaped curves observed in linguistic
changes? (See, for instance, Niyogi (2006), pp. 23-25.) The answer provided in the next
section is that the frequency of the novel form on a population level will nevertheless follow
an approximately S-shaped curve, as the population contains more and more agents with a
purely discontinuous grammar. Chains of generations of simulated agents will acquire their
grammar (competence) by being exposed to the performance of the immediately preceding
generation, before their own performance patterns are recorded for the �simulated historical
corpus�.

6. Simulating gradual transition from one pure stage to another

On the basis of the grammars sketched above, we developed an iterated learning simulation

(Kirby and Hurford 2002) in order to test the learning dynamics, and in particular, the
transition from one pure stage to another. A population or generation of speakers was
composed of �ve agents. An agent was equipped with an OT grammar (the model of its
competence), an SA-OT production procedure (performance) and a learning procedure.
The latter used the Gradual Learning Algorithm (GLA) of Boersma (1997), with learning
plasticity 0.1, but without evaluation noise added to the ranks. After being �born� with
a random grammar,4 each agent was exposed to 300 pieces of learning data produced by
the previous generation: each time, a randomly chosen `adult agent' generated an utterance
with underlying form /negative polarity/, which was compared to the production of the
learner. Both adults and learners used SA-OT to generate forms. For the sake of simplicity,
we ignored eventual social structure and learning-from-peer e�ects.

During GLA learning, the agent updated its constraint ranking values in order to obtain
a grammar whose production was as close to the one of the previous generation as possible.
Since the learning input represented only a portion of the production of the previous genera-
tion, and this production might contain a percentage of �performance errors�, the grammars
developed by the learning agents were expected to di�er from the one of the previous gen-
eration. A second reason for language change is imperfect learning: some learners may not
have reached the target grammar by the end of the learning phase. This can be due to a
number of reasons, again: if the learner's initial grammar was very di�erent from the target,
then the amount of learning data might have been insu�cient, but GLA is also known not
to converge under every condition (Pater 2008).

Generation 0 was set up with �ve agents, each with the purely pre-verbal negation gram-
mar (Hierarchy 1), and started �teaching� the newborn Generation 1. When this generation
had �grown adult�, that is, they had been exposed to 300 cases of learning data, then this

4. Constraint Faith[Neg] was assigned rank 4.9, and the markedness constraints were associated with a
random �oating point value between -0.1 and 4.9. The standard parameters of the SA-OT Algorithm
(K_max = 5, K_step = 1, t_step = 1, etc.) were used, as discussed in the Appendix.
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Figure 6: An example of the dynamics of change from pre-verbal to discontinuous sentential
negation in a population, during 100 generations. Each data point corresponds to
the frequency of a form in the sample `recorded' by that generation.

generation recorded a production sample of size 500 for the �simulated corpus study�. Then,
Generation 2 was born, and began to learn from Generation 1, etc. This iterated learning

ran for a total of 100 generations, and the whole procedure was repeated 20 times. Figure 6
displays the dynamics of one run of the experiment. On average, the process of learning
from performance leads to a gradual shift from a pre-verbal to a discontinuous pure stage,
as predicted above. Notice the S-shaped curve on the population level.

To our surprise, we have observed that the pre-verbal pattern is highly unstable, and
the system rapidly moves to the discontinuous stage. Clearly, the numerous parameters
of this highly abstract model need to be re�ned, and/or further factors must be taken
into account, in order to reproduce the languages that steadily employ pre-verbal negation
for a longer period in their history. At the same time, populations with a discontinuous
negation language are very stable. As a consequence, the language community did not
replace discontinuous with post-verbal SN, and hence, we have been unable to reproduce
the whole history of English and French. A more careful analysis of the details of the model is
deferred to future work; nevertheless, we are optimistic about the reproducibility of history.

