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Abstract

In this paper we examine several combinations of classical N-gram language models with more
advanced and well known techniques based on word similarity such as cache models and Latent
Semantic Analysis. We compare the efficiency of these combined models to a model that combines
N-grams with the recently proposed, state-of-the-art neural network-based continuous skip-gram.
We discuss the strengths and weaknesses of each of these models, based on their predictive power
of the Dutch language and find that a linear interpolation of a 3-gram, a cache model and a
continuous skip-gram is capable of reducing perplexity by up to 18.63%, compared to a 3-gram
baseline. This is three times the reduction achieved with a 5-gram.

In addition, we investigate whether and in what way the effect of Southern Dutch training
material on these combined models differs when evaluated on Northern and Southern Dutch ma-
terial. Experiments on Dutch newspaper and magazine material suggest that N-grams are mostly
influenced by the register and not so much by the language (variety) of the training material.
Word similarity models on the other hand seem to perform best when they are trained on material
in the same language (variety).

1. Introduction

A statistical language model (LM) is a model that assigns a probability to a sequence of words.
This is a task that is useful in many areas of research including spelling correction, optical character
recognition, handwriting recognition, machine translation and speech recognition. The assigned
probability allows the prediction of the next word in a sentence which may be used to steer pattern
recognition applications towards a word hypothesis that is more linguistically plausible. Although
humans are capable of capturing detailed information from a sentence by dissecting the individual
words and building them into complex, meaningful concepts that can be mapped to known concepts
in the world, machines have yet to learn such sophisticated relationships and are hitherto doomed
to find salvage in simpler techniques.

One such technique that has proven surprisingly fruitful is the N-gram language model. This
model makes the naive assumption that natural language consists of overlapping sequences of N
words or N-grams and that to predict the next word, one need only look at the previous N−1 words
instead of the whole history. Although this approximation is obviously a crude one, N-gram LMs
are easy to create and can be readily applied to many complex tasks with remarkable success. For
this reason, they have been the workhorse in the field of automatic speech recognition for the last
couple of decades.

Notwithstanding their benefits, N-gram LMs suffer from several deficiencies, one of which is
data sparsity. N-gram LM probabilities are estimated from their relative occurrences in a large
corpus and since language is such an unconstrained and creative process, there is simply not enough
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data available to reliably estimate the probabilities for all N-grams. Even with the Big Data that
is available nowadays via the Internet, many of the possible N-grams of a language do not occur
(enough), no matter how small N is chosen (Allison et al. 2006). Many methods have been sug-
gested to alleviate this problem e.g. smoothing (Witten and Bell 1991, Good 1953, Kneser and
Ney 1995, Chen and Goodman 1999), word clustering (Brown et al. 1992, Pelemans et al. 2014),
skip N-grams (Huang et al. 1992, Rosenfeld 1994, Ney et al. 1994), and more recently continuous
models (Bengio et al. 2003, Mikolov et al. 2010), but the issue of language data sparsity is still very
much an open one.

Another flaw with N-gram LMs is their primary assumption that the history upon which the
prediction is based, can be reduced to only a handful of words. Although it may be the case that
much if not most of the information (Rosenfeld 1994) resides in the immediate, local context of the
current word, other long-span phenomena such as sentence- or document-level semantic relations can
only be modeled with the help of the more distant history. One of the ways to address this problem,
is to combine N-gram LMs with techniques that model word similarity in the hope of capturing both
local and global phenomena.

The focus of this paper is to examine the combination of N-gram LMs with several of these
techniques including well established models such as cache models (Kuhn and de Mori 1990) and
Latent Semantic Analysis (Deerwester et al. 1990). The combined models are compared to a new
model that combines N-grams with the recently proposed continuous skip-gram model (Mikolov
et al. 2013a, Mikolov et al. 2013b, Mikolov et al. 2013c), which is a scalable adaptation of a Neural
Network Language Model (NNLM) (Bengio et al. 2003) and the current state-of-the-art in word
similarity. We discuss the strengths and weaknesses of each of these combined models, based on
their predictive power of the Dutch language and investigate whether and in what way the effect of
Southern Dutch training material differs when evaluated on Northern and Southern Dutch material.

The remainder of this paper is organized as follows. In Section 2 we give an overview of all of the
investigated word similarity models, except for the continuous skip-gram model which we explain
in more detail in Section 3. Section 4 covers in depth analysis of each of the models and compares
their predictive power of the Dutch language. We end with a conclusion and some future work.

2. Classical word similarity models

In this section we discuss several classical word similarity models that are less accurate, but also
computationally less expensive than NNLMs and that have been shown to complement well with
N-gram language models. Because these models can be integrated directly into a speech decoder,
they have access to the complete search space and may therefore achieve competitive results in a
single-pass scenario. Alternatively, they can also be used as a first pass LM, after which an NNLM
may still be used in a second, rescoring pass.

2.1 Cache models

Cache models are based on the observation that topical words tend to re-occur within a text. A
cache memory is kept that keeps track of the last K words in a document and is consulted when
predicting the next word. In their simplest form (Kuhn and de Mori 1990), cache models distribute
the probability mass uniformly among all the K tokens in the cache memory:

Pcache(wq|wq−1q−K) =
Ccache(wq)

K
(1)

where Ccache(wq) indicates the frequency of word wq in the cache memory.

Extensions exist (Clarkson and Robinson 1997) where word age is taken into account i.e. the
impact of older tokens is decreased by applying a (typically exponential) decay weighting function:
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Pcache(wq|wq−1q−K) = β

q−1∑
j=q−K

I(wq = wj)α
(q−j) (2)

where I(x) is an indicator function that returns 1 if x is true and 0 otherwise, α is the decay rate
and β is a normalization factor.

Cache models are simple and efficient and are capable of modeling long distance phenomena
which is one of the main weaknesses of N-gram LMs. They do not however employ any kind of
semantic knowledge.

2.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al. 1990) is one of the earliest attempts to discover
hidden semantic structure in a text by considering word co-occurrences. It is a dimensionality
reduction technique based on truncated Singular Value Decomposition that is applied on a term-
document matrix W which contains in each cell the number of times a word (rows) occurs in a
document (columns). As is shown in Figure 1, this frequency matrix is decomposed into a product of
an orthonogal matrix U , a diagonal matrix S, containing the singular values, and another orthogonal
matrix V T . The information in W that corresponds to the smallest singular values is considered to
be noise induced by data errors and word redundancy and is effectively removed by preserving only
the k largest singular values. The resulting rank k approximation is optimal w.r.t. the Frobenius
norm and uncovers latent semantic relations between words and documents.

Figure 1: (Truncated) Singular Value Decomposition

Often a preprocessing step is useful, because the documents are not of equal length and not all
words are equally informative. To this end, the raw counts of W may be transformed according
to a weighting scheme which typically consists of a global component G(i) and a local component
L(i, j) (Dumais 1991):

W ′(i, j) = G(i)L(i, j) (3)

where W ′ represents the frequency matrix W after applying the weighting scheme. The same global
weight – indicating the overall importance of a term – is applied to an entire row of the matrix,
whereas the local weight – which indicates the importance of a term in a specific document – is
applied to each cell in the matrix.

Although many different schemes exist, the choice is not so critical to the overall performance
of LSA and in this paper we only investigate the use of TF-IDF, which is one of the most used
weighting schemes in the context of information retrieval. For an overview and classification of
different weighting schemes, we refer to (Salton 1971).

Semantic similarity between documents and words is measured by calculating the cosine dis-
tance in the latent space. In the context of language modeling, the history is considered to
be a (pseudo-)document d̃q−1 and the cosine distance K between the word vector uq and the
(pseudo-)document vector ṽq−1 in the latent space is converted into a probability as follows (Coccaro
and Jurafsky 1998):
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P (wq|d̃q−1) =
[K(uq, ṽq−1)−min

u
K(u, ṽq−1)]γ∑

wi∈V
[K(ui, ṽq−1)−min

u
K(u, ṽq−1)]γ

(4)

where V is the vocabulary and γ is a parameter that controls the dynamic range of the distribution.
Although LSA is capable of uncovering semantic relations between words and documents, it is

insensitive to the multiple senses that many words have. Moreover, using the Frobenius norm as an
error function assumes normally distributed data with independent entries, which is not the case for
the counts in the term-document matrix.

3. Continuous skip-gram model

Motivated by the recent successes in neural network language modeling, Mikolov et al. (Mikolov
et al. 2013a, Mikolov et al. 2013b, Mikolov et al. 2013c) recently proposed a new architecture for the
acquisition of high-quality word embedding vectors which might not be able to represent the data as
precisely as neural networks, but is less complex and can therefore handle more data efficiently. The
continuous skip-gram model (CSM) is the current state-of-the-art in word similarity and is shown
in Figure 2. It is a log-linear classifier with a continuous projection layer that tries to maximize the
prediction of words within a range R before and after the current word. Similar to the Recurrent
NNLM (Mikolov et al. 2010, Mikolov et al. 2011), the network is trained by using backpropagation
with stochastic gradient ascent until convergence and uses the softmax activation function to ensure
that the output layer forms a valid probability distribution:

p(wt+j |wt) =
exp(vTwt

v′wt+j
)∑W

w=1 exp(vTwt
v′wt+j

)
(5)

where vw and v′w are the input and output representations of word w.
The model was made more efficient by approximating the full softmax by a hierarchical version

which was first introduced by Morin and Bengio (Morin and Bengio 2005). The hierarchical softmax
uses a binary Huffman tree representation of the output layer with the words as its leaves and for each
node represents the relative probabilities of its child nodes explicitly. This has a significant positive
effect on the overall speed of the model. For more information on the hierarchical softmax and the
continuous skip-gram model in general, we refer the reader to (Mikolov et al. 2013b) and (Mikolov
et al. 2013a).

Figure 2: Continuous Skip-gram Model

An interesting observation was made in (Mikolov et al. 2013c): the vector-space word repre-
sentations that are implicitly learned by the input-layer weights are surprisingly good at capturing
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both semantic and syntactic regularities in language and each relationship is characterized by a
relation-specific vector offset. This allows intuitive vector mathematics based on the offsets between
words e.g. King - Man + Woman results in a vector that is very close to that of Queen. It is clear
that these CSM word embedding vectors can be a valuable source of information to enrich existing
language modeling techniques.

For word embedding vectors to be incorporated into a language model, we need to have a repre-
sentation at a higher level than just individual words. A naive notion of a document can be achieved
by calculating the centroid of the previous K word vectors, but this makes the unreasonable as-
sumptions that the meaning of a phrase is equal to the sum of its components and that all words in
the history are equally important.

In (Mikolov et al. 2013a), the authors show that the first assumption can be overcome in part
by detecting common phrases i.e. words that appear frequently together and infrequently in other
contexts. This way they were able to replace New York Times by a single token while this is
remained unchanged.

They did not however address the assumption of equal word importance. Function words like the
and of are clearly less informative than content words, hence should be given less weight. This can
be dealt with quite easily by applying the same TF-IDF weighting as was mentioned in Section 2.2.

Finally, one may wonder whether the vector addition of many words is still meaningful. It is
likely that the context used in language models based on word embedding vectors should either be
limited in length or processed in some hierarchical way where documents are recursively decomposed
into smaller meaningful units.

4. Experimental validation

In this work we compare the combination of the beforementioned word similarity techniques with
N-gram language models. Model fitness is measured as test set perplexity and compared with a
3-gram baseline model with modified Kneser-Ney smoothing. This form of smoothing has been
shown to outperform the other well-known smoothing methods on a number of occasions and our
case did not prove any different. We also trained 4-gram and 5-gram language models, but since
the reduction in perplexity was minimal and since we are mostly interested in the reduction caused
by adding word similarity information, we chose the 3-gram model to interpolate with the other
models. We do however compare our final interpolated models to a 4-gram and 5-gram LM to show
that our techniques can be more interesting than simply increasing the LM context.

All of the trained models are combined using linear interpolation. Although non-linear interpola-
tion has been shown to achieve larger perplexity reductions (Coccaro and Jurafsky 1998), this better
performance comes at the cost of higher complexity, since the LM scores need to be normalized for
each evaluation. As our final goal is to apply these models in the context of automatic speech recog-
nition, we prefer a fast combination technique. Note that whenever we report interpolation weights,
we mean the weight attributed to the model currently under discussion and not the weight of the
N-gram LM.

Our LM training data consists of a collection of normalized newspaper texts from the Flemish
digital press database Mediargus. All of the models were trained on excerpts from the Southern
Dutch newspaper De Standaard, which contain 65M word tokens. Vocabulary selection was based
on the most frequent words in this data set. Parameter optimization was done on a development
set consisting of excerpts from the Southern Dutch newspaper De Morgen, which contain 100k
word tokens. Finally, we validated all of our models on excerpts of the Southern Dutch magazine
Knack and Northern Dutch newspaper NRC, both of which were limited to 50k word tokens. In
addition, we double-checked our conclusions by looking at similar length excerpts of two Southern
Dutch newspapers: Gazet van Antwerpen and Het Belang van Limburg. None of the data sets were
marked with document boundaries, but instead a document length of 30 sentences was assumed.
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α
K 0.95 0.97 0.99 0.992 0.994 0.996 0.998 1
0 (3-gram) 222.02 222.02 222.02 222.02 222.02 222.02 222.02 222.02
50 214.49 213.48 212.94 212.92 212.90 212.89 212.88 212.88
250 208.70 204.26 200.46 200.39 200.44 200.61 200.91 201.36
500 208.70 204.15 198.85 198.59 198.57 198.91 199.72 201.04
1000 208.70 204.15 198.66 198.26 198.08 198.43 199.90 203.19
2000 208.70 204.15 198.66 198.25 198.05 198.35 200.17 206.81

Table 1: Perplexity results for interpolated N-gram+cache models with a vocabulary of 100000
words, as a function of decay rate α and cache memory size K, as measured on the De
Morgen development set.

All of the word similarity models were trained using the open-source Python framework gen-
sim (Řeh̊uřek and Sojka 2010), which contains intuitive and scalable implementations for many pop-
ular NLP models. The N-gram language models were trained with the SRILM toolkit (Stolcke 2002).

The models using LSA and CSM are all preprocessed using TF-IDF. No phrase detection what-
soever was performed.

For each of the combined models, we performed an exhaustive grid search in their parameter
space for vocabularies of size 50000, 100000 and 200000. Unless mentioned otherwise, we only show
the results of a 100000 words vocabulary for the sake of clarity. We investigate what the optimal
values are, which parameters are most influential and whether or not these parameters are robust
w.r.t. vocabulary size and perplexity. We also compare common parameters across models e.g.
dimensionality and interpolation weight. Note that whenever a particular parameter is discussed,
the remaining parameters are set to their optimal value w.r.t. to the first parameter, thus avoiding
any opaque results by averaging effects.

The experiments can be summarized as follows: first we explore cache models and investigate
whether exponential decay is worth the extra computation. In Section 4.2 we compare the dimen-
sionality of LSA and CSM. Next, in Section 4.3, we study the effect of the context window. Then,
in Section 4.4 we compare each of the models w.r.t. to their complexity. Finally, we review the
best models, discuss their performance on two test sets and make some general conclusions on the
applicability of Southern Dutch training data for Northern Dutch applications.

4.1 Cache models: to forget or not to forget

Cache models have been shown to work better when attributing less weight to older words i.e. using
a word influence decay (Clarkson and Robinson 1997). In this section, we first investigate to what
extent this is true for our data and which type of decay is the most promising. We also examine
some general properties of our cache models.

Table 1 shows the perplexity of different interpolated N-gram+cache models on the development
set as a function of the decay rate α and the size of the cache memory K. No decay is indicated
by a value of α = 1, all the other values represent exponential decay. As can be seen, the difference
in performance between no decay and exponential decay is negligible. No decay performs better on
somewhat smaller memories; most likely they attribute too much weight to older, less relevant words.
Exponential decay is capable of capturing more distant information with a minimal perplexity for
α = 0.994 and K = 2000, although the gain by increasing the size of the memory is minimal. Notice
that the perplexity results for lower values of α are identical for large memories. This is because the
decay is so rapid that the influence of older words quickly reaches zero.

