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Abstract

In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus con-
sisting of the full Tweet production (as far as present in the TwiNL data set) of 600 users (known
to be human individuals) over 2011 and 2012. We experimented with several authorship profiling
techniques and various recognition features, using Tweet text only, in order to determine how
well they could distinguish between male and female authors of Tweets. We achieved the best
results, 95.5% correct assignment in a 5-fold cross-validation on our corpus, with Support Vector
Regression on all token unigrams. Two other machine learning systems, Linguistic Profiling and
TiMBL, come close to this result, at least when the input is first preprocessed with PCA.

1. Introduction

In the Netherlands, we have a rather unique resource in the form of the TwiNL data set: a daily
updated collection that probably contains at least 30% of the Dutch public tweet production since
2011 (Tjong Kim Sang and van den Bosch 2013). However, as any collection that is harvested
automatically, its usability is reduced by a lack of reliable metadata. In this case, the Twitter
profiles of the authors are available, but these consist of freeform text rather than fixed information
fields. And, obviously, it is unknown to which degree the information that is present is true. The
resource would become even more useful if we could deduce complete and correct metadata from the
various available information sources, such as the provided metadata, user relations, profile photos,
and the text of the tweets. In this paper, we start modestly, by attempting to derive just the
gender of the authors! automatically, purely on the basis of the content of their tweets, using author
profiling techniques.

For our experiment, we selected 600 authors for whom we were able to determine with a high
degree of certainty a) that they were human individuals and b) what gender they were. We then ex-
perimented with several author profiling techniques, namely Support Vector Regression (as provided
by LIBSVM; (Chang and Lin 2011)), Linguistic Profiling (LP; (van Halteren 2004)), and TiMBL
(Daelemans et al. 2004), with and without preprocessing the input vectors with Principal Com-
ponent Analysis (PCA; (Pearson 1901); (Hotelling 1933)). We also varied the recognition features
provided to the techniques, using both character and token n-grams. For all techniques and features,
we ran the same 5-fold cross-validation experiments in order to determine how well they could be
used to distinguish between male and female authors of tweets.

In the following sections, we first present some previous work on gender recognition (Section
2). Then we describe our experimental data and the evaluation method (Section 3), after which we
proceed to describe the various author profiling strategies that we investigated (Section 4). Then
follow the results (Section 5), and Section 6 concludes the paper.

1. For whom we already know that they are an individual person rather than, say, a husband and wife couple or a
board of editors for an official Twitterfeed.
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2. Gender Recognition

Gender recognition is a subtask in the general field of authorship recognition and profiling, which has
reached maturity in the last decades (for an overview, see e.g. (Juola 2008) and (Koppel et al. 2009)).
Currently the field is getting an impulse for further development now that vast data sets of user
generated data is becoming available. Narayanan et al. (2012) show that authorship recognition is
also possible (to some degree) if the number of candidate authors is as high as 100,000 (as compared
to the usually less than ten in traditional studies). Even so, there are circumstances where outright
recognition is not an option, but where one must be content with profiling, i.e. the identification of
author traits like gender, age and geographical background. In this paper we restrict ourselves to
gender recognition, and it is also this aspect we will discuss further in this section.

A group which is very active in studying gender recognition (among other traits) on the basis
of text is that around Moshe Koppel. In (Koppel et al. 2002) they report gender recognition on
formal written texts taken from the British National Corpus (and also give a good overview of
previous work), reaching about 80% correct attributions using function words and parts of speech.
Later, in 2004, the group collected a Blog Authorship Corpus (BAC; (Schler et al. 2006)), containing
about 700,000 posts to blogger.com (in total about 140 million words) by almost 20,000 bloggers.
For each blogger, metadata is present, including the blogger’s self-provided gender, age, industry
and astrological sign. This corpus has been used extensively since. The creators themselves used
it for various classification tasks, including gender recognition (Koppel et al. 2009). They report
an overall accuracy of 76.1%. Slightly more information seems to be coming from content (75.1%
accuracy) than from style (72.0% accuracy). However, even style appears to mirror content. We see
the women focusing on personal matters, leading to important content words like love and boyfriend,
and important style words like I and other personal pronouns. The men, on the other hand, seem
to be more interested in computers, leading to important content words like software and game, and
correspondingly more determiners and prepositions. One gets the impression that gender recognition
is more sociological than linguistic, showing what women and men were blogging about back in 2004.
A later study (Goswami et al. 2009) managed to increase the gender recognition quality to 89.2%,
using sentence length, 35 non-dictionary words, and 52 slang words. The authors do not report the
set of slang words, but the non-dictionary words appear to be more related to style than to content,
showing that purely linguistic behaviour can contribute information for gender recognition as well.

Gender recognition has also already been applied to Tweets. Rao et al. (2010) examined various
traits of authors from India tweeting in English, combining character N-grams and sociolinguistic
features like manner of laughing, honorifics, and smiley use. With lexical N-grams, they reached
an accuracy of 67.7%, which the combination with the sociolinguistic features increased to 72.33%.
Burger et al. (2011) attempted to recognize gender in tweets from a whole set of languages, using
word and character N-grams as features for machine learning with Support Vector Machines (SVM),
Naive Bayes and Balanced Winnow2. Their highest score when using just text features was 75.5%,
testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of
about 418,000 tweets).? Fink et al. (2012) used SVMlight to classify gender on Nigerian twitter
accounts, with tweets in English, with a minimum of 50 tweets. Their features were hash tags,
token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count
software (LIWC; (Pennebaker et al. 2007)). Although LIWC appears a very interesting addition, it
hardly adds anything to the classification. With only token unigrams, the recognition accuracy was
80.5%, while using all features together increased this only slightly to 80.6%. Bamman et al. (2014)
examined about 9 million tweets by 14,000 Twitter users tweeting in American English. They used
lexical features, and present a very good breakdown of various word types. When using all user
tweets, they reached an accuracy of 88.0%. An interesting observation is that there is a clear class
of misclassified users who have a majority of opposite gender users in their social network.

2. When adding more information sources, such as profile fields, they reach an accuracy of 92.0%.
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For Tweets in Dutch, we first look at the official user interface for the TwiNL data set, http://www.twigs.nl.
Among other things, it shows gender and age statistics for the users producing the tweets found
for user specified searches. These statistics are derived from the users’ profile information by way
of some heuristics. For gender, the system checks the profile for about 150 common male and 150
common female first names, as well as for gender related words, such as father, mother, wife and
husband. If no cue is found in a user’s profile, no gender is assigned. The general quality of the
assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we
considered for our own gender assignment corpus (see below), we find that about 44% of the users
are assigned a gender, which is correct in about 87% of the cases. Another system that predicts
the gender for Dutch Twitter users is TweetGenie (http://www.tweetgenie.nl), that one can provide
with a Twitter user name, after which the gender and age are estimated, based on the user’s last
200 tweets. The age component of the system is described in (Nguyen et al. 2013). The authors
apply logistic and linear regression on counts of token unigrams occurring at least 10 times in their
corpus. The paper does not describe the gender component, but the first author has informed us that
the accuracy of the gender recognition on the basis of 200 tweets is about 87% (Nguyen, personal
communication).?

In later experiments, Nguyen et al. (2014) did a crowdsourcing experiment, in which they asked
human participants to guess the gender and age on the basis of 20 to 40 tweets. When using a
majority vote to represent the crowd’s opinion, the crowd’s perception of the gender on the basis
of the tweets coincided with the actual gender in about 84% of the cases. The conclusion is not
so much, however, that humans are also not perfect at guessing age on the basis of language use,
but rather that there is a distinction between the biological and the social identity of authors, and
language use is more likely to represent the social one (cf. also (Bamman et al. 2014)). Although
we agree with Nguyen et al. on this, we will still take the biological gender as the gold standard in
this paper, as our eventual goal is creating metadata for the TwiNL collection.

3. Experimental Data and Evaluation

In this section, we first describe the corpus that we used in our experiments (Section 3.1). Then we
outline how we evaluated the various strategies (Section 3.2).

3.1 Corpus Used in the Experiments

We selected our experimental material from the TwiNL data set (Tjong Kim Sang and van den
Bosch 2013), which was collected by searching for tweets with any of a number of probably Dutch
words, after which a character n-gram language filter was applied. The collection is estimated to
contain 30-40% of all public Dutch tweets. From this material, we considered all tweets with a
date stamp in 2011 and 2012. In all, there were about 23 million users present. Of these, we only
considered the ones who produced 2 to 10 tweets on average per day over 2011 and 2012. The
minimum ensured a sufficient amount of text (1500-7300 tweets) for classification; the maximum
served to avoid very high volume users, who might be professional (multi-user/edited) feeds or even
twitterbots. This restriction brought the number of users down to about 270,000.

We then progressed to the selection of individual users. We aimed for 600 users. We selected
500 of these so that they get a gender assignment in TwiQS, for comparison, but we also wanted to
include unmarked users in case these would be different in nature. All users, obviously, should be
individuals, and for each the gender should be clear. From the about 120,000 users who are assigned
a gender by TwiQS, we took a random selection in such a manner that the volume distribution (i.e.
from 2 to 10 tweets per day average) is equally spread throughout the range and approximately
equal for men and women. We checked gender manually for all selected users, mostly on the basis

3. As in our own experiment, this measurement is based on Twitter accounts where the user is known to be a human
individual.
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of the profile texts and profile photo’s, and only included those for which we were convinced of the
gender.? Later even more detailed rechecks, after a few extremely unlikely classification results,
served to clean up the (hopefully) last gender assignment errors.®> The final corpus is not completely
balanced for gender, but consists of the production of 320 women and 280 men. However, as research
shows a higher number of female users in all as well (Heil and Piskorski 2009), we do not view this
as a problem.

From each user’s tweets, we removed all retweets, as these did not contain original text by the
author. Then, as several of our features were based on tokens, we tokenized all text samples, using
our own specialized tokenizer for tweets. Apart from normal tokens like words, numbers and dates,
it is also able to recognize a wide variety of emoticons. The tokenizer is able to identify hashtags
and Twitter user names to the extent that these conform to the conventions used in Twitter, i.e. the
hash (#) resp. at (@) sign are followed by a series of letters, digits and underscores. URLs and email
addresses are not completely covered. The tokenizer counts on clear markers for these, e.g. http,
www or one of a number of domain names for URLs. Assuming that any sequence including periods
is likely to be a URL proves unwise, given that spacing between normal words is often irregular. And
actually checking the existence of a proposed URL was computationally infeasible for the amount
of text we intended to process. Finally, as the use of capitalization and diacritics is quite haphazard
in the tweets, the tokenizer strips all words of diacritics and transforms them to lower case.

3.2 Evaluation

We divided our corpus in five parts, each containing (approximately) the same number of male and
female authors.® We used this division in all experiments, each time using four parts as training
material and one as test material. For those techniques where hyperparameters need to be selected,
we used a leave-one-out strategy on the test material. For each test author, we determined the
optimal hyperparameter settings with regard to the classification of all other authors in the same
part of the corpus, in effect using these as development material.

In this way, we derived a classification score for each author without the system having any direct
or indirect access to the actual gender of the author. We then measured for which percentage of the
authors in the corpus this score was in agreement with the actual gender. These percentages are
presented below in Section 5.

4. Profiling Strategies

In this section, we describe the strategies that we investigated for the gender recognition task. As
we approached the task from a machine learning viewpoint, we needed to select text features to be
provided as input to the machine learning systems, as well as machine learning systems which are
to use this input for classification. We first describe the features we used (Section 4.1). Then we
explain how we used the three selected machine learning systems to classify the authors (Section
4.2).

4.1 Machine Learning Features

We restricted ourselves to lexical features for our experiments. The use of syntax or even higher level
features is (for now) impossible as the language use on Twitter deviates too much from standard
Dutch, and we have no tools to provide reliable analyses. However, even with purely lexical features,

4. On the examined users, the gender assignment of TwiQS proved about 87% correct.

5. Several errors could be traced back to the fact that the account had moved on to another user since 2012.

6. We could have used different dividing strategies, but chose balanced folds in order to give a equal chance to all
machine learning techniques, also those that have trouble with unbalanced data. If, in any application, unbalanced
collections are expected, the effects of biases, and corrections for them, will have to be investigated.
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there are still various options from which to choose. Most of them rely on the tokenization described
above. We will illustrate the options we explored with the tweet

@QANONYMISED Hahaha...ik geloof dat meneer Bee heeft ingezet op een plan védr het
slapen ;-))ng

<@> hahaha ... I believe that mister B has opted for a plan before sleeping <smiley>
ng

which after preprocessing becomes

<@> hahaha ... ik geloof dat meneer bee heeft ingezet op een plan voor het slapen
<smiley> ng

The first option for machine learning features is a traditional one.

Top 100 Function Words The most frequent function words (see (Kestemont 2014) for an overview).
We used the 100 most frequent, as measured on our tweet collection, of which the example
tweet contains the words ik, dat, heeft, op, een, voor, and het.

Then, we used a set of feature types based on token n-grams, with which we already had previous
experience (Van Bael and van Halteren 2007). For all feature types, we used only those features
which were observed with at least 5 authors in our whole collection (for skip bigrams 10 authors).

Unigrams Single tokens, similar to the top function words, but then using all tokens instead of a
subset. About 47K features. In the example tweet, we find e.g. ik, ingezet, and <smiley>.

Bigrams Two adjacent tokens. About 265K features. In the example tweet, e.g. heeft ingezet,
slapen <smiley>, and __ <@>, where the double underscore represents the start of the tweet.

Trigrams Three adjacent tokens. About 355K features. In the example tweet, e.g. op een plan
and __ <@> hahaha.

Skip bigrams Two tokens in the tweet, but not adjacent, without any restrictions on the gap size.
About 580K features. In the example tweet, e.g. dat heeft and hahaha <smiley>.

Finally, we included feature types based on character n-grams (following (Kjell et al. 1994)). We used
the n-grams with n from 1 to 5, again only when the n-gram was observed with at least 5 authors.
However, we used two types of character n-grams. The first set is derived from the tokenizer output,
and can be viewed as a kind of normalized character n-grams.

Normalized 1-gram About 350 features. In the example tweet, e.g. 7 and Q.
Normalized 2-gram About 4K features. In the example tweet, e.g. ik and twice ng.

Normalized 3-gram About 36K features. In the example tweet, e.g. gez and n_v, where the
underscore represents a space.

Normalized 4-gram About 160K features. In the example tweet, e.g. slap and op_e.

Normalized 5-gram About 420K features. In the example tweet, e.g. ingez and __<@>_, now
with a double underscore for the beginning of the tweet and a single underscore for a space.

The second set of character n-grams is derived from the original tweets. This type of character
n-gram has the clear advantage of not needing any preprocessing in the form of tokenization.

Original 1-gram About 420 features. In the example tweet, e.g. e and ;.
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Original 2-gram About 8K features. In the example tweet, e.g. Be and __@.
Original 3-gram About 77K features. In the example tweet, e.g. ing and ))n.
Original 4-gram About 260K features. In the example tweet, e.g. plan and ;-)).

Original 5-gram About 580K features. In the example tweet, e.g. r_Bee and a...i.

4.2 Machine Learning Techniques

Having determined the features we would be working with, we next needed to select a machine
learning system. Again, we decided to explore more than one option, but here we preferred more
focus and restricted ourselves to three systems. Our primary choice for classification was the use
of Support Vector Machines, viz. LIBSVM (Chang and Lin, 2001). We chose Support Vector
Regression (v-SVR to be exact) with an RBF kernel, as it had shown the best results in several
research projects (e.g. (van Halteren 2008)). With these main choices, we performed a grid search
for well-performing hyperparameters, with the following investigated values: the cost factor C is set
to respectively 1/32, 1, 32, 1024, and 32768, v to 1/4, 1/2, 1, 2 and 4 times LIBSVM’s default of
one divided by the number of features, and v to 0.1, 0.3, 0.5 and 0.7.

The second classification system was Linguistic Profiling (LP; (van Halteren 2004)), which was
specifically designed for authorship recognition and profiling. Roughly speaking, it classifies on
the basis of noticeable over- and underuse of specific features. Before being used in comparisons,
all feature counts were normalized to counts per 1000 words, and then transformed to Z-scores
with regard to the average and standard deviation within each feature. LP has four hyperparameter
settings, three of which weight the relative importance of each feature/dimension in the feature vector
when comparing a text’s feature vector to the profile vector (in this case the average of the feature
vectors for all the training texts for a given gender), and one determining the threshold for feature Z-
scores to be taken into account. Here the grid search investigated: the hyperparameter emphasizing
the difference between text feature and profile feature to polynomial exponents set to 0.1, 0.4, 0.7,
..., 2.7 and 3; the hyperparameters for emphasizing text feature size to 0 or 1; the hyperparameter
for emphasizing profile feature size to -1, 0, 1, and 2; and the threshold hyperparameter also to 0 or
1.

Finally, we added TiMBL (Daelemans et al. 2004), a k-nearest neighbour classification system,
which is used extensively in-house for various machine learning tasks, but which we had so far not
used for authorship tasks. As the input features are numerical, we used IB1 with k equal to 5 so
that we can derive a confidence value. The only hyperparameters we varied in the grid search are
the metric (Numerical and Cosine distance) and the weighting (no weighting, information gain, gain
ratio, chi-square, shared variance, and standard deviation).

However, the high dimensionality of our vectors presented us with a problem. For such high
numbers of features, it is known that k-NN learning is unlikely to yield useful results (Beyer et al.
1999). This meant that, if we still wanted to use k-NN, we would have to reduce the dimensionality
of our feature vectors. We chose to use Principal Component Analysis (PCA; (Pearson 1901),
(Hotelling 1933)).” And, now we had the principal component vectors, we decided also to provide
them to SVR and LP. For each system, we provided the first N principal components for various
N. In effect, this N is a further hyperparameter, which we varied from 1 to the total number of
components (usually 600, as there are 600 authors), using a stepsize of 1 from 1 to 10, and then
slowly increasing the stepsize to a maximum of 20 when over 300.

Rather than using fixed hyperparameters, we let the control shell choose them automatically
in a grid search procedure, based on development data. When running the underlying systems

7. To be exact, we used the function prcomp in R (R Development Core Team 2008), with the instruction scale =
TRUE to force normalization of the vectors before the principal components were determined. As scaling is not
possible when there are columns with constant values, such columns were removed first.
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themselves, we used various hyperparameter settings, as listed above. For each setting and author,
the systems report both a selected class and a floating point score, which can be used as a confidence
score.? For each individual author, the control shell examined the scores for all other authors in the
same fold.? It then calculated a class separation value, namely the difference between the mean scores
for each of the two classes (male and female), divided by the sum of the two standard deviations.'®
The optimal hyperparameter settings are assumed to be those where the two classes are separated
most, i.e. where the class separation value is highest. In order to improve the robustness of the
hyperparameter selection, the best three settings were chosen and used for classifying the current
author in question.

A final detail that we exploited is that SVR and LP are asymmetric in the modeling of the
classes. For LP, this is by design. A model, called “profile”, is constructed for each individual class,
and the system determines for each author to which degree they are similar to the class profile. For
SVR, one would expect symmetry, as both classes are modeled simultaneously, and differ merely in
the sign of the numeric class identifier. However, we do observe different behaviour when reversing
the signs. For this reason, we did all classification with SVR and LP twice, once building a male
model and once a female model. For both models the control shell calculated a final score, starting
with the three outputs for the best hyperparameter settings. It normalized these by expressing
them as the number of non-model class standard deviations over the threshold, which was set at
the class separation value. The control shell then weighted each score by multiplying it by the class
separation value on the development data for the settings in question, and derived the final score by
averaging. It then chose the class for which the final score is highest. In this way, we also get two
confidence values, viz. the model score for the chosen class (how male/female the author writes)
and the difference between the two scores (how much more female/male the author writes than
male/female).

5. Results

In this section, we will present the overall results of the gender recognition. We start with the
accuracy of the various features and systems (Section 5.1). Then we will focus on the effect of
preprocessing the input vectors with PCA (Section 5.2). After this, we examine the classification of
individual authors (Section 5.3 and the distinguishing power of features (Section 5.4).

5.1 Overall Quality

Table 1 shows the accuracy of the recognition, using the desccribed features and systems. For the
systems, both SVR and LP are used with the original case vectors as well as with PCA preprocess-
ing, where TiMBL, for reasons mentioned above, is used only with preprocessed vectors. For the
measurements with PCA, the number of principal components provided to the classification system
is learned from the development data. Below, in Section 5.2, we will examine what the systems are
capable of at fixed numbers of principal components.

Starting with the systems, we see that SVR, (using original vectors) consistently outperforms the
other two. For only one feature type, character trigrams, LP with PCA manages to reach a higher
accuracy than SVR, but the difference is not statistically significant. LP and TiMBL are closely
matched, although LP appears to be slightly better when combined with PCA, but the next section
will shed new light on this comparison. From the measurements here, we can conclude that LP
profits from PCA preprocessing, but SVR is better off with the original vectors.