The twenty experiments contained one hundred generations each, yielding the �simu-
lated corpora� of 2000 (non-independent) populations. The histogram in Figure 7 displays
the distribution of these samples. Observe the clusters towards the higher end of the his-
togram. They are due to the conspiracy of two factors: the small population size (�ve
agents per generation) and the lack in our model of grammars yielding the discontinuous
form with a frequency between 50% and 100%. In turn, populations of �ve agents with
a purely discontinuous grammar will produce a sample with 100% of discontinuous forms
(removed from the histogram, as they proliferate among the 2000 populations), whereas
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Figure 7: Number of generations producing speci�c percentages of discontinuous negation.

populations with four such agents only cannot produce a �corpus� with more than 90% of
discontinuous negations. Hence, we do not expect any data point between 90% and 100%.
The peak just below 90% corresponds to the generations in which four of the �ve agents
have acquired a purely discontinuous grammar, and one agent has a mixed grammar, but
the constraints ranked such that it will produce the local optimum [SN [V SN]] in almost
half of the cases. The second peak from the right, just below 80%, corresponds to two such
agents, joining three purely discontinuously negating speakers. What is most shocking is
the lack of populations between these two peaks. The experimenter could arti�cially set up
a generation with four purely discontinuous agents and one almost purely pre-verbal agent.
And yet, iterated learning does not introduce such a generation: all �ve agents �grow up� in
the same linguistic environment, and if this environment is such that four of them end up
with a purely discontinuous grammar, then the �fth one will also have learnt a language as
similar as possible.

To summarize, our SA-OT model of sentential negation cast in an iterated learning
framework has not (yet) reproduced the entire story, but could mimic the S-shaped change
from the pre-verbal stage to the discontinuous stage. Similarly, in a reversed experiment,
the initial generation set to the post-verbal stage evolved into a population of discontinuous
negation, via a mixed stage. Our model of Jespersen's Cycle can thus be compared to a
pendulum: the two extreme positions, pre-verbal and post-verbal negation, are unstable,
whereas the middle one, discontinuous negation, is a stable attractor. It is unclear yet why
our �pendulum� would swing beyond the middle position. Maybe due to external factors,
such as the phonological weakening of the SN morpheme. We have shown, however, that
the S-shaped transition on a population level can be modeled even if, on an individual level,
no grammar produces discontinuous negation between 50% and 100%.
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7. Conclusions

The aim of this paper was to assess the validity of SA-OT as a model for linguistic change. In
order to do so, we decided to look at the possible ways European languages express sentential
negation and the way these strategies vary diachronically (Jespersen 1909, Jespersen 1917).
We took as starting point the model developed by de Swart (2010) with its OT constraints.
Our model, in section 5, was able to reproduce the three main stages of the evolution of
sentential negation, corresponding to the types 1. pre-verbal, 2. discontinuous, and 3. post-
verbal. It also reproduced the two mixed, transitional stages, and correctly predicted the
lack of a third mixed stage between pure stages 3 and 1.

Although both de Swart's model and ours employ the same four constraints and consider
the same six hierarchies, they make di�erent predictions. De Swart's model predicted that
the six hierarchies correspond to the three pure stages (see table below), and that the
simple movement of one constraint triggers the transition from one stage to another. She
also claimed that in principle the transition from stage 3 to stage 1 can be reproduced in the
same way. In our model, however, we have shown, each hierarchy corresponds to a di�erent
stage (with the exception of Hierarchies 3 and 4), and there is no way to reproduce a direct
transition between the post-verbal and the pre-verbal sentential negation types.

Hierarchy de Swart SA-OT

1. *Neg � NegFirst � NegLast pre-verbal pre-verbal
2. NegFirst � *Neg � NegLast pre-verbal pre-V and discont.
3. NegFirst � NegLast � *Neg discontinuous discontinuous
4. NegLast � NegFirst � *Neg discontinuous discontinuous
5. NegLast � *Neg � NegFirst post-verbal discont. and post-V
6. *Neg � NegLast � NegFirst post-verbal post-verbal

More importantly, the models also di�er in their methodology. De Swart is less concerned
with the triggers of the change, not really elaborating on the reasons for two constraints
being reranked. She contents herself with the observation that languages in a mixed stage
correspond to a Stochastic OT grammar with two constraints being ranked very close, and
thus getting frequently reversed. Hence, historic change is accounted for by a gradual change
in constraint ranking, causing a gradual shift in the distribution of the produced forms.