The optimal parameters of the cache models are more or less constant over different vocabulary
sizes and are relatively robust with a maximal perplexity difference of around 20. The worst per-
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dimensionality
50 150 250 500 750 1000

3-gram 222.02 222.02 222.02 222.02 222.02 222.02
3-gram+LSA 210.93 205.43 203.35 201.64 201.19 200.85
3-gram+CSM 209.28 204.29 201.51 197.58 196.54 195.38

Table 2: Perplexity results for N-gram LMs, interpolated with LSA and CSM with a vocabulary of
100000 words, as a function of dimensionality, as measured on the De Morgen development
set.

formance is observed for setups with a high cache interpolation weight and a very short window or
low α. The optimal cache interpolation weight is 0.1 for most setups. The best setup is capable of
reducing the perplexity by 24 over the 3-gram LM baseline.

We conclude that when choosing a setup for cache models, exponential decay is only marginally
better than no decay. However, since the added complexity is minimal, the only reason not to use
it is when parameter optimization is not an option. In the following experiments, we will therefore
only refer to the optimal cache model with exponential decay.

4.2 On the dimensionality of word similarity models

In this section, we investigate how many features LSA and CSM need to store useful information
about words. Less features needed means less storage needed which is a desirable property, but do
more features always contain more information? What is the optimal dimensionality for each model,
how do they compare to each other and which model has the highest information-per-feature ratio
i.e. which model is able to get the best results with the least amount of features?

Table 2 shows the results of different models using either LSA or CSM as word similarity com-
ponent. Their performance is measured as perplexity on the development set as a function of the
dimensionality. It can be seen that the models using LSA already perform well at a dimensionality
of 50, but very quickly reach saturation around 150 with a marginal perplexity reduction for a higher
number of dimensions. The word embedding vectors also perform well at a dimensionality of 50, but
they gain more by additional dimensions until a dimensionality of around 500. This causes them to
outperform LSA by an increasing margin, albeit small, even at the highest number of dimensions.

The optimal parameters of the different models are, as was the case with the cache models,
similar over different vocabulary sizes with, for LSA, a window of 200, LSA interpolation weight
of 0.08, dimensionality of 1000 and γ = 7, and, for CSM, a window of 100, CSM interpolation
weight of 0.07, dimensionality of 1000 and training context R of 240. The robustness of the CSM
parameters is comparable to that of cache models with a maximal perplexity difference of around 25.
The parameters of LSA are even more robust than those of cache models with a maximal perplexity
difference of only around 10.

We conclude that CSM is capable of finding more interesting features in the data, yielding a
small advantage over LSA in our development set. We believe that this difference will manifest itself
more clearly as the size of the data increases.

4.3 Windows: how much we can learn from the distant past

Each of the trained models uses a certain amount of the most recently uttered words to evaluate
which word is most likely to be uttered next i.e. the context window. N-gram LMs are forced to keep
the size of their window very small, because they preserve the word order within the window which
rapidly leads to sparsity problems in higher order windows. Word similarity models are typically
bag-of-words models i.e. they do not preserve the word order within the window and therefore do
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window size
50 100 150 200 250 500 1000 2000

3-gram 222.02 222.02 222.02 222.02 222.02 222.02 222.02 222.02
3-gram+cache 212.88 205.73 202.81 201.43 200.44 198.57 198.08 198.05
3-gram+LSA 204.98 201.73 201.10 200.85 201.83 203.66 206.77 210.58
3-gram+CSM 196.28 195.38 195.49 195.95 196.77 200.98 205.73 211.17

Table 3: Perplexity results for N-gram LMs, interpolated with cache models, LSA and CSM with a
vocabulary of 100000 words, as a function of window size, as measured on the De Morgen
development set.

not suffer from this restriction. It is not clear however how much information resides in the very
distant context words and whether a model is able to extract this information. In this section, we
investigate what the optimal window sizes are for all three of the examined models and attempt
to explain any differences therein. We discuss why certain models are not capable of extracting
valuable information from distant context as well as others.

