Computational Linguistics in the Netherlands Journal 5 (2015) 15-24 Submitted 06/2015; Published 11/2015

Automatic word sense disambiguation for Dutch
using dependency information

Hessel Haagsma HESSEL.HAAGSMAQRUG.NL

Rijksuniversiteit Groningen, Oude Kijk in ’t Jatstraat 26, 9712EK Groningen, The Netherlands

Abstract

An automatic word sense disambiguation system utilizing dependency information is implemented
using existing language resources for Dutch (Lassy, Alpino, Cornetto) and tested on a subset of
DutchSemCor. The disambiguation method used largely follows the method first proposed by Lin
(1997). It defines words by their local context, represented as dependency triples. The notion that
words occurring in the same local contexts are semantically close to the ambiguous word is used
to create a list of similar words. The correct sense is then found by selecting the sense that is
semantically closest to the words in this list.

Performance on a set of nouns, verbs and adjectives is tested, and overall performance is
comparable or slightly higher than that reported by Lin: almost 9% over baseline for fine-grained
sense distinctions and over 3% over baseline for coarse-grained sense distinctions. In absolute terms,
disambiguation accuracy was highest for nouns, slightly lower for verbs and lowest for adjectives.
The effect of using different local contexts and semantic databases was tested, which indicated
that a reliable sense-annotated corpus is still required and that quality and types of dependency
relations in the local context database matters more than quantity. Overall, performance is as
expected, showing that dependency contexts are a useful feature for word sense disambiguation
for Dutch.

1. Introduction

Lexical ambiguity is a universal of language and a problem for every NLP application that deals with
meaning. For example, an automatic Dutch-to-English translator translating the word wverbouwen
is posited with the choice of translating this as either cultivate or renovate. In order to solve
this problem, a distinction has to be made between words and senses. Ambiguous words, such as
verbouwen, are said to have multiple distinct senses or meanings.

Translating senses instead of words would prevent translation troubles like the one illustrated
above. However, before translation of senses can be done, one would have to know which sense
a certain word in a certain text has, and preferably determine this automatically. This is what
constitutes the task of word sense disambiguation, which we will be concerned with in this study.

The research field of word sense disambiguation is well-developed and many different methods
and approaches have been proposed. Here, we focus on one method, which utilizes dependency
knowledge. The two most important works on this topic are by Lin (1997) and by Chen et al.
(2009).

Lin provides a concise formulation of the motivation behind the use of dependency knowledge:
“Two different words are likely to have similar meanings if they occur in identical local contexts.”
In practice, this means that, to find the sense of a word in a certain context, the sense that is closest
to other words occurring in the same context is likely to be the right sense.

The key concepts here are similar meanings, which requires a measure of similarity between senses
and local contexts, which requires a definition and representation of the context of a word. For the
first, a semantic database can be utilized, while the local contexts can be represented by syntactic
dependency structures. In order to then find other words that occur in the same local context, a
large database of contexts and the words that occur in them is needed. Although acquiring this

(©2015 Hessel Haagsma.



database requires a large corpus, the main advantage of this approach is that it does not require the
corpus to have sense annotations.

Lin (1997) was the first to develop a dependency based method, and his algorithm follows these
steps: first, a database of local contexts is created by extracting so-called relation triples from a
corpus. These triples consist of two words, the relation between them and an indication of which
word is the head. For example boy: subject-chase-head, indicates a relation in a sentence where ‘boy’
is the subject of ‘chase’. Then, from this database, the words occurring in the same contexts as the
ambiguous word are retrieved. Finally, the sense of the original ambiguous word most similar to the
meanings of the set of similar words from the database is selected as the answer.

The algorithm presented by Chen et al. (2009) largely follows the same principles, with some
exceptions. Instead of using a pre-existing corpus, they collected text from the internet, using the
to-be-disambiguated-word as an anchor term for retrieval. Another difference lies in the similarity
measure: instead of using the hierarchical structure of the semantic database, they used the defi-
nitions of each possible sense of the ambiguous word and parsed these. This was then matched to
the dependency structure of the sentence in which the to-be-disambiguated word occurred. A third
difference is that Chen et al. used unlabelled relations, i.e. they did not use the relation type as an
information source.

The algorithm presented here closely follows the original algorithm by Lin, in an attempt to assess
the value of dependency-based word sense disambiguation for Dutch. As such, the main difference
will lie in the language and the language-specific resources used. In addition, different context
databases, a broader test set and different methods of scoring will be evaluated and discussed.