8. For SVR and LP, these are rather varied, but TiMBL’s confidence value consists of the proportion of selected
class cases among the nearest neighbours, which with k at 5 is practically always 0.6, 0.8, or 1.0.

9. This gives the best chances that the selected optimal hyperparameters generalize to the author in question.

10. The class separation value is a variant of Cohen’s d (Cohen 1988). Where Cohen assumes the two distributions
have the same standard deviation, we use the sum of the two, practically always different, standard deviations.
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Table 1: Accuracy Percentages for various Feature Types and Techniques. For each feature type,
the best percentage is bolded, and all percentages are italicized that are not statistically
significantly different at the 5% level.

Feature type Techniques
Support Vector Regression | Linguistic Profiling TiMBL

original | with PCA original | with PCA | with PCA
Top 100 Function Words 84.8 83.7 76.7 84.7 75.8
Token Unigram 95.5 94.3 91.8 93.0 91.7
Token Bigram 94.5 93.7 89.8 91.0 91.8
Token Trigram 92.5 89.7 89.0 92.0 87.2
Token Skip Bigram 93.5 92.7 88.3 92.7 92.3
Char 1-gram-n 81.8 79.5 77.2 79.7 76.2
Char 2-gram-n 88.7 89.7 84.2 86.2 78.8
Char 3-gram-n 94.0 90.5 89.2 89.3 86.5
Char 4-gram-n 94.2 92.2 89.0 91.0 89.2
Char 5-gram-n 94.3 93.0 90.5 93.5 91.2
Char 1-gram-o 81.7 82.2 76.8 77.8 75.2
Char 2-gram-o 86.0 85.0 83.2 85.3 81.2
Char 3-gram-o 86.6 86.0 86.7 88.0 85.5
Char 4-gram-o 92.0 90.5 86.7 89.0 87.3
Char 5-gram-o 92.8 92.83 89.7 92.2 88.7

As for features types, the token unigrams are clearly the best choice. In fact, for all the tokens
n-grams, it would seem that the further one goes away from the unigrams, the worse the accuracy
gets. An explanation for this might be that recognition is mostly on the basis of the content of
the tweet, and unigrams represent the content most clearly. Possibly, the other n-grams are just
mirroring this quality of the unigrams, with the effectiveness of the mirror depending on how well
unigrams are represented in the n-grams. Below (Section 5.4), we will have a closer look at this
hypothesis.

For the character n-grams, our first observation is that the normalized versions are always better
than the original versions. This means that the content of the n-grams is more important than
their form. This is in accordance with the hypothesis just suggested for the token n-grams, as
normalization too brings the character n-grams closer to token unigrams. The best performing
character n-grams (normalized 5-grams), will be most closely linked to the token unigrams, with
some token bigrams thrown in, as well as a smidgen of the use of morphological processes. However,
we cannot conclude that what is wiped away by the normalization, use of diacritics, capitals and
spacing, holds no information for the gender recognition. To test that, we would have to experiment
with a new feature types, modeling exactly the difference between the normalized and the original
form.

5.2 Effects of PCA

In the measurements above, the number of principal components provided to the classification
systems was learned on the basis of the development sets. This number was treated as just another
hyperparameter to be selected. As a result, the systems’ accuracy was partly dependent on the
quality of the hyperparameter selection mechanism. In this section, we want to investigate how
strong this dependency may have been.

178



Attribution Accuracy

05 0.6 07 08 09 1.0

Log2(Number of Principal Components)

Figure 1: Recognition accuracy as a function of the number of principal components provided to the
systems, using token unigrams. The dotted line represents the accuracy of SVR without
PCA preprocessing.

Figures 1, 2, and 3 show accuracy measurements for the token unigrams, token bigrams, and
normalized character 5-grams, for all three systems at various numbers of principal components.
The dotted line is at the accuracy of SVR without PCA. For the unigrams, SVR reaches its peak
(94.7%) around 30-40 principal components, with a second peak around 80-90. TiMBL closely
follows SVR, but only reaches its best score (94.2%) at the latter peak (80-90). Interestingly, it is
SVR that degrades at higher numbers of principal components, while TiMBL, said to need fewer
dimensions, manages to hold on to the recognition quality. LP peaks much earlier (93.8%) at only
8-10 principal components. However, it does not manage to achieve good results with the 80-100
principal components that were best for the other two systems. Furthermore, LP appears to suffer
some kind of mathematical breakdown for higher numbers of components. If we look at these
measurements, it would seem we should prefer TIMBL over LP, which is in contradiction to what we
see in Table 1. Although LP performs worse than it could on fixed numbers of principal components,
its more detailed confidence score allows a better hyperparameter selection, on average selecting
around 9 principal components, where TiMBL chooses a wide range of numbers, and generally far
lower than is optimal. We expect that the performance with TiMBL can be improved greatly with
the development of a better hyperparameter selection mechanism.

For the bigrams (Figure 2), we see much the same picture, although there are differences in the
details. SVR now already reaches its peak (94.3%) at 10 principal components, and stays at almost
the same quality until around 200. TiMBL peaks a bit later at 200 with 94.7%, even slightly higher
than SVR without PCA. And LP just mirrors its behaviour with unigrams. For the normalized
character 5-grams, SVR is clearly better than TiMBL, with peaks (94.2%) from 40 to 100. LP keeps
its peak at 10, but now even lower than for the token n-grams (92.8%).