Table 3 shows the perplexity results of all the models on the development set, as a function of
the size of the window. As was already discovered in Section 4.1, cache models with exponential
decay are capable of retrieving valuable information from increasingly large contexts. The inverse is
true for LSA and CSM, where we observe a rapid saturation and even degradation with increasing
window size. We assume this is because, as opposed to cache models, these models capture real
semantic information which is related to the ongoing topic. In natural language, and in particular in
newspaper material such as our development set, these topics can change quite quickly. We believe
this is also one of the reasons why cache models often outperform real similarity models, as they are
able to attribute high probabilities to function words as well as content words.

LSA and CSM behave quite similarly w.r.t. context window size. Both saturate around 150 and
then slowly degrade. Unexpectedly, CSM does not degrade more rapidly than LSA. As we mentioned
in Section 3, we expected that averaging vectors for an increasing amount of words would yield a
word vector which could be described as having all meanings and no meaning at all. Our results
show that this is not the case and, even though there is no document concept in these models,
degradation behavior is quite similar to LSA. We believe that this is largely due to the application
of TF-IDF preprocessing, which reduces the effect of most of the words in the window.

Finally, we observe that the largest perplexity reduction is achieved by CSM, albeit by a small
margin. Given the high quality of the vectors, we believe that smarter compositional models for
word embedding vectors will lead to a more significant difference in performance.

We conclude that unlike cache models, TF-IDF preprocessed LSA and CSM thrive in smaller
contexts of several hundreds of words and that CSM is capable of making the most out of the least
number of words.

4.4 Complexity

In this section, we sidetrack for a moment from perplexity evaluation and investigate a more practi-
cal concern which is model complexity. We do not attempt to theoretically analyze the asymptotic
computational complexity of each of the models, but rather we compare the processing time needed
for each of the models to evaluate the Knack test set. Each reported processing time is the result of
averaging the times of 10 otherwise identical experiments.

Table 4 shows the processing time for different models, as measured on an Intel Core i5-2400
processor with 1 core only. We compared the times for N-gram models interpolated with a cache
model with a window of 2000 words to LSA and CSM with a window of 150 words and 500 dimensions.
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processing time
3-gram+cache 1m50
3-gram+LSA 2h06m
3-gram+CSM 1h03m

Table 4: Processing times for N-gram LMs, interpolated with cache models, LSA and CSM with a
vocabulary of 100000 words, as measured on the Knack test set, using a Intel Core i5-2400
processor with 1 core.

The simplicity of the cache model is apparent as it needs less than 2 minutes for a complete evaluation
of the test set. LSA takes on average 2h06 to complete the evaluation, whereas CSM is capable of
finishing the job in 1h03, exactly half the processing time of LSA.

It is clear that CSM is nowhere near as efficient as cache models, but it is twice as fast as LSA,
which makes it an interesting candidate for integration into a speech recognizer.

4.5 Test set evaluation

In this section we evaluate all of the created models on two different test sets: the Southern Dutch
magazine Knack and the Northern Dutch newspaper NRC. We first compare the interpolated models
to the 3-gram LM baseline to highlight the reduction in perplexity. We also report perplexities for
4-gram and 5-gram LMs (both with modified Kneser-Ney smoothing) to indicate that our techniques
cannot be simply matched by increasing the context of an N-gram LM. Next, we show that the best
two models (cache and CSM) are complementary and that a combined model yields the best results.
All of the experiments are repeated for vocabularies of 50000, 100000 and 200000 to investigate any
effects due to vocabulary size. Finally, we compare the results for both test sets in an attempt to
find out to what extent models built with Southern Dutch material are suitable for Northern Dutch
and double-check our conclusions on two additional Southern Dutch newspapers.

Knack NRC
PPL Gain PPL Gain

3-gram 210.36 201.75
4-gram 198.10 5.83% 189.20 6.22%
5-gram 197.69 6.02% 188.61 6.51%
3-gram+cache 187.89 10.68% 180.59 10.49%
3-gram+LSA 186.12 11.53% 185.26 8.17%
3-gram+CSM 183.62 12.71% 181.84 9.87%
3-gram+cache+CSM 175.82 16.42% 171.52 14.98%
4-gram+cache+CSM 166.20 21.00% 161.79 19.81%
5-gram+cache+CSM 166.16 21.02% 161.66 19.87%

Table 5: Perplexity results for all of the models with a vocabulary of 50000 words, as measured on
the Knack and NRC test sets.