2. Resources

For the disambiguation algorithm to work, certain databases have to be created, and for that,
linguistic resources are needed. The first database, the local context database, requires a large
corpus, preferably one with syntactic dependency annotations. Fortunately, such a corpus exists for
Dutch, in the form of the Lassy corpus (van Noord et al. 2013). Lassy contains almost 700 million
words, which have been annotated automatically using the Alpino parser (van Noord 2006). Since
Lin achieved good results using only a 25-million-word corpus, using the Lassy corpus is suitable for
achieving equally good or better results.

The second resource required is a semantic database, which provides senses for words and re-
lations between senses. Both the senses and the relations between them are needed to calculate a
similarity measure for senses. A recent and comprehensive semantic database for Dutch exists, by
the name of Cornetto (Vossen et al. 2013a). Cornetto 2.0 contains 92 thousand lemmas (nouns,
verbs and adjectives), 118 thousand senses and 70 thousand synonym sets (synsets), most of which
are connected by hierarchical relations to at least one other synset.

In addition to the semantic database, a corpus with reliable sense annotations is required as a test
set. Preferably, the annotations should use the senses from the semantic database, so no additional
mapping has to be made from one type of sense annotation to another. For this purpose the
DutchSemCor (DSC, Vossen et al., 2011) corpus is used, which contains 1 million sense annotations,
of which 250 thousand have been made manually. One of its advantages is that the annotations in
the DSC use the same senses as Cornetto. Another plus of the DSC is that it partly draws on the
same material as Lassy, and that this material is aligned with the Lassy corpus itself. This allows
for easy and fast retrieval of dependency structures for the sentences containing ambiguous words.

In order to be able to make use of these resources, they have to be preprocessed into different
databases. The largest, and arguably most important, database is the context database, a collection
of relation triples and the count of their occurrences in Lassy. This database was constructed using
a simple script that processed the whole Lassy corpus. It retrieved the dependency structures of
each sentence in the corpus, and used a depth-first search, searching through each tree structure,
extracting relations. Only relations containing either a noun, a verb, an adjective or an adverb were

16



extracted, on the assumption that other relations, e.g. those between nouns and their determiners,
are uninformative. The resulting database contains 72 million relations of 8.6 million different types
(i.e. each relation triple occurred in the corpus almost 8.5 times on average).

In order to test the influence of different context databases on performance, a second knowledge
base was created using an alternative method. This database was created using Alpino, the same
parser that was used for the syntactic parsing of the corpus. The Alpino parser is more advanced
than the script, as it finds triples that are not directly present in the dependency tree. This results
in two additional types of triples: relations between two words joined by a conjunction, and relations
between each verb of a verb phrase and the subject and object. In the other database, only the
relation between the head verb (often an uninformative auxiliary verb) and the subject and object
was included. For example, for the sentence “Zij hebben koekjes en taart gegeten”, this results in
the addition of the triples koekjes-taart-conjunction, and zij-gegeten-subject.

The Alpino-produced database differs on one more aspect: in addition to the noun, verb, adjective
and adverb, relations containing prepositions were also included. However, as all these additional
relations make the database extremely large, only triples that occurred in the corpus at least 4
times were included. This resulted in a final database containing 1.1 billion relations, of 26.8 million
different types, an average of 41 occurrences for each triple.

A different type of database to be created is the semantic database, from which a measure of
semantic similarity between different synsets can be calculated. To do this, a hierarchy of synsets
is needed, in addition to a count of how commonly a synset is used. Unfortunately, the Cornetto
database does not contain a hypernym-hyperonym relationship for every synset. For nouns and
verbs, almost all sets are part of at least one such relationship, but for adjectives, only about 50%
is part of the hierarchy. As a result, synonym sets that are not part of any relation cannot be taken
into account in the disambiguation process.

Three different ways of calculating the frequency of occurrence for synsets were used. The first
method does not count the number of synset occurrences in a corpus, but uses the total number
of synonyms in the synset and its hyperonyms as an estimation of frequency. The second variant
does use a corpus, namely the manually annotated part of the DSC that overlaps with Lassy. The
frequency count for each synset was calculated by summing the occurrences in the corpus of each
sense in the synset and its descendants. The third variant is identical to the second, with the
exception that it uses both the manually and automatically annotated part of the Lassy-part of the
DSC. This has the advantage of having a lot more annotations, but the disadvantage of being less
accurate in its annotations.