All in all, we can conclude that SVR without PCA is still the best choice. However, all systems
are in principle able to reach the same quality (i.e. not significantly lower) with the optimal number
of principal components. Even with an automatically selected number, LP already profits clearly
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Figure 2: Recognition accuracy as a function of the number of principal components provided to the
systems, using token bigrams. The dotted line represents the accuracy of SVR without
PCA preprocessing.

from PCA, but (for this task) lags behind. And TiMBL is currently underperforming, but might be
a challenger to SVR when provided with a better hyperparameter selection mechanism.

5.3 Analysis of Author Classifications

In this section, we will examine some aspects of author classifications. We will focus on the token
n-grams and the normalized character 5-grams. As for systems, we will involve all five systems in
the discussion. However, our starting point will always be SVR with token unigrams, this being the
best performing combination. We will only look at the final scores for each combination, and forgo
the extra detail of any underlying separate male and female model scores (which we have for SVR
and LP; see above). As can be seen in Figure 4, the two scores for SVR match almost completely
anyway (Pearson Correlation -0.993).11

The major exception to the symmetry is author 543, lying clearly in the male area, but quite a
bit above the dotted line (at around -2,4 in Figure 4). When we look at his tweets, we see a kind
of financial blog, which is an exception in the population we have in our corpus. The exception also
leads to more varied classification by the different systems, yielding a wide range of scores. SVR
tends to place him clearly in the male area with all the feature types, with unigrams at the extreme
with a score of -3.497.'2 SVR with PCA on the other hand, is less convinced, and even classifies
him as female for unigrams (1.136) and skipgrams (3.946). LP and TiMBL also show scores all over
the range.

Figure 4 shows that the male population contains some more extreme exponents than the female
population. The most obvious male is author 430, with a resounding -6.050. Looking at his texts, we
indeed see a prototypical (young) male Twitter user: the addressed topics mainly consist of soccer,
gaming, school, and music (all of which we will see again below, when examining the most gender

11. This is rather different for LP, but the focus is on SVR here.
12. From this point on in the discussion, we will present female confidence as positive numbers and male as negative.
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Figure 3: Recognition accuracy as a function of the number of principal components provided to
the systems, using normalized character 5-grams. The dotted line represents the accuracy
of SVR without PCA preprocessing.

specific unigrams). All systems have no trouble recognizing him as a male, with the lowest scores
(around 1) for the top 100 function words. If we look at the rest of the top males (Table 2), we may
see more varied topics, but the wide recognizability stays. Unigrams are mostly closely mirrored by
the character 5-grams, as could already be suspected from the content of these two feature types.
For the other feature types, we see some variation, but most scores are found near the top of the
lists.

Table 2: Top ranking males in SVR on token unigrams, with ranks and scores for SVR with various
feature types.

Feature type 430 344 564 335 454
Unigram 1: -6.050 2: -5.243 | 3: -4.886 | 4:-4.356 | 5:-4.218
Bigram 1: -5.776 | 20: -2.875 | 12: -30.72 | 8: -3.225 | 6: -3.375
Trigram 1: -3.916 | 64: -1.523 | 49: -1.663 | 15: -2.338 | 17: -2.277
Skipgram 1: -3.186 8:-2.808 | 3:-3.123 | 21: -2.191 | 15: -2.385
Char 5-gram 1: -5.228 3:-4.398 | 4: -4.239 | 6:-3.754 | 5:-4.001
Top 100 Function || 4: -1.946 | 144: -0.602 | 42: -1.114 | 5: -1.903 | 31: -1.211

On the female side, everything is less extreme. The best recognizable female, author 264, is
not as focused as her male counterpart. There is much more variation in the topics, but most of
it is clearly girl talk (of the type described in Section 5.4), again putting the best recognition at
a prototypical young Twitter user. In scores, too, we see far more variation. Even the character
5-grams have ranks up to 40 for this top-5.

Another interesting group of authors is formed by the misclassified ones. Taking again SVR on
unigrams as our starting point, this group contains 11 males and 16 females. We show the 5 most
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Table 3: Top ranking females in SVR on token unigrams, with ranks and scores for SVR with various
feature types.

Feature type 264 13 75 43 298
Unigram 1: 3.372 | 2: 3.196 3: 3.154 4: 3.102 5: 2.964
Bigram 6: 3.011 | 11: 2.847 | 78: 2.001 | 33: 2.472 | 43: 2.377
Trigram 43: 2.147 | 49: 2.070 | 179: 1.136 | 69: 1.911 | 157: 1.252
Skipgram 10: 2.546 | 11: 2.525 | 13: 2.462 | 118: 1.405 | 76: 1.704
Char 5-gram 2: 3319 | 9: 2.847 | 14: 2.687 | 40: 2.194 | 29: 2.383
Top 100 Function 9: 1.658 | 43: 1.215 | 140: 0.679 | 88: 0.904 | 174: 0.553

Table 4: Most strongly misclassified males in SVR on token unigrams, with scores for SVR with
various feature types.