Tables 5, 6 and 7 show perplexity results for all of the mentioned models on both test sets,
for vocabulary sizes of 50000, 100000 and 200000 words respectively. It can be seen that all of
the interpolated models outperform the 3-gram LM baseline as well as 4-gram and 5-gram LMs.
This is true regardless of the vocabulary size and shows that the reported perplexity reductions
of 7.63% to 13.32% cannot be achieved by simply increasing the N-gram context. Zooming in on
the interpolated models, we notice that LSA consistently scores lowest, except for Knack with a
vocabulary of 50000 words, where it does better than the cache model. CSM is always the best

99



Knack NRC
PPL Gain PPL Gain

3-gram 241.83 233.05
4-gram 227.62 5.88% 218.60 6.20%
5-gram 227.05 6.11% 217.79 6.55%
3-gram+cache 213.27 11.81% 205.39 11.87%
3-gram+LSA 214.39 11.35% 213.35 8.45%
3-gram+CSM 209.68 13.29% 208.24 10.64%
3-gram+cache+CSM 199.05 17.69% 194.60 16.50%
4-gram+cache+CSM 188.08 22.23% 183.61 21.21%
5-gram+cache+CSM 187.96 22.28% 183.37 21.32%

Table 6: Perplexity results for all of the models with a vocabulary of 100000 words, as measured on
the Knack and NRC test sets.

Knack NRC
PPL Gain PPL Gain

3-gram 267.00 261.37
4-gram 251.15 5.93% 245.16 6.20%
5-gram 250.43 6.20% 244.23 6.56%
3-gram+cache 231.96 13.12% 226.55 13.32%
3-gram+LSA 237.50 11.05% 241.43 7.63%
3-gram+CSM 231.79 13.19% 235.14 10.04%
3-gram+cache+CSM 217.24 18.63% 216.00 17.36%
4-gram+cache+CSM 205.16 23.16% 203.77 22.04%
5-gram+cache+CSM 204.97 23.23% 203.49 22.14%

Table 7: Perplexity results for all of the models with a vocabulary of 200000 words, as measured on
the Knack and NRC test sets.

model for Knack, although only by a small margin when using a vocabulary of 200000 words. Cache
models have no competition whatsoever when evaluated on NRC. Finally, it is clear that cache
models and CSM are complementary as the models that combine both cache and CSM outperform
the others by a large degree with perplexity reductions of up to 23%.

The size of the vocabulary has the largest effect on the cache models, with performance going
up with increasing vocabulary size. This is a logical result as more words can be stored in the cache
memory and it is also visible in the models combining both cache and CSM. LSA and CSM do not
seem to be affected much by vocabulary size, although there is some evidence that performance
drops somewhat when using too many words.

When we compare the results of Knack with those of NRC, it can be seen from any of the three
tables, that the 3-gram LM baseline yields the lowest perplexity on the Northern Dutch newspaper
NRC. As the training set also consisted of newspaper excerpts, this leads us to believe that N-gram
LMs capture language information that is mostly related to the register of the training material.
We assume that both the word choice and the syntactic structure of a newspaper are somewhat
more formal than those of a magazine. The fact that Southern and Northern Dutch differ in word
usage does not have any observable effect, perhaps due to the nature of the material. It is likely
that newspapers, with their formal registers and broad target group, tend to choose more standard
words, thus diminishing this language discrepancy.
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Gazet van Antwerpen Het Belang van Limburg
PPL Gain PPL Gain

3-gram 205.31 199.99
4-gram 192.79 6.09% 185.08 7.46%
5-gram 192.47 6.25% 184.62 7.69%
3-gram+cache 180.92 11.88% 180.16 9.92%
3-gram+LSA 183.32 10.71% 181.63 9.18%
3-gram+CSM 180.72 11.98% 177.42 11.29%

Table 8: Perplexity results for all of the models with a vocabulary of 50000 words, as measured on
the additional Southern Dutch news papers.