In addition to the context and semantic databases, one other resource is needed, a test set.
Although the DSC can be used as a test set as is, it contains far too many annotations for testing
purposes. Therefore, a test set of 942 items was created by equally distributed sampling from the
manual annotations of the DSC. Consequentially, the majority of test items originates from the
largest sub-corpora (each sub-corpus represents one type of text, e.g. newspapers), just like most of
the relations in the context database are derived from the largest sub-corpora.

3. Algorithm

When all necessary resources have been created, the disambiguation process can start. The algorithm
to do this is largely the same as that by Lin (1997) and is summarized below.

First, the dependency structure of the sentence containing the ambiguous word is retrieved from
Lassy. From this dependency tree, all relation triples are extracted in the same way the context
database was created, using either Alpino or the script written by the author. Then, only those
relations containing the to-be-disambiguated word are selected.

The second step is to find other words that occur in the same context. For each relation in which
the ambiguous word occurs, all words occurring in the same relation in the context database are
retrieved from the context database. For each of these words, the log-likelihood-ratio- or G*2-score

17



is calculated, as described by Dunning (1993). This score is a measure of how much the frequency
of a word in a context deviates from its expected frequency. If the score is high, this indicates
that the word is typical of that context, and not just a highly-frequent word overall. Optionally, a
frequency-based cut-off is implemented for contexts with a large number of entries in the database
and a penalty is applied to their G2-score. The details and effect on performance of this are discussed
in the next section. After scores have been calculated for all words in all contexts, the scores for
each context are added up and the highest-ranking words are selected.

The third and final step is then to retrieve all synsets to which these highest-ranking words
belong from the semantic database. Additionally, all synsets to which the to-be-disambiguated word
might belong are retrieved too. Then, for each synset containing a high-ranking word, the semantic
similarity to each synset containing the ambiguous word is calculated using the log-likelihood-ratio
as defined by Lin (1997, p.67). Using the counts from the semantic database, this results in a score
for the similarity between each pair of synsets. For each synset containing the ambiguous word, the
similarity to each synset containing a similar word is summed. The synset that has the highest score
is selected as the answer and compared to the annotation in the DSC.

4. Evaluation and Results

The performance of the word sense disambiguation algorithm was tested on the test set of 942
instances using different resources and parameters. Testing was done on a regular desktop computer
and took between 60 and 120 minutes. The test set contained not only nouns, but also verbs and
adjectives. Of the 942 words, 552 were nouns, 328 were verbs and 62 were adjectives.

Besides regular accuracy scores, the similarity between the correct sense and an incorrect answer
was also calculated, yielding a good indication of how far off an incorrect answer is. It is also used
to produce a secondary accuracy score. In his paper, Lin argues that the senses in his semantic
database are too fine-grained, and presents a second score that is, in his opinion, closer to the score
that would be achieved if regular dictionary sense distinctions were used. Here, the same threshold
value of a similarity score of 0.27 will be used, i.e. all senses with a similarity score over 0.27 are
considered to be the same in the coarse-grained sense distinction condition.

Unless explicitly mentioned otherwise, the tests reported here used the Alpino context database,
the DSC (manual) frequency counts, no G*-score weighting, the 20 most similar words and no limit
on the number of entries per context in the database. The baseline score was calculated by taking
the first sense from the list of possible senses for the to-be-disambiguated word as the answer.

Context Database Accuracy (sim.=1) Accuracy (sim.> 0.27)

Baseline 28.24 61.58
Script (7M word corpus) 29.51 58.60
Script (70M word corpus) 32.27 60.83
Script (350M word corpus) 31.32 61.46
Script (700M word corpus) 31.32 59.66
Alpino (700M word corpus) 33.76 60.30

Table 1: Word sense disambiguation accuracy (%) using different context databases. The whole of
the DSC was used to derive frequency counts.

Table 1 shows the effect of using different context databases on performance. In addition to
the two databases discussed previously (labelled here as Alpino and Script (700M)), three other
databases are tested. These three databases are based on sets of sub-corpora from Lassy. The sets are
composed to contain approximately the number of words indicated between brackets. Immediately,

18



two things stand out: the database based on 7 million words performs clearly worse than the others
and the database derived using Alpino performs better than the others. We can also see that,
no matter the database, the algorithm performs above the baseline score for fine-grained sense
distinctions. This is slightly better than the original algorithm by Lin, who reported a score slightly
below baseline using the strictest accuracy criterion.