Feature type 352 355 386 566 389
Unigram 0.841 | 0.826 | 0.753 | 0.388 | 0.362
Bigram 0.361 | 0.047 | 1.214 | 0.348 | 1.472
Trigram 0.300 | -0.723 | 1.016 | 0.339 | 1.226
Skipgram 0.104 | 1.059 | 0.655 | 0.750 | 2.080
Char 5-gram 0.819 | 0.345 | 0.870 | 0.147 | 1.388
Top 100 Function || 1.088 | 0.163 | 0.477 | 0.711 | 1.508

strongly misclassified ones of each gender in Tables 4 and 5. With one exception (author 355 is
recognized as male when using trigrams), all feature types agree on the misclassification. This may
support our hypothesis that all feature types are doing more or less the same. But it might also mean
that the gender just influences all feature types to a similar degree. In addition, the recognition is
of course also influenced by our particular selection of authors, as we will see shortly. Apart from
the general agreement on the final decision, the feature types vary widely in the scores assigned, but
this also allows for both conclusions.

The male which is attributed the most female score is author 352. On (re)examination, we see a
clearly male first name and also profile photo. However, his Twitter network contains mostly female
friends. This apparently colours not only the discussion topics, which might be expected, but also
the general language use.'® Another interesting case is author 389. The unigrams do not judge him
to write in an extremely female way, but all other feature types do. When looking at his tweets, we

13. This has also been remarked by Bamman et al. (2014).

Table 5: Most strongly misclassified females in SVR on token unigrams, with scores for SVR with
various feature types.

Feature type 103 261 49 226 61
Unigram -3.285 | -0.933 | -0.700 | -0.691 | -0.659
Bigram -1.689 | -0.105 | -1.149 | -0.895 | -0.547
Trigram -0.830 | -0.033 | -0.747 | -0.494 | -0.415
Skipgram -1.243 | -0.226 | -0.508 | -1.027 | -0.435
Char 5-gram -2.914 | -0.203 | -0.672 | -1.009 | -0.814
Top 100 Function || -0.667 | -0.170 | -0.099 | -0.683 | -0.589
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get the impression that Dutch is not his native language, which is supported by his name. There
is an extreme number of misspellings (even for Twitter), which may possibly confuse the systems’
models.

The most extreme misclassification is reserved for a female, author 103. This turns out to be
Judith Sargentini, a member of the European Parliament, who tweets under the name @judithineu-
ropa.l* Although clearly female, she is judged as rather strongly male (-3.285) when using unigrams
and character 5-grams, and male by all system-feature combinations'® except three. LP with PCA
on skipgrams assigns her a female score of 1.321 and SVR with PCA (just as with author 543)
arrives at a clearly female attribution with character 5-grams (4.554) and unigrams (5.149). In this
case, it would seem that the systems are thrown off by the political texts. If we search for the
word parlement (“parliament”) in our corpus, which is used 40 times by Sargentini, we find two
more female authors (each using it once), as compared to 21 male authors (with up to 9 uses).
Apparently, in our sample, politics is a male thing.'® It is intriguing that both here and with the
male financial blogger, the erroneous misclassification with unigrams is reversed when using PCA on
the unigrams. We did a quick spot check with author 113, a girl who plays soccer and is therefore
also misclassified often; here, the PCA version agrees with and misclassified even stronger than the
original unigrams (-0.707 versus -0.248). In later research, when we will try to identify the various
user types on Twitter, we will certainly have another look at this phenomenon.

5.4 Features

In the analysis so far, we have wondered several times what kind of features are responsible for the
rather accurate classification. Are they mostly targeting the content of the tweets, i.e. related to the
activities of the authors in real life, or the style, i.e. the way they use the basic building blocks of the
Dutch language? In this section, we will attempt to get closer to the answer to this question. Again,
we take the token unigrams as a starting point. However, looking at SVR is not an option here.
Because of the way in which SVR does its classification, hyperplane separation in a transformed
version of the vector space, it is impossible to determine which features do the most work. Instead,
we will just look at the distribution of the various features over the female and male texts.

Figure 5 shows all token unigrams. The ones used more by women are plotted in green, those
used more by men in red. The position in the plot represents the relative number of men and
women who used the token at least once somewhere in their tweets. However, for classification, it
is more important how often the token is used by each gender. We represent this quality by the
class separation value that we described in Section 4.2, and show it in the form of font size, i.e. the
more distinguishing tokens are bigger. As the separation value and the percentages are generally
correlated, the bigger tokens are found further away from the diagonal, while the area close to the
diagonal contains mostly unimportant (and therefore unreadable) tokens.

On the female side, we see a representation of the world of the prototypical young female Twitter
user. It is a very emotional place, with omg (“Oh My God!”) in a central position, but also containing
giggling (hihi) and lots of emotionally loaded adjectives, such as lief and lieve (“sweet”), schattig
(“cute”), leuk and leuke (“nice”). And also some more negative emotions, such as haat (“hate”) and
pijn (“pain”). Next we see personal care, with nagels (“nails”), nagellak (“nail polish”), makeup
(“makeup”), mascara (“mascara”), and krullen (“curls”). Clearly, shopping is also important, as
is watching soaps on television (g¢st). The age is reconfirmed by the endearingly high presence of
mama and papa. As for style, the only real factor is echt (“really”). The word haar may be the
pronoun “her”; but just as well the noun “hair”, and in both cases it is actually more related to the

14. Identity disclosed with permission.

15. And by TweetGenie as well.

16. An alternative hypothesis was that Sargentini does not write her own tweets, but assigns this task to a male
press spokesperson. However, we received confirmation that she writes almost all her tweets herself (Sargentini,
personal communication).
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already observed activities. We do also see more expressions of self, with i (“I”) and first person
verbs such as wil (“want”) and heb (“have”), but these are much less distinguishing.