Our model, however, tested explicitly the hypothesis that historic change is driven by
imperfect mental computation (�performance errors�) and imperfect learning (sections 5
and 6). The partial success of this novel enterprise shows that the question is far from being
trivially soluble. Still, we hope that reconsidering some parameters may bring us closer to
a fuller account of Jespersen's cycle.
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ALGORITHM: Simulated Annealing for Optimality Theory

Parameters: w_init, K_max, K_min, K_step, t_max, t_min, t_step

w := w_init ;

for K = K_max to K_min step -K_step

for t = t_max to t_min step -t_step

Randomly select w' from the set Neighbors(w) ;

C := highest ranked constraint such that C(w) != C(w') ;

k(C) := K-value of constraint C ;

d := C(w') - C(w) ;

if ( d < 0 or H(w) == H(w') )

then w := w' ; # move to not-less harmonic neighbor

else w := w' with transition probability

P(C,d ; K,t) = 1 , if k(C) < K

= exp(-d/t) , if k(C) = K

= 0 , if k(C) > K ;

end-if

end-for

end-for

return w

Figure 8: The Simulated Annealing for Optimality Theory Algorithm (SA-OT).

Appendix: Pseudo-code and Parameters of the SA-OT Algorithm

The Simulated Annealing for Optimality Theory Algorithm (SA-OT; for introductions, see
Bíró 2005, 2006 or 2009) is reproduced in Figure 8. Being a heuristic optimization algorithm,
it models the imperfect computation performed by the human mind when it searches for the
optimal element of the OT candidate set.

As discussed elsewhere (Biró 2007), the ranking values modi�ed by the learning algo-
rithms to determine the �highest ranked constraint such that C(w) != C(w')� is conceptually
di�erent from the K-values (the k(C) introduced in the next line of the pseudo-code) de-
termining the transition probabilities. In the current experiments, however, the K-values of
the constraints were chosen to be the same as their ranks.

The default ranks were: 4 for the highest ranked constraint Faith[Neg], and 3, 2 and
1 for the markedness constraints, in decreasing order following the hierarchy. The results
presented on Figure 5 were obtained by diminishing the rank (and, hence, the K-value) of
the lowest ranked constraint, NegLast, even further.

The starting point of the random walk, parameter w_init, was the candidate with a
bare [V] as the surface form. A di�erent strategy could have been to choose one of the
in�nitely many candidates that are faithful to the input, which contain a negation marker.
Yet, this option is almost equivalent to let the random walker �walk away freely� from its
starting point at the beginning of the simulation, before temperature drops to the range
where the walk is in�uenced by the landscape. To test the e�ect of this initial phase, the
standard parameter value K_max = 5 was once replaced by K_max = 10, but � unlike in Bíró
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(2006, Chapt. 6) and (2009) � no signi�cant change in the behavior of the model could be
observed.

Parameter K_step was standardly set to 1. Instead of waiting for variable K to reach
K_min, we introduced a counter that was increased each time the random walker did not
move. The outer loop of the SA-OT Algorithm on Figure 8 stopped whenever the random
walker had not moved for 50 consecutive iterations, because such a situation happens almost
only if the random walker has reached a local optimum. Thereby we could avoid running
the algorithm for too long or too short.

Finally, we used the standard parameter settings t_max = 3, t_min = 0, as well as
t_step = 1. To our surprise, and di�erently from previous SA-OT models, tuning t_step

did not signi�cantly a�ect the behavior of the system. The most signi�cant change was
observed when the di�erence between the ranks of the two lowest constraints was increase,
as discussed in section 5.
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