Oddly enough, considering the different ‘Script’-databases, the 70-million words set performs
better than the larger sets, which is incongruous with the general trend of ‘more data is better’.
Looking at the coarse-grained (similarity over 0.27) score, we see that the algorithm classifies almost
60% of words as either correct or ‘almost correct’. This score is close to, but slightly lower than the
baseline score.

Semantic Database Accuracy (sim.=1) Accuracy (sim.> 0.27)
Baseline 28.24 61.58
Synonym counts 30.68 63.38
DutchSemCor (manual) 36.41 63.34
DutchSemCor (all) 33.76 60.30

Table 2: Word sense disambiguation accuracy (%) using different semantic databases. DutchSemCor
(all) represents the case where the whole of DSC was used for frequency counts, Dutch-
SemCor (manual) where only the manual annotations of the DSC were used. Synonym
counts represents the case where synonym counts instead of occurrence counts in a corpus
were used.

In addition to the effect of the context database, the effect of the frequency count method on
performance was also tested. Table 2 shows the influence on performance of the three different
frequency count methods. Perhaps surprisingly, the smaller, but more accurate manual part of the
DSC proves to be a better source for frequency counts than the DSC as a whole. The difference is
sizeable, almost 3 percentage points, indicating that the frequency count is as crucial as the context
database and that accuracy is more important than size. As expected, the database using synonym
counts performs the worst. Clearly, the number of synonyms in a synset is not a good indicator of
the number of actual uses of those synonyms.

The coarse-grained accuracy for the synonym counts database is equally good as the best-
performing database, but this is likely a spurious result. Because the similarity measure is dependent
on the semantic database, the high coarse-grained accuracy is not caused by actual better disam-
biguation performance, but by an overall larger similarity between the synsets in that database.

Synset Score Weighting Accuracy (sim.=1) Accuracy (sim. > 0.27)

Baseline 28.24 61.58
No weighting 36.41 63.34
G?-score weighting 36.20 62.63

Table 3: Word sense disambiguation accuracy (%) with and without G2-score weighting.

Table 3, 4 and 5 show the influence on performance of three different changes in the algorithm.
The first, Table 3, shows the effect of weighting the synset scores by the G?-score of the highest-
ranking similar words. This means that the similarity between the synset of the highest-ranking
word and the synsets to which the ambiguous word belongs has a stronger influence than the second-
highest-ranking word, and so on. The intuition behind this is that the highest-ranking word is also

19



Number of similar words Accuracy (sim.=1) Accuracy (sim. > 0.27)

Baseline 28.24 61.58
10 35.56 62.21
20 36.41 63.34
40 37.15 63.91
80 36.84 64.23

Table 4: Word sense disambiguation accuracy (%) using different numbers of highest-ranking similar
words.

Entry limiting method Accuracy (sim.=1) Accuracy (sim. > 0.27)

Baseline 28.24 61.58
None 37.15 63.91
Frequency threshold 36.84 64.65
Context size penalty 36.84 64.33

Table 5: Word sense disambiguation accuracy (%) using two methods of limiting the number of
entries a certain context can have. In the ‘Frequency threshold’-case, all contexts with
more than 5000 entries are reduced to a smaller number by implementing a frequency
threshold: only the 5000 most frequent entries are included in calculations. In the ‘Context
size penalty’-case, no entries are discarded, but larger contexts are weighted to have less
influence than contexts with less entries. The number of highest-ranking similar words
used was 40.

20



the most similar and should thus carry the most weight. However, it seems that this is not the
case, as the effect on performance of the weighting is minimal, with both fine- and coarse-grained
accuracy being slightly lower than the scores for the algorithm without weighting.

The second table, Table 4 illustrates the effect of selecting more or less similar words. The value
used in earlier tests, 20, is the one used by Lin, but seems to be chosen somewhat arbitrarily. Given
that the context database used here is several times larger than the 25-million word corpus used by
Lin, a larger number of similar words might prove to be beneficial. The results show that, indeed,
using a larger set of similar words benefits performance: a set of 40 words has the highest fine-grained
accuracy and using a set of 80 words yields the highest coarse-grained accuracy. Overall, using a
set of 40 similar words seems to be better than using a set of 20 words, but the performance gain is
small and for practical purposes, this might not be worth the extra computational cost.

