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Abstract

We address the task of automatically correcting errors in text written by learners of Dutch by
modelling language usage of native speakers. Specifically, we concentrate on two word classes,
namely prepositions and determiners, with a focus on articles for the latter. For each of these two
word classes, we build two models exploiting a large corpus of Dutch. The first is a binary model for
detecting whether a preposition/article should be used at all in a given position or not. The second
is a multiclass model for selecting the appropriate preposition/article in case one should be used.
The models are tested on native as well as learners data. For the latter we exploit a crowdsourcing
strategy to elicit native judgements. On native test data the models perform very well, showing
that we can model preposition usage appropriately. However, the evaluation on learners’ data
shows that the models might be excessively tuned towards native data and there is still room for
improving their adaptation to the intrinsic characteristics of learners’ data. Reflecting on such
results, we envisage various ways of improving performance, and report them in the final section
of this article.

1. Introduction

Computer-assisted language learning is a field where language technology is combined with human
language acquisition. To make it possible, we need systems that are able to recognise errors and
suggest corrections. In spite of recent campaigns on automatic error correction (Ng et al. 2013, Ng
et al. 2014) and in spite of some notable exceptions (Nicholls 2003), the lack of large amounts
of error-annotated data remains a bottleneck in the development and evaluation of systems that
support language learning, especially for L2s other than English.

One obvious solution is creating error-aware resources to build and test robust models of learn-
ers’ language use (Han et al. 2010), which has however substantial costs, especially in terms of
human effort. Another way of bypassing this shortage of data is to exploit native data, which can
be considered as having gold labels of correct usage of language (Han et al. 2006, Tetreault and
Chodorow 2008, Gamon et al. 2008, De Felice and Pulman 2009). We adopt this latter strategy in
this work and we apply to two case studies, namely preposition and determiner errors in learners of
Dutch. As far as we are aware, this is the first work on this topic for this language.

In this paper we describe a two-stage approach to the detection and correction of preposition and
determiner errors in essays written by learners of Dutch. For each phenomenon we train two Support
Vector Machine models on native data that are to be deployed in a pipeline. The first model takes
care of determining if a preposition/determiner is correctly present at a given spot, while the second
one determines whether the kind of preposition/determiner used is indeed appropriate. All models
are tested both on withheld native data as well as learners’ data. For the latter, we crowdsourced
judgments from native speakers as the corpus we drew test data from is not specifically error-
annotated.

c©2016 Lennart Kloppenburg and Malvina Nissim.



2. Phenomena and Tasks

Prepositions and determiners possess several characteristics that make them suitable part-of-speech
classes for experimenting with modelling errors produced by second language learners. Firstly, as
noted by De Felice and Pulman (2008), who have also worked on those classes focusing on learners
of English, prepositions and articles are among the most frequent sources of errors for L2 English
speakers. They show this by annotating a small corpus where preposition and determiner errors
amount to 12% and 17% respectively. Even without exact figures, we can assume that these phe-
nomena will be problematic for Dutch as L2 as well, not least because it is closely related to English.
Secondly, both prepositions and determiners occur very frequently in native data, thus making it at
the same time important for learners to acquire their proper usage and possible for researchers to
access plenty of evidence from naturally occurring L1 texts. Finally, these are closed and relatively
small lexical classes, thereby allowing for a more accurate characterisation and manageable mod-
elling, also in terms of providing feedback to learners. We characterise these two classes in Dutch in
the following sections. For determiners, we focus on articles.

2.1 Prepositions

It has been noted that in many languages prepositional constructions are the most difficult for
foreign language learners, because of their versatile and often ambiguous character (Dale et al. 2012).
Although we have no specific figures on this kind of error in learners of Dutch (but see Section 5.3
below), we know that prepositions are used extremely frequently and that large corpora of native
Dutch are available, which can be exploited to build models of correct preposition usage.

In Dutch, there are just over a hundred prepositions, and only some of them are used commonly. In
the cdb (Alpino Treebank, (van Noord 2006)), a corpus of ca. 140,000 words from the Eindhoven
corpus (newspaper text), about 15% of all tokens are prepositions, despite only representing 0.66% of
all types (n=15 863), with the top 15 prepositions comprising almost 90% of all preposition use (see
Table 1 for details). In other words, prepositions are used very frequently despite being a relatively
small lexical class. It should be noted that the tokens in this table can also act as particles (i.e. ‘Ik
eet de boterham op’, ‘I am eating the sandwich’, where ‘op’ is a particle of the verb ‘opeten’ (to eat
(up)).), depending on the context. In these cases, the token is no longer a preposition grammatically,
but it still is morphologically. It is unclear what characteristics this discrepancy has within the scope
of language learning, and we have instead focused on the token itself.

2.2 Articles

Articles are part of the larger class of determiners. This work focuses on three Dutch articles: de
(58.6%), het (20.5%) and een (20.8%) (frequencies were also drawn from cdb, where total n =
15,256). de, het (the) are definite articles which are used in noun phrases referring to specific or
known entities or names, and een (a, an) is an indefinite article, commonly used when referring to
new or unspecific entities in a sentence or text. The difference between de and het is gender-based:
de is used for gender-specific nouns and het is used for genderless nouns. Additionally, all Dutch
diminutives always appear with the article het (1), whereas all Dutch plurals always occur with the
article de, independently of the article they take in their singular form. Finally, noun phrases with
verbal heads also adopt the article het (2).

(1) De eend (the duck)

Het eendje (the duckling)

(2) NP. het krijgen [van] nakomelingen ([the] getting [of ] descendants)

VP. nakomelingen krijgen (getting descendants)
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Table 1: Frequency distribution of the 15 most Dutch prepositions in the cdb. The total number
of prepositions in the corpus is 18,790.

Preposition Translation Frequency
van of 22.8%
in in 16.3%
op on 7.2%
te at 7.1%
voor for/before 6.3%
met with 5.7%
aan on, to 4.3%
door through, by 3.3%
bij at, with 2.8%
uit out 2.6%
om by, around 2.6%
over over, about 2.4%
tot until, to 2.2%
naar to 2.1%
als if, as 1.2%
total 88.9%
others 11.1%

2.3 Tasks

The problem of automatically correcting preