
Computational Linguistics in the Netherlands Journal 4 (2014) 71-84 Submitted 06/2014; Published 12/2014

Building an NLP pipeline
within a digital publishing workflow

Hans Paulussen∗ hans.paulussen@kuleuven-kulak.be
Pedro Debevere∗∗ pedro.debevere@ugent.be
Francisco Bonachela Capdevila∗ francisco.bonachelacapdevila@kuleuven-kulak.be
Maribel Montero Perez∗ maribel.monteroperez@kuleuven-kulak.be
Martin Vanbrabant∗ martin.vanbrabant@kuleuven-kulak.be
Wesley De Neve∗∗ wesley.deneve@ugent.be
Stefan De Wannemacker∗ stefan.dewannemacker@kuleuven-kulak.be

∗iMinds-ITEC, KU Leuven, Kortrijk, Belgium
∗∗iMinds-MMLab, UGent, Gent, Belgium

Abstract
Outside the laboratory environment, NLP tool developers have always been obliged to use robust
techniques in order to clean and streamline the ubiquitous formats of authentic texts. In most cases,
the cleaned version simply consisted of the bare text discarded of all typographical information,
tokenised in such a way that even the reconstruction of a simple sentence resulted in a displeasing
layout. In order to integrate the NLP output within the production workflow of digital publications,
it is necessary to keep track of the original layout. In this paper, we present an example of an NLP
pipeline developed to meet the requirements of real-world applications of digital publications.

The NLP pipeline presented here was developed within the framework of the iRead+ project,
a cooperative research project between several industrial and academic partners in Flanders. The
pipeline aims at enabling automatic enrichment of texts with word-specific and contextual in-
formation in order to create an enhanced reading experience on tablets and to support automatic
generation of grammatical exercises. The enriched documents contain both linguistic annotations
(part-of-speech and lemmata) and semantic annotations based on the recognition and disambig-
uation of named entities. The whole enrichment process, provided via a web service, can be
integrated into an XML-based production flow. The input of the NLP enrichment engine consists
of two documents: a well-formed XML source file and a control file containing XPath expressions
describing the nodes in the source file to be annotated and enriched. As nodes may contain a
pre-defined set of mixed data, reconstruction of the original document (with selected enrichments)
is enabled.

1. Introduction

In this paper, we introduce the iRead+ enrichment pipeline. This natural language processing
(NLP) pipeline was developed as part of the iRead+ project, that investigated how e-texts can
automatically be enriched with supporting information (pictures, additional articles, etc.) through
a single framework that addresses the needs of a wide range of target audiences (ranging from general
readers and language learners to children with reading problems such as dyslexia). The enrichment
pipeline had to be developed in such a way that it could easily be integrated into the production
workflow of a digital publication. The central idea behind the iRead+ project is the belief that
enriching texts with supporting material makes for a more immersive, compelling and motivating
reading experience. The reader gets information at his fingertips, and hence it is no longer necessary
to search for extra information in another application.

Current solutions for e-text enrichment have two major drawbacks, however: (i) they heavily rely
on manual programming, and (ii) no single solution can accommodate the needs of different target

c©2014 Paulussen et al.

audiences requiring different types of e-text enrichments. In response to those shortcomings, the
iRead+ consortium firstly investigated the development of a text enrichment solution that enables
a high degree of automation, thus removing an important barrier to the technology’s cost-effective
roll-out. Secondly, the team pursued the creation of a single framework that could accommodate
the requirements of a variety of target audiences. In fact, first an enrichment engine (containing
both an enrichment pipeline and an enrichment delivery service) was developed by the research
teams, and then the feasibility of the enrichment webservice was tested in three different use cases,
whereby three industrial partners1 implemented each a use case specific demonstrator, showing how
the enrichment pipeline can be used to select use case specific enrichments.

In the remainder of this paper, we will first explain why NLP tools are important in production
environments, and why some adaptations are required (Section 2). The next two sections will
give further details on the main topics of the enrichment pipeline: i.e. the linguistic annotation
(Section 3) and the semantic annotation in the enrichment procedure (Section 4). In Section 5, we
will explain the general architecture of the enrichment pipeline and the XML format of the enriched
document, which is based on TEI specifications. This is followed by a description of a first test of
the tool, consisting of the implementation of three demonstrators using the enrichment engine in
three application specific ways (Section 6) and a general conclusion (Section 7).

2. NLP tools for production environments
The iRead+ project aimed at developing an enrichment engine that can be integrated in a real-world
production environment such as a digital printing service of a publishing house. This approach is
quite different from most existing NLP tools. Usually, the first task in processing texts in language
technology consists in cleaning and even cleansing documents into raw text, so that the NLP tool
is not blocked in linguistic processing. However, this implies that all markup is lost. In this sense,
language technology can be compared to lossy data in compression technology, whereby the original
data cannot be reconstructed from the compressed data. After preprocessing the data, only the con-
tent is left over, without any trace of the markup. For example, the string "een <bold>rode</bold>
fiets" is transformed to "een rode fiets" after pre-processing. The markup <bold> is deleted
and cannot be retrieved2.

This processing approach was understandable in the context of a language laboratory, but it
cannot be used in a production environment of a publishing house. For present-day production
flows, it is important that extra processing, such as linguistic annotation and enrichment, can be
directly integrated into the rest of the publication cycle. Therefore, NLP tools should be able to
support textual data mixed with markup.

Compared to ten years ago, tools for language technology have become ubiquitous. One of
the first NLP toolkits was GATE3 (Cunningham et al. 2011), originally developed for English.
Nowadays, most of them are usually presented as an NLP pipeline or an NLP toolkit, often distrib-
uted via a web interface. In most cases the input format is limited to raw text data. If HTML or
XML is supported, the markup is usually commented out. Typical examples are PyPLN4 (Coelho
et al. 2013) and PSI-Toolkit5 (Gralinski et al. 2013).

Probably, the first NLP tools using an XML pipeline, were introduced from about 2005. A
good example is the LT-TTT package, originally presented in Grover et al. (2000)6. LT-TTT
was specifically developed for English, although it can also be used for the development of other
languages. A similar example for French, is MACAON (Nasr et al. 2010, Nasr et al. 2011). In both
1. The three firms involved are d!nk, Cartamundi and Sensotec.
2. This example is a simplification of the problem, since in this case it can be handled by offset annotation and

appropriate mapping, but things can be more complicated.
3. https://gate.ac.uk/
4. http://pypln.org/
5. http://psi-toolkit.amu.edu.pl/
6. A more stable version was introduced in Grover and Tobin (2006).

72

https://gate.ac.uk/
http://pypln.org/
http://psi-toolkit.amu.edu.pl/

MACAON and LT-TTT, raw text is first wrapped into an XML document, and for the rest of the
pipeline, the XML format is used as chaining format between the different processes. Usually, an
extra tool translates the verbose XML format back to ordinary text, but this is only for testing
purposes. The advantage of the XML format is mainly a better control for the developers over the
transfer of data between the different processes. However, the input format remains raw text: no
markup is allowed.

Although the tools are assumed to be open for many languages, they are mainly limited to
one language, or the adaptation of the tool requires specific knowledge not directly available. In
theory, NLTK (Bird et al. 2009) is open for different languages, but it is unclear, for example,
how to use NLTK for even simple preprocessing for French. Some tools are specially developed for
different languages, such as the multilingual preprocessing toolkit described in van de Kauter et al.
(2013). The NLP pipeline presented here is developed for annotating Dutch and French texts. The
architecture is developed in such a way that extra languages can be added to the system, without
disturbing the overall architecture of the pipeline.

However interesting the evolution of the NLP tools for the last years, most of them remain
unidirectional, in the sense that they are able to annotate documents, but still discard markup in
such a way that the annotated document cannot yet be returned back to the publishing production
flow. In building the enrichment engine, we intended and succeeded in creating a first version of an
NLP tool that does take into account the markup of the original document, and the demonstrators
presented in Section 6, show how the enriched information can be inserted back into the original
document.

3. Linguistic annotation

The enrichment engine has been developed to enrich Dutch and French texts. In this section we
present the NLP tools used for the first part of the NLP pipeline, which consisted in the linguistic
annotation: i.e. Part-of-Speech tagging and lemmatisation. For each language, a different tool was
selected: TreeTagger for French and Frog for Dutch. Two issues required special attention. First of
all, it was important to integrate the tools transparently into the workflow of the enrichment engine.
But more importantly, some adaptations in pre- en post-processing were necessary to handle the
mixed data, in order to keep track of linguistic content and markup.

3.1 Dutch

For Dutch, we opted for Frog7, a tool based on memory-based language processing (Daelemans and
Bosch 2005). In fact, Frog is an integration of memory-based NLP modules developed for Dutch in
Tilburg and Antwerp. This tool is considered the default tagger for the annotation of Dutch texts,
and has been used for different projects, including projects of the STEVIN programme (Spyns and
Odijk 2013).

Notwithstanding the overall quality of the annotations of Frog, the tool had problems in handling
markup tags, so that special post-processing was required. For example, a markup tag, such as
<bold> will be segmented into three tokens: i.e. "<", "bold" and ">", as illustrated in Table 1, where
a text of 5 tokens is presented as a text of 10 tokens. Since the segmentation and the annotation of
the markup tags is consistently the same, it is not so difficult to fuse the segmented elements into one
token again, after the linguistic annotation. But it remains unclear whether the segmented tokens
have any influence on the annotation of the surrounding tokens. This should be further analysed.

7. http://ilk.uvt.nl/frog/

73

http://ilk.uvt.nl/frog/

Expected Obtained
1 een een
2 <bold> <
3 rode bold
4 </bold> >
5 fiets rode
6 <
7 /
8 bold
9 >

10 fiets

Table 1: Tokenisation of text containing SGML tags

3.2 French

For French, we used TreeTagger8. Instead of using the basic small PoS tag set, covering only 33
labels, the richer GRACE tag set (Paroubek 2000) was used9. Therefore, another language model—
called parameter file in TreeTagger terminology—had to be selected. A language model based on
the GRACE evaluation program (Adda et al. 1998) was provided by the LIMSI research team, who
had created a corpus using the GRACE tag set (Allauzen and Bonneau-Maynard 2008)10. However,
since that LIMSI language model had not been trained for lemmatised forms, the tagger has to be
run twice, first with the original language model (containing also lemmatised forms), then with the
LIMSI language model (containing no lemmatised forms). The output is fused afterwards.

token TT GRACE lemma
Il PRO:PER Pp3msn- il
a VER:aux:pres Vaip3s- avoir
lu VER:pper Vmps-sm lire
deux NUM Dk-mp– deux
livres NOM Ncmp livre
pendant PRP Sp pendant
la DET:ART Da-fs-d le
dernière ADJ Ao-fs dernier
semaine NOM Ncfs semaine
. SENT F .

Table 2: Sample TreeTagger basic tag set and GRACE tag set

Table 2 illustrates the differences between the general tag set of TreeTagger and the more fine-
grained GRACE tag set. For example, the word livres (books) is only considered a noun (NOM) for
TreeTagger, whereas GRACE gives more detailed information: i.e. a common noun, masculine and
plural (Ncmp). The use of a reduced tag set is not uncommon in French taggers. Like TreeTagger,

8. The tool is described in (Schmid 1994, Schmid 1995). This approach was motivated by the fact that the basic
PoS tag set of TreeTagger is rather limited for French. The French TreeTagger tagset can be found at:
http://www.ims.uni-stuttgart.de/~schmid/french-tagset.html.

9. A similar approach was followed in the creation of the Dutch Parallel Corpus (Paulussen et al. 2013).
10. There are different versions of the GRACE tag set. The basic tag set is described in (Rajman et al. 1997).

74

http://www.ims.uni-stuttgart.de/~schmid/french-tagset.html

MACAON and MElt also use a limited tag set11. This is mainly due to the fact, that in language
technology, the subcategories are often less important.

The distinction between the basic tagging set and the extended set containing categories and
subcategories is especially apparent in the case of verbs, which have the most complex morphology:
e.g. the verb form lu (derived from lire (read)) is considered a past participle in the basic TreeTagger
tagging set (VER:pper), whereas GRACE gives more details: i.e. Vmps-sm refers to a main verb
form of the past participle in the singular and masculine form. In most applications the main
category suffices for further processing, but this is not the case for applications involving computer
assisted language learning (CALL). The additional information on subcategories were important in
developing the exercise generator as part of the second demonstrator (See Section 6).

4. Semantic annotation
The output of the linguistic annotation is used as input for the semantic annotation. In this section,
we describe the functioning of the semantic annotation engine. This engine is responsible for named
entity detection, multi-word expression detection, named entity disambiguation, and dictionary link-
ing. We first describe briefly the knowledge base used by the enrichment module. Then we explain
the named entity detection procedure and the multi-word expression detection. This is followed by a
description of the named entity disambiguation module, which is the core of the semantic annotation
engine. Finally, we describe the dictionary linking module.

4.1 Knowledge base

Named entity disambiguation, dictionary linking, and enrichment make use of several data sets.
These data sets together constitute the knowledge base of the enrichment pipeline. As the back-end
of the enrichment pipeline is based on Semantic Web technologies, we use a Resource Description
Format (RDF) representation for the data sets selected. The RDF data are stored in a triple store
and can be queried using the SPARQL Protocol and RDF Query Language (SPARQL).

Figure 1 gives an overview of the data sets selected. A data set represented with a dashed
circle means that we first had to create an RDF representation for that data set. A data set
represented with a solid circle indicates that we used the corresponding data set from the LOD
cloud12. A line between two data sets indicates that interlinking is present between resources of the
two data sets (e.g. through the use of common interlinking/mapping properties such as owl:sameAs
or rdfs:seeAlso).

4.2 Named entity detection

Named entities (NEs) are mainly typed proper nouns. Whereas common nouns are typically stored in
a lexicon, proper nouns are stored in an encyclopaedic dictionary. The semantic annotation engine
we developed uses the following common types of NEs: PER (person), ORG (organisation), LOC
(location) and the rest category MISC (miscellaneous names). The study of Desmet and Hoste
(2014) describes a more fine-grained set of NE categories (based on the analysis of data from the
Dutch SoNaR13 corpus), but the analysis is restricted to the recognition of NEs and their types; no
NE disambiguation is carried out.

For named entity detection, we make use of the state-of-the-art Stanford Named Entity Recog-
nition (NER) tool (Finkel et al. 2005), constructing both a Dutch and French language model for
usage with this tool. For the construction of the Dutch language model, we made use of the Con-
ference on Natural Language Learning (CoNLL) 2002 Dutch training data, as made available for
11. MElt, a tagger developed by the Alpage team (Denis and Sagot 2012), uses 28 tags which are listed in Crabbé

and Candito (2008).
12. http://lod-cloud.net
13. http://lands.let.ru.nl/projects/SoNaR/

75

http://lod-cloud.net
http://lands.let.ru.nl/projects/SoNaR/

DBpedia
WordNet

Cornetto

Wiktionary

ImageNet
GeoNames

OpenStreetMap

Figure 1: Data sets selected

the task on language-independent NER14. For the construction of the French language model, we
manually created training data from a corpus of French news articles provided by Roularta Media
Group (RMG), one of the industrial partners in the iRead+ project15.

4.3 Multi-word expression detection

For multi-word expression detection, we make use of the LingPipe implementation of the dictionary-
based string matching algorithm proposed by Aho and Corasick (1975). The time complexity of this
algorithm is linear in the length of the patterns plus the length of the text to be searched plus the
number of output matches. To construct a dictionary of multi-word expressions, we collected such
expressions from data sets such as DBpedia16, Wiktionary17, and Cornetto18.

4.4 Named entity disambiguation

For named entity disambiguation, we follow a two-step approach. The first step consists of collecting
a set of candidate resources from the knowledge base for each detected NE. The second step consists
of computing a disambiguation score for each candidate resource collected. The resource having the
highest score is then selected as the matching resource19.

To that end, we make use of Bayesian inference, modeling the disambiguation score of a candidate
resource as a posterior probability that is derived from a prior probability and a likelihood. We
compute the prior probability of a candidate resource as the number of resources that link to the
candidate resource in the knowledge base, divided by the total number of resources that link to all
candidate resources. This can be expressed as follows:

prior(r) = link_in_count(r)∑
r′∈C link_in_count(r′)

, (1)

14. http://www.cnts.ua.ac.be/conll2002/ner/data/
15. Due to copyright reasons this training data is not publicly available
16. http://dbpedia.org
17. http://www.wiktionary.org/
18. http://www2.let.vu.nl/oz/cltl/cornetto/
19. Note that this approach assumes that for each NE that is mentioned in a text, a corresponding resource is present

in the knowledge base. As this is often not the case, detection of these so called NIL mentions is a possible
improvement of the disambiguation algorithm.

76

http://www.cnts.ua.ac.be/conll2002/ner/data/
http://dbpedia.org
http://www.wiktionary.org/
http://www2.let.vu.nl/oz/cltl/cornetto/

with r denoting a candidate resource for the NE that is currently the subject of disambiguation,
C denoting the set of all candidate resources collected for the NE under consideration, r′ denoting
a candidate resource in C, and link_in_count(r) denoting the number of links pointing to r.

To compute the likelihood of a candidate resource, we construct a graph where each node in the
graph represents a candidate resource that was collected for a detected NE. In addition, we extend
this graph with additional nodes that represent words appearing within a context window around
the NE that is disambiguated (in our implementation, we set the context window to the sentence in
which the NE appears). The links between the nodes in the graph are the links that are present in
the knowledge base between these resources. The likelihood of a candidate resource for a detected
NE is then computed based on the number of links between the resource and other resources in the
graph (Note that we do not take into account links between candidate resources for the NE that is
currently being disambiguated). This can be expressed as follows:

link_count(r) = link_in_count(r) + link_out_count(r) + 1, (2)

link_count_score(r) = link_count(r)α, (3)

likelihood(r) = link_count_score(r)∑
r′∈C link_count_score(r′)

. (4)

Note that link_count(r) is the sum of the number of incoming and outgoing links for the
candidate resource r in the context graph, and where this sum is Laplace smoothed. Moreover,
link_count_score(r) applies an exponential weight to link_count(r). In our implementation, we
set α to two.

Using Bayesian inference, we can subsequently compute the disambiguation score of a candidate
resource as follows:

p(r) = likelihood(r)prior(r)∑
r′∈C likelihood(r′)prior(r′) . (5)

Finally, we select the candidate resource with the highest value for equation (5) as the disambig-
uation for the NE under consideration.

4.5 Dictionary linking

For words that are not considered to be NEs, the semantic annotation engine generates links to dic-
tionary entries. To that end, the lemma and PoS information outputted by the linguistic annotation
engine are used to consult a so-called dictionary index. This dictionary index consists of resources
present in the knowledge base that have information available that is typically found in a dictionary.
For Dutch, this dictionary index consists of the Dutch Wiktionary dataset and Cornetto, augmented
with surface forms from the Dutch chapter of DBpedia. For French, this dictionary index consists of
the French Wiktionary dataset, augmented with surface forms from the French chapter of DBpedia.

5. General architecture and XML format
The iRead+ enrichment engine consists of two parts. First of all, there is the enrichment pipeline
which creates an enriched document, containing so-called subjecturi’s representing unique keys used
for retrieving different types of enrichments, as will be explained further. Secondly, there is an
enrichment delivery service that translates the subjecturi into the required enrichment (e.g. an
image or textual information). This section first describes the general architecture of the web
services, and then explains the XML format of the enrichment document. This section is concluded
by a description of the enrichment delivery service.

77

[SRC]

[CTL]

[ENR]

pipeline EDSR

X

X

(//X)[1]

PAnn

@ref
(subjecturi)

(//X)[2]

PAnn

@ref
(subjecturi)

Figure 2: NLP pipeline and enrichment delivery service workflow

5.1 General architecture

The enrichment engine consists of an enrichment pipeline and an enrichment delivery service used
for resolving the enrichment keys (i.e. the subjecturi’s) in the enriched document. Moreover, two
schemas have been created to parse an enriched document. Figure 2 gives an overview of the
architecture of the enrichment engine, where a clear distinction is made between the core elements
of the web services workflow (represented by the dotted box in the middle of the figure) and all
other resources used or developed by the application developers.

The core elements consist of a pipeline creating an enriched document (ENR), and an enrichment
delivery service (EDS) which developers can call to resolve the enrichment keys. Next, there are two
schemas (TEI_IRP.RNG and IRP2.RNG), that will be explained further in this section.

The enrichment pipeline first of all enables the creation of an ENR document, starting from any
well-formed XML document, the so-called source document (SRC), in combination with a control
document (CTL), which contains XPath expressions referring to all possible nodes in the source
document to be annotated. As an illustration, we see in Figure 2 that the control document selects
all X elements in the source document. All other nodes are left untouched. Figure 3 shows a
more realistic example, whereby all XPath expressions allowed for further processing are stored in
<xpathline> elements. In this example, enrichment is allowed for all <title> and <p> elements.

The enrichment pipeline consists of two parts: first, there is the linguistic annotation process
(covering part-of-speech tagging and lemmatisation) followed by the semantic annotation process,
whereby named entities are detected and disambiguated. The enrichment pipeline allows any well-
formed XML document as input (and is therefore structure-agnostic), which makes it flexible for
various input formats. Mixed data (i.e. textual data interspersed with markup) are allowed, but
at present this is limited to a restricted set of markup elements (such as <bold>, <italic> and

78

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ctldoc>

<srcgrp>itec</srcgrp>
<ctldocid>ctldocid-irp-ctl</ctldocid>
<xpathlines>

<xpathline>//title</xpathline>
<xpathline>//p</xpathline>

</xpathlines>
</ctldoc>

Figure 3: Example of control document

<underline>20). Instead of stripping the markup elements, the preprocessor retains the markup, so
that it can be integrated in the output.

The ENR document contains for each annotated node (selected from the original document) both
references to the original document node (expressed in XPath patterns) and one or more subjecturi
attributes. A subjecturi represents a resource present in the knowledge base (further explained in
section 4.1). This unique identifier is then used to retrieve enrichments via the enrichment delivery
service (EDS)21. The ENR document in Figure 2 contains two nodes, referring to the first and second
X element of the original document22. Each node contains extra elements, such as <PAnn> (which
will be explained further) and a ref attribute indicating the subjecturi.

Thanks to the enrichment delivery service (EDS), the application developer can translate the
subjecturi into a specific enrichment: e.g. a Wikipedia link or a biographic description of a particular
person. At the moment, there are 26 enrichment types: e.g. abstract, definition, homepage, wikilink.
This list can be extended, if need be. The type of enrichments possible depends on the subject type,
mainly grouped between different types of named entities and dictionary entries. For example,
the enrichment biography is typically for a person, whereas definition and synonyms are related
to dictionary entries. Table 3 shows some examples of enrichment types, followed by the kinds of
subjects they can occur with.

Depending on the type of application required, the application developer can create two basic
types of documents. In a basic application, it can be sufficient for the application developer to
simply use the ENR document and translate the subjecturi to a particular resolved enrichment (See
box S1 in Figure 2). However, if he wants to fuse the original XML document and the enrichments
stored in the ENR document and thus create a new fully enriched document, he can do so by using
the XPath addresses in the ENR document, in order to select the correct node in the original XML
document (S2 in Figure 2).

It is in this respect that we have created two schemas, which are part of the core elements
in the above architecture figure: the schema TEI_IRP.RNG is developed to parse an entire ENR
document, and the schema IRP2.RNG is developed to parse only the main element of an ENR
document: i.e. <PEnrich>. This second schema can be used by developers who want to integrate
the annotated nodes into a new document based on the original input document. It is up to the
application developer to create a new schema based on the original DTD of the SRC document and
schema IRP2.RNG to validate document S2 in Figure 223.

20. This set can easily be extended to a generic list of elements. In order to handle attributes as well, an extra filter
is required.

21. See Section 5.3
22. This is indicated by the XPath expressions (//X)[1] and (//X)[2].
23. In Figure 2, this new schema is indicated by a question mark, since the engine has no knowledge of such a schema.

The enrichment engine has only knowledge of the ENR document.

79

5.2 XML format

As explained above, the enrichment engine takes as input any well-formed XML file. This require-
ment gives full flexibility to document providers and application developers, who themselves are
responsible for the validity of the input document, using a DTD or another schema. It also has the
advantage that the enrichment engine is agnostic of the structure of the input document. It only
selects nodes from the input file, matching the XPath patterns in the control document. On the
other hand, the intermediate files and the final enrichment document (ENR) must match with a valid
schema specifically developed for the engine. This requirement is important if we want to analyse
any problem concerning the structure of the XML documents generated by the enrichment engine.
Therefore, we created the TEI_IRP.RNG schema, as explained in the previous subsection. In this
subsection, we explain how we decided on the XML format and how the schemas were created.

After comparing the main XML formats generally used for structuring and annotating linguistic
data, we decided to follow the de facto standard of TEI (Text Encoding Initiative)24. The decision
was mainly inspired by the flexible format of the TEI modules and the practical scheme editor
tool ROMA25, which is based on the generic notion of the ODD document, which stands for One
Document Does it all (Burnard 2013). TEI in itself is not a schema, but a set of modules describing
different types of documents. Depending on the type of document to be validated, certain modules
are selected, and a schema is created. The ROMA tool is an editor which facilitates the creation
and modification of schemas based on the TEI modules26.

An ODD document is a schema-independent language which describes the specifications of the
structure of an XML document. The ODD can be compiled and translated into a number of schema
formats, such as DTD, XML Schema or RELAX NG. An ODD itself is a TEI document, and can
thus be validated accordingly. The ROMA tool enables easy creation and modification of ODD files
and compilation of different schema formats. Moreover, documentation can be directly integrated.
However flexible the tool may be, there are some drawbacks related to the web interface, so that
certain adaptations have to be done directly into the code of the ODD document. Moreover, following
the recommendations of the ODD developers, we created a separate namespace in order to avoid
conflicts with future TEI specifications for all elements we created specifically for the iRead+ project.

Figure 4 gives an example of a <PEnrich>27 element, which is the core element of an ENR doc-
ument. The main body of an ENR document contains a set of <PEnrich> elements. A <PEnrich>
begin element contains a path attribute as standoff pointer indicating the address of the element
in the original source document, as illustrated in the following example, where the attribute path
refers to the first paragraph element of the first section element in the original document:

<PEnrich path="(//section/paragraph)[1]" n="irp-1"> ... </PEnrich>

Each <PEnrich> element in turn contains the following three elements: a <PBase> element
showing a cleaned version of the original node, a <PAnn> element containing the linguistic annota-
tion for each token, and a <PNerd> element containing the named entities28. Figure 4 is a minimal
example of the <PEnrich> element, lacking a number of attributes, including the offset attributes
and the lemmaRef attributes. Although the <PEnrich> element shows some redundancy (E.g. the
named entities are stored in both <PAnn> and <PNerd>), this approach can be cost-efficient,
depending on the application used.

24. Stührenberg gives an overview of a number of important competitors of XML formats for linguistic annotation,
including TEI, CES, and newer formats: e.g. FS, LAF, SynAF, MAF (Stührenberg 2012).

25. http://tei.oucs.ox.ac.uk/Roma/
26. The predecessor of the ROMA tool was called the Pizza Chef, referring clearly to the fact that you can mix any

module and seasoning of your liking. The Pizza Chef was developed for TEI P4. ROMA is available for TEI P5.
27. Strictly speaking, we should mention the namespace (i.e. <irp:PEnrich>), but for reasons of legibility, the

namespace is left out.
28. <PAnn> stands for annotation, whereas <PNerd> refers to Named Entity Recognition and Disambiguation.

80

http://tei.oucs.ox.ac.uk/Roma/

<irp:PEnrich irp:path="(//section/paragraph)[1]" n="irp-1">
<PBase xmlns="http://kuleuven-kulak.be/itec/ns/irp/">J’ai vu un

éléphant <italic>bleu</italic> dans mon jardin à Paris. "C’est phantastique",
disait Jean.</PBase>

<irp:PAnn>
<s irp:s_id="1">

<w ana="Pp1msn-" lemma="je">J’</w>
<w ana="Vaip1s-" lemma="avoir">ai</w>
<w ana="Vmps-sm" lemma="voir">vu</w>
<w ana="Da-ms-i" lemma="un">un</w>
<w ana="Ncms" lemma="éléphant">éléphant</w>
<w ana="-SGML-" lemma="-SGML-"><italic></w>
<w ana="Afpms" lemma="bleu">bleu</w>
<w ana="-SGML-" lemma="-SGML-"></italic></w>
<w ana="Sp" lemma="dans">dans</w>
<w ana="Ds1mss-" lemma="mon">mon</w>
<w ana="Ncms" lemma="jardin">jardin</w>
<w ana="Sp" lemma="à">à</w>
<irp:ne ref="http://fr.dbpedia.org/resource/Paris" irp:confidence="0.99" type="LOC">

<w ana="Npms" lemma="Paris">Paris</w>
</irp:ne>
<w ana="F" lemma=".">.</w>

</s>
<s irp:s_id="2">

<w ana="F" lemma=""">"</w>
<w ana="Pd-ms--" lemma="ce">C’</w>
<w ana="Vmip3s-" lemma="être">est</w>
<w ana="Afpms" lemma="<unknown>">phantastique</w>
<w ana="F" lemma=""">"</w>
<w ana="F" lemma=",">,</w>
<w ana="Vmii3s-" lemma="dire">disait</w>
<irp:ne ref="http://fr.dbpedia.org/resource/Jean" irp:confidence="0.96" type="MISC">

<w ana="Npms" lemma="Jean">Jean</w>
</irp:ne>
<w ana="F" lemma=".">.</w>

</s>
</irp:PAnn>
<irp:PNerd>J’ai vu un éléphant

<italic xmlns="http://kuleuven-kulak.be/itec/ns/irp/">bleu</italic> dans mon jardin
à <irp:ne ref="http://fr.dbpedia.org/resource/Paris" irp:confidence="0.99"
type="LOC">Paris</irp:ne>. "C’est phantastique", disait <irp:ne
ref="http://fr.dbpedia.org/resource/Jean" irp:confidence="0.96"
type="MISC">Jean</irp:ne>.

</irp:PNerd>
</irp:PEnrich>

Figure 4: Example of <PEnrich> element

81

Note that the XML format is open for further processing, so that, for example, the FoLiA29

format can be used if required (van Gompel and Reynaert 2013). Although inspired by TEI, the
FoLiA format does not follow the TEI guidelines strictly, but it is nevertheless a transparent format
for linguistic annotations. If integration of markup is required, then probably the FoLiA format
needs some extra adaptations.

One could compare the TEI based schemata proposed for the enrichment engine with similar
projects, such as the Analyzed Layout and Text Object (ALTO) XML Schema30. The main difference
between ALTO and the ENR schemata is related to the fact that ALTO is mainly a format for storing
layout information and OCR recognised text of pages. Basically, ALTO starts from the image of
a printed text, whereas the enrichment engine starts off from XML-based documents. Therefore,
ALTO is more appropriate for adding annotation layers to archived documents.

5.3 Enrichment delivery service

As already mentioned, the ENR document contains the identifiers (subjecturis) for all detected
and disambiguated NEs and for words that have a corresponding resource in the knowledge base.
A collection of RESTful web services, the so-called enrichment delivery service, was developed to
enable the retrieval of specific enrichments for a given resource.

In order to obtain a specific enrichment, a GET request can be made with the resource URI and
requested enrichment type (as illustrated in Table 3) as parameters. The response is either XML
or JSON, depending on the requested format by the client using content negotiation. As not all
resources in the knowledge base have information available for all enrichment types, an additional
web service allows to obtain information about which enrichment types a given resource currently
supports.

Note that, as the knowledge base consists of several data sets, different ontologies are in use.
To prevent application developers from having to know different ontologies in order to obtain en-
richments for a particular resource, we defined a uniform Application Programming Interface (API).
That way, application developers making use of the API have a uniform view on the knowledge base.
When a user makes an API call, this call is internally translated to a specific SPARQL query. Using
this architecture, we can add new data sets to the knowledge base without users having to know
about the details of the data set such as the ontology and the SPARQL queries needed to obtain a
specific enrichment.

6. Demonstrators
The iRead+ project not only consisted of the development of the enrichment engine. The technology
was also made operational in three different reading applications (three demonstrators), which were
developed by application developers for three different audiences: the general reader, the learning
reader and the struggling reader. All demonstrators were developed specifically to enrich written
text on a tablet computer. This enrichment consisted in making reading on tablet more interactive
by providing readers with the possibility to access extra information while reading. In what follows,
we discuss the three reading applications.

The iRead+ application for the general reader allows the general reader to read a magazine on a
tablet computer, and get directly extra information on the named entities found in the article. The
big advantage for the reading experience (i.e. reading magazines on tablet) is that the reader no
longer has to access extra information via another app and can therefore be considered an inclusive
application. In this demonstrator, the focus was on the extraction of named entities from the
ENR document. First the ENR document was created and stored on the tablet computer. Then,
whenever the user selected a named entity (e.g. a toponym), the enrichment delivery service was

29. http://proycon.github.io/folia/
30. http://www.loc.gov/standards/alto/

82

http://proycon.github.io/folia/
http://www.loc.gov/standards/alto/

Enrichment type Description N
am

ed
En

tit
y
(g
en

er
al
)

N
am

ed
En

tit
y
(p
er
so
n)

N
am

ed
En

tit
y
(lo

ca
tio

n)

D
ic
tio

na
ry

en
tr
y
/
M
W

E

abstract Short description of the subject 3 3 3

antonyms List of antonyms of the subject 3

biography Compound of enrichment types
typical for a biography

3

birthdate Date of birth of the subject 3

definition Definition of the subject 3

derivedwords List of derived words of the
subject

3

examplesentence Example sentence using the
subject

3

geocoordinates Position on earth of the subject 3

homepage URL of the homepage of the
subject

3 3 3

hypernyms List of hypernyms of the subject 3

image URL of an image of the subject 3 3 3 3

label Default label of the subject 3 3 3 3

pronunciation Phonetic transcription (IPA)
and/or sound recording (Uri) of
the subject

3

relatedwords List of related words of the
subject

3

wikilink Weblink to a Wikipedia/
Wiktionary type of information
about the subject

3 3 3 3

Table 3: Examples of enrichment types

83

called to return the required enrichment. For instance, by clicking on a toponym in the text, a
short summary (based on Wikipedia material) was shown and images were made available within
the reading application.

Second, the project also created a reading application which consisted of both a reading and an
exercise environment and was destined for Dutch-speaking learners of French. In this application,
the linguistic annotations supplied the main enrichments, although extra information on named
entities could also be accessed (cf. application for general readers). While reading, learners using
this application could access extra linguistic information. For instance, learners could click on a
verb in order to receive information on the tense and infinitive. Similarly, when clicking on a noun,
information on the gender of the substantive was provided in the enrichment. This application
also provided an exercise environment. On the basis of the linguistic annotation, the exercise
environment (i.e. exercise generator) automatically created exercises on the basis of a series of
predefined morphosyntactic topics (e.g. verb conjugation). For each exercise topic (e.g. Present
tense), three modes were available: an exploration mode, an exercise mode, and a play mode. The
objective of the exploration mode is to draw students’ attention to the linguistic forms while they
process written input for meaning. For instance, learners are asked to click on the target forms (e.g.
all verb forms in present tense) and receive immediate feedback while doing so. Next, the exercise
mode is offered in which on the fly exercises are created (multiple choice, or fill gaps) focusing on
the same morphosyntactic topics. This mode can be considered more difficult than the previous
one since learners are asked to provide the input themselves. Finally, the play mode offers similar
exercises as in the second mode but this time with a time constraint in order to challenge the learner.

The enrichment engine was also deployed to create a reading tool for struggling readers (e.g.
persons suffering from dyslexia). In this reading tool, readers could ask to highlight the word
categories in different colours, in order to easily recognise word groups. Technically, this use case
was a bit different from the others, because the developers started from PDF files, containing lots of
illustrations. In order to align enrichments with the original texts in the PDF files, the developers first
converted the PDF file to XML, keeping track of the original character offsets31. After processing
the XML file, the enrichments were displayed on an annotation layer presented over the existing
PDF layout.

The three use cases have shown that the enrichment engine can be dynamically used in different
contexts where content and layout play an important role. The extra service call for resolving the
enrichments did not result in a delay. The enrichments can either be called on-the-fly, or they can
be collected beforehand, so that a resolved document is created. Both approaches have been used
successfully in the demonstrators. The three proofs of concept have shown that each application
was capable of enriching the sample documents and visiualize the enrichments according to the
requirements of the application.

7. Conclusion
The iRead+ project has shown in which way NLP tools together with semantic tools can be used
in a publication production pipeline, without destroying the original documents. Although the
enrichment engine has been developed as a proof-of-concept, and is therefore not yet optimised for
scalability, the demonstrators have shown that the use of a web service is an approach worth to be
explored further. Within this project, the focus was on testing the feasibility of such a tool. The
next step will consist in evaluating the quality of the enrichments, on the basis of a comparison of the
output with a gold standard. We also consider further optimisation of the different tools, including
improving the semantic coverage of the knowledge base, and improvement of the disambiguation
algorithm.

31. In the two other demonstrators, no conversion was required, because the original document was already structured
in XML

84

8. Acknowledgement
The iRead+ project was financed as an iMinds ICON project for a duration of 2 years (2011-2013).
iMinds is the digital research center and business incubator for Flanders, Belgium. Special thanks
goes to Aleksandra Miletic who—as a trainee of Lille3—has implemented the TEI schemata. We
also would like to thank the anonymous reviewers for their comments and constructive suggestions,
that have helped us to improve the quality of this article.

References
Adda, Gilles, Joseph Mariani, Josette Lecomte, Patrick Paroubek, and Martin Rajman (1998), The

GRACE french part-of-speech tagging evaluation task, Proceedings of the First International
Conference on Language Resources and Evaluation (LREC), pp. 433–441.

Aho, Alfred V. and Margaret J. Corasick (1975), Efficient string matching: An aid to bibliographic
search, Commun. ACM 18 (6), pp. 333–340.

Allauzen, Alexandre and Hélène Bonneau-Maynard (2008), Training and evaluation of POS taggers
on the french MULTITAG corpus, LREC, European Language Resources Association.

Bird, Steven, Ewan Klein, and Edward Loper (2009), Natural Language Processing with Python, 1st
ed., O’Reilly Media, Inc.

Burnard, Lou (2013), Resolving the durand conundrum, Journal of the Text Encoding Initiative.

Coelho, Flávio Codeço, Renato Rocha Souza, Álvaro Justen, Flávio Amieiro, and Heliana Mello
(2013), PyPLN: a distributed platform for natural language processing, CoRR.

Crabbé, Benoît and Marie Candito (2008), Expériences d’analyse syntaxique statistique du français,
Traitement automatique des langues naturelles - TALN 2008, Avignon, France.

Cunningham, Hamish, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann Petrak, Yaoyong Li, and Wim Peters (2011),
Text Processing with GATE (Version 6). http://tinyurl.com/gatebook.

Daelemans, Walter and Antal van den Bosch (2005), Memory-based language processing, Studies in
natural language processing, Cambridge University Press.

Denis, Pascal and Benoît Sagot (2012), Coupling an annotated corpus and a lexicon for state-of-the-
art POS tagging, Language Resources and Evaluation 46 (4), pp. 721–736.

Desmet, Bart and Véronique Hoste (2014), Fine-grained dutch named entity recognition, Language
Resources and Evaluation 48 (2), pp. 307–343.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning (2005), Incorporating non-local
information into information extraction systems by gibbs sampling, Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL ’05, Association for Com-
putational Linguistics, Stroudsburg, PA, USA, pp. 363–370.

Gralinski, Filip, Krzysztof Jassem, and Marcin Junczys-Dowmunt (2013), PSI-toolkit: A natural
language processing pipeline, Computational Linguistics - Applications, pp. 27–39.

Grover, Claire and Richard Tobin (2006), Rule-based chunking and reusability, In Proceedings of the
Fifth International Conference on Language Resources and Evaluation (LREC).

85

Grover, Claire, Colin Matheson, Andrei Mikheev, and Marc Moens (2000), LT TTT - a flexible
tokenisation tool, In Proceedings of Second International Conference on Language Resources
and Evaluation, pp. 1147–1154.

Nasr, Alexis, Frèdèric Bèchet, and Jean-François Rey (2010), MACAON: Une chaîne linguistique
pour le traitement de graphes de mots, Traitement Automatique des Langues Naturelles, Mon-
trèal.

Nasr, Alexis, Frédéric Béchet, Jean-François Rey, Benoît Favre, and Joseph Le Roux (2011), MA-
CAON: An NLP tool suite for processing word lattices, ACL (System Demonstrations), The
Association for Computer Linguistics, pp. 86–91.

Paroubek, Patrick (2000), Language resources as by-product of evaluation: The MULTITAG ex-
ample., LREC, European Language Resources Association, pp. 151–154.

Paulussen, Hans, Lieve Macken, Willy Vandeweghe, and Piet Desmet (2013), Dutch parallel corpus:
a balanced parallel corpus for dutch-english and dutch-french, Essential speech and language
technology for Dutch: results by the STEVIN-programme, Springer, pp. 185–199.

Rajman, Martin, Josette Lecomte, and Patrick Paroubek (1997), Format de description lexicale pour
le français. Partie 2: Description morpho-syntaxique, GRACE GTR-3-2.1, Technical report,
EPFL & INaLF.

Schmid, Helmut (1994), Probabilistic part-of-speech tagging using decision trees, Proceedings of
International Conference on New Methods in Language Processing, Manchester.

Schmid, Helmut (1995), Improvements in part-of-speech tagging with an application to german,
Proceedings of the ACL SIGDAT-Workshop, Association for Computational Linguistics, Dublin,
Ireland.

Spyns, Peter and Jan Odijk, editors (2013), Essential Speech and Language Technology for Dutch,
Theories and Applications of Natural Language Processing, Springer.

Stührenberg, Maik (2012), The TEI and current standards for structuring linguistic data, Journal
of the Text Encoding Initiative.

van de Kauter, Marjan, Geert Coorman, Els Lefever, Bart Desmet, Lieve Macken, and Véronique
Hoste (2013), LeTs preprocess: The multilingual LT3 linguistic preprocessing toolkit, Compu-
tational Linguistics in the Netherlands Journal 3, pp. 103–120.

van Gompel, Maarten and Martin Reynaert (2013), FoLiA: A practical XML format for linguistic
annotation - a descriptive and comparative study, Computational Linguistics in the Netherlands
Journal 3, pp. 63–81.

86

	Introduction
	NLP tools for production environments
	Linguistic annotation
	Dutch
	French

	Semantic annotation
	Knowledge base
	Named entity detection
	Multi-word expression detection
	Named entity disambiguation
	Dictionary linking

	General architecture and XML format
	General architecture
	XML format
	Enrichment delivery service

	Demonstrators
	Conclusion
	Acknowledgement