The final algorithm variations tested are two different methods for limiting the influence of
contexts with a large number of entries in the database, in order to test the assumption that larger
contexts are less informative. Additionally, limiting large contexts improves processing speed. Again,
the influence on performance is minor. The simple measure that takes only the most-frequent entries
from large contexts seems to perform the best, but still has a slightly lower fine-grained accuracy than
the original algorithm. As such, the implementation of entry limits is not beneficial to performance,
but should be considered for applications where speed is key.

5. Discussion

The current study presents a first attempt at word sense disambiguation for Dutch using dependency
knowledge. An algorithm similar to that described by Lin (1997) was successfully implemented and
showed good results. An accuracy of almost 9 percentage points over the first-sense baseline was
achieved. Looking at the accuracy on a more coarse-grained disambiguation task, approximated
using the semantic similarity measure, an accuracy of almost 65% was achieved, 3 percentage points
above the baseline (5). Testing was done on nouns, as well as adjectives and verbs, where Lin only
tested nouns. On nouns, the accuracy was 40.58%, on verbs, 36.42% and on adjectives, 23.40%.
Performance on verbs was close to that on nouns, but adjectives proved to be more difficult. This
can be directly explained by the fact that many adjectives are not part of the hierarchical structure
in the semantic database, yielding less accurate similarity measures for adjectives. It is also possible
that word sense disambiguation difficulty in general varies by part-of-speech, since Vossen et al.
(2013b) also found better performance for nouns, when compared to verbs and adjectives.

Comparing the results to that of Lin in an absolute manner, we see that the performance achieved
here is almost 20 percentage points lower, as is the baseline. The reason for this is that the test
set used here was drawn from the manually annotated part of the DSC, which was set up in such a
way that each sense of a synset occurs approximately equally often in the corpus. This is different
from other corpora and language in general, where different senses of a word tend to vary largely in
terms of their frequency. As such, one could say that the task of disambiguation using items from
the DSC is harder than it would be when a different corpus were used, and therefore, performance
should not be judged in absolute terms, but relative to the baseline.

The current research attempted to explore the effect of using different resources and parameter
values on the performance of the algorithm. It was shown that the largest context database per-
formed best, but also that the use of a smaller databases does not dramatically decrease performance.
This suggests that, although the use of larger corpora and databases might improve disambiguation
accuracy, it is likely not the area where the highest performance gain is to be expected. A similar
conclusion can be drawn from the test of different frequency counts for the semantic database. Here,
the frequency count based on a smaller, but more accurate sense-annotated corpus proved to benefit
performance the most. The difference in performance here was quite large, suggesting that a larger,
manually annotated corpus might improve performance, especially if a corpus and test set are used
which show a natural distribution of sense frequencies, which the DSC does not. An alternative

21



explanation is that the frequency distributions of different senses from the manually annotated part
of the corpus better matches that of the test set, than the counts based on the non-sense-balanced
automatically annotated part of the corpus. The counts in the semantic database partially reflect
this, which could help improve performance.

The other manipulations, which were small adaptations to the algorithm, showed only limited
influence on performance. The G2-score weighting and limits on large contexts did not show any
improvement and can be deemed irrelevant, although the latter might be useful for speeding up
the disambiguation process. The use of larger sets of similar words had a slight positive effect,
suggesting that, using a large context database, there might be more than 20 relevant similar words
in some cases. Using even larger context databases might make this effect larger. Of course, there
are inherent limitations on the amount of similar words a specific sense can have; languages only
have a certain number of words for a set of related concepts.

Looking at the results of the best-performing test run in more detail, the specific strengths and
weaknesses of this disambiguation algorithm become clear. Out of 942 ambiguous words, 350 were
assigned the exact correct sense. On average, each word had 4.6 senses, showing the difficulty of the
task and the scope of the Cornetto database.

For most words, an informed attempt was made to provide a sense answer, but for 42 words,
no local context was found in the sentence. For 6 more words, contexts could be found, but no
entries for these contexts could be found in the context database. In such cases, the disambiguator
cannot do anything, and simply guesses from the possible senses of the word. In some cases, there
was indeed no context, for example with the word zalig, found in the sentence ‘Zalig!"’. In other
cases, due to the wide coverage of the corpus, the sentence in which the ambiguous word occurred
was not a well-formed sentence and the parser could not derive any relations containing the to-be-
disambiguated word.This is an obvious area for improvement, e.g. by improving the parser coverage
or by incorporating context outside the scope of the sentence. However, the overall effect would be
minor, as only 4.5% of words were complete guesses.