On the male side, we see a rather different world. Apart from bier (“beer”), we see an enormous
number of soccer-related words, with fifa at the most extreme, and then club names, scores, compe-
titions, playing, winning, losing, etc. On the right edge of the plot, though, we do also observe some
function words. The location adverbs daar (“there”) and waar (“where”) appear to be a more male
thing, as well as some prepositions like per (“per”), bij (“at”, “near”) and woor (“for”, “before”).
Finally, mentioning other users (<@>) is apparently more often done by men.

For both genders, the tokens are dominated by the young person’s world. It is no wonder that
classifying different types of authors, such as politicians and financial bloggers, is more problematic.
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Figure 6: Percentages of use of the 100 most frequent function words and punctuation by female
and male authors. The font size of the words indicates to which degree they differentiate
between the gender when also taking into account the relative frequencies of occurrence.

Although most distinguishing tokens appear to be related to content, we do observe some style-
related tokens. In Figure 6, we show a plot for the top 100 function words (or rather tokens),
which was the only feature type focusing on style in our experiments. We can now observe various
distinguishing tokens which were so far lost in the dense cloud of words. They correspond to what
earlier research (see Section 2) has observed. Females show more personal pronouns, such as the
already mentioned ik (“I”), but also me (“me”) and jou (“you”), as well as the reduced possessive
pronoun mn (mijn; “my”). Males write more objective structures, with the mentioned prepositions,
and also articles like de (“the”) and een (“a”). Here we find also find more third person constructions,
with s (“is”), hij (“he”) and zijn (“his”, or plural “are”).

Looking at the bigrams, which we will not plot here, we see a few more style-related constructions
appearing. On the female side, we see niet meer (“not anymore”), ik mis (“I miss”) and the
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intensifying adverb zo combined with various adjectives: zo moe (“so tired”), zo blij (“so happy”), zo
zielig (“so pathetic”), and zo leuk (“so nice”). On the male side, there are also mostly combinations
of already observed unigrams, but also the more pragmatic ending of tweets with the word man, in
man ! (“;man!”), nee man (“no, man”), niet man (“not, man”), and goed man (“good, man”).
All in all, there appear to be quite a few features related to style after all. Furthermore, the top
100 function words are doing quite well, with 84.8%, seeing how few features there are compared to
the full set of unigrams. On the other hand, we cannot escape the impression that even these style
features are more often related to what is being tweeted about, than to personal writing style.

6. Conclusion and Future Work

We have investigated how well the gender of authors on Twitter can be determined on the basis of
token or character n-grams. We find that recognition is possible with a high accuracy, up to 95.5%
on our data set (but see dicussion below). Furthermore, some of the errors are probably related
to the fact that the authors in question are different from the typical Twitter users dominating
our data set. The best feature type for recognition appears to be the token unigrams, with the
most distinguishing tokens linked to the typical activities of the dominant Twitter users. As for
classification systems, Support Vector Regression clearly performs best with all feature types.

During our investigation into gender recognition, we have also experimented with the use of Prin-
cipal Component Analysis as a preprocessing step to classification. It was already known that this
step was necessary for k-NN learning. We found that SVR is actually hampered rather than helped
by the preprocessing. Its accuracy degrades when using PCA, although often not significantly. For
Linguistic Profiling, PCA increases accuracy, in some cases enabling it to reach a score which is
no longer significantly worse than that of SVR. TiMBL, even with PCA, does not reach the same
accuracy level, and only accomplishes scores similar to SVR’s scores for token skip bigrams and
unnormalized character trigrams. However, TiMBL’s lower quality is mostly a matter of hyperpa-
rameter selection. The number of principal components provided to the learners was determined
automatically on the basis of development data. When we examined the systems’ accuracy for fixed
numbers of principal components, TIMBL was often at the same accuracy level as SVR, and it was
LP that was falling behind.

It has remained unclear to which degree gender can be recognized on the basis of style features.
Although the use of all unigrams for classification yields far better results than the use of the 100
most frequent function words, the latter are certainly not doing badly. Furthermore, our closer
examination in Section 5.4 may imply that it is not the quality, but the number of features that is
the reason for the difference in accuracy. We will revisit this question when we have larger n-gram
sets available which can be assumed to be largely domain-independent.'”

Finally, if we look back at our original goal, the automatic estimation of metadata for the TwiNL
data set, we must conclude that we have made a significant step forward, but still only a modest one.
Not only did we predict just one user trait, but we also considered just a very select class of users,
namely individual users with a significant tweet volume. We will still need to test the minimum
number of words on which the classifier can maintain its current high quality. Furthermore, we
will need to build classifiers to distinguish between individual user accounts, shared user accounts,
accounts controlled by boards of editors, and tweetbots. It may also be useful to distinguish between
different uses of Twitter, such as professional communication and social chitchat, and build separate
metadata estimators for these different uses. Even more importantly, we will need to look beyond
very specific lexical features. If we base metadata on a limited number of such features, we will
never be able to use the resulting data for studying language use or social behaviour. If we would
try, we would fall victim to circular reasoning, such as observing that only men ever play soccer,

17. We are currently laying the basis for the construction of such sets in other work (van Halteren and Oostdijk
Submitted).
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since this is the information we put in with our metadata determination. Therefore, if we ever want
to automatically add metadata, it will have to be with as many information sources as possible,
preferably only using that metadata on which various sources agree.
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