If we look at the effect of the different models on the baseline, we notice that cache models have
a similar effect on both test sets, which is not surprising as cache models are not trained and words
are likely to be repeated in most if not all languages. We do however observe a large discrepancy
in the word similarity models where both LSA and CSM show a larger perplexity reduction on
the Southern Dutch magazine Knack. This is a clear indication that there is in fact a difference
between Northern and Southern Dutch w.r.t. language modeling. As both these models are based
on the idea of co-occurrence, this seems to indicate that, for our data, words co-occur differently
in Southern Dutch than they do in Northern Dutch. It is possible that this is due to a topic effect
i.e. that certain topics occur more often in Southern Dutch texts, for example because they address
a regional phenomenon. Another explanation is that, although there does not seem to be a large
discrepancy in the used vocabulary between the Southern Dutch training set and the Northern Dutch
test set, there might be differences in meaning which yields different lexical relations.

Whatever the underlying cause, we conclude that Southern Dutch data can be used successfully
as training material for the evaluation of Northern Dutch, especially when the intended models
are N-grams and when there is a similarity in register. When the intended models concern word
similarity, Southern Dutch texts can still prove valuable, but Northern Dutch data is more likely to
be preferred.

To give further confidence to these conclusions we tested our models on two additional Southern
Dutch newspapers: Gazet van Antwerpen and Het Belang van Limburg. Table 8 shows the perplexity
results for these two test sets for a vocabulary size of 50000 words. It can be seen that the 3-gram
LM baseline yields perplexities that are comparable to that of NRC. This strengthens our claim that
N-gram LMs are hardly if at all influenced by language variety, but are in fact affected by style.
On the other hand, when we look at the word similarity models, the perplexity reductions strongly
resemble those of Knack, especially for CSM, reflecting the fact that they are all Southern Dutch
publications.

5. Conclusions and future work

We examined several combinations of classical N-gram language models with word similarity models
including cache models, Latent Semantic Analysis (LSA) and the recent continuous skip-gram model
(CSM), and made several conclusions.

First, we did a thorough investigation of the model parameters and found that (1) cache models
perform best when using exponential decay, although only marginally better than without decay; (2)
CSM is making optimal use of larger dimensions which yields it a small, but consistent perplexity
reduction over LSA; (3) both CSM and LSA are optimal with low context windows whereas cache
models typically prefer longer windows.
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Next, we compared the addition of each model to a 3-gram LM with modified Kneser Ney
and found that the continous skip-gram model is a viable alternative for LSA in the context of
interpolated language models. Not only does it achieve consistenly lower perplexities, it is also twice
as fast and combines well with cache models. Our final model which uses an interpolation of a
3-gram LM, a cache model and a continuous skip-gram model was able to reduce the perplexity of a
3-gram LM by as much as 18.63%. This is about three times the reduction achieved with a 5-gram
LM.

Finally, we compared the effect of LMs trained with Southern Dutch material on both a South-
ern Dutch and a Northern Dutch test set. We conclude that there is no outspoken difference in
performance for N-gram LMs, which suggests that they are mostly influenced by the register of
the training material. When it comes to word similarity on the other hand, material of the same
language (variety) seems to be desirable. These conclusions were further confirmed by looking at
two additional Southern Dutch newspapers.

Although in this paper, we did a thorough study of cache models, LSA and CSM and their
properties, a lot of aspects still remain unexplored. As we mentioned, document boundaries were
not marked in our training data, but instead a document was assumed to consist of 30 sentences. It
would be interesting to see what the effect is of actual document boundaries or various, analogous
assumptions. Moreover, we only employed decay on cache models, but this could certainly also be
tested on LSA and CSM. We also want to investigate whether an increasing amount of data yields
a proportional reduction in perplexity. Finally, and perhaps most importantly, we want to focus on
compositionality, in an attempt to do smart addition of word vectors, which we believe is the next
step in models using word embedding vectors. In future work, many if not all of these aspects will
be explored further.
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