More room for improvement can be found when looking at the performance on different parts-
of-speech. Results showed that disambiguation performance for adjectives was the poorest. A
straightforward solution for this would be to improve the hierarchical relation annotation in the
semantic database, which is likely the cause of the low performance on adjectives.

Although not as low as the performance on adjectives, performance on verbs was also lower than
that for nouns. A possible explanation for this is that verbs do not lend themselves as well to a
hierarchical structure as nouns do. Intuitively, verbs conform less to a ‘part-of’ or ‘kind-of’ structure
than nouns. To improve this, the most obvious solution would be to improve the way the semantic
database is utilized. Instead of exploiting only hypernym-hyperonym relations for the similarity
measure, other types of relations could be used too. Likely candidates for this are the near-synonym
and (near-)antonym relations, which are direct indicators of similarity. This would be beneficial for
all parts-of-speech, but especially for verbs and adjectives.

In conclusion, it has been shown that a dependency-based word sense disambiguation algorithm,
as first developed by Lin (1997), works at least as well for Dutch, using the resources readily available.
Although performance on sense disambiguation tasks is hard to compare, as it depends strongly
on the specifics of the test set, semantic database and correctness criteria used, performance is
good for what is more or less an unsupervised method. Both in fine-grained and coarse-grained
disambiguation, the algorithm performs well above a simple baseline measure. In absolute terms
though, using the coarse-grained distinctions, it still only provides the correct sense for two out of
three words. As such, the practical use of dependency knowledge for word sense disambiguation is
likely not as a stand-alone disambiguation system. Rather, it can be utilized as a useful feature in
a more advanced word sense disambiguation system that makes use of more than one information
source.

22



References

Chen, Ping, Wei Ding, Chris Bowes, and David Brown (2009), A fully unsupervised word sense
disambiguation method using dependency knowledge, Procceedings of HLT: The 2009 Annual
Conference of the NAACL, Association for Computational Linguistics, Stroudsburg, pp. 28-36.

Dunning, Ted (1993), Accurate methods for the statistics of surprise and coincidence, Computational
Linguistics 19 (1), pp. 61-74.

Lin, Dekang (1997), Using syntactic dependency as local context to resolve word sense ambiguity,
Proceedings of the 85th Annual Meeting of the ACL, Association for Computational Linguistics,
Stroudsburg, pp. 64-71.

van Noord, Gertjan (2006), At Last Parsing Is Now Operational, TALN06. Verbum Ex Machina.
Actes de la 13e conference sur le traitement automatique des langues naturelles, Presses uni-
versitaires de Louvain, Leuven, pp. 20-42.

van Noord, Gertjan, Gosse Bouma, Frank van Eynde, Danil de Kok, Jelmer van der Linde, Ineke
Schuurman, and Erik Tjong Kim Sang (2013), Large Scale Syntactic Annotation of Written
Dutch: Lassy, in Spyns, Peter and Jan Odijk, editors, Essential Speech and Language Technol-
ogy for Dutch, Springer, Berlin, chapter 9, pp. 147-164.

Vossen, P., A. Gorog, F. Laan, M. van Gompel, R. Izquierdo, and Antal van den Bosch (2011),
Dutchsemcor: building a semantically annotated corpus for Dutch, Proceedings of Electronic
Lexicography in the 21st century: new applications for new users, Trojina, Institute for Applied
Slovene Studies, Ljubljana, pp. 286—296.

Vossen, P., I. Maks, R. Segers, H. van der Vliet, M. Moens, K. Hofmann, and Erik Tjong Kim
Sang (2013a), Cornetto: a combinatorial lexical semantic database for Dutch, in Spyns, Peter
and Jan Odijk, editors, Essential Speech and Language Technology for Dutch, Springer, Berlin,
chapter 10, pp. 165-184.

Vossen, P., R. Izquierdo, and A. Gorog (2013b), DutchSemCor: in quest of the ideal sense tagged
corpus, Proceedings of Recent Advances in Natural Language Processing, pp. 710-718.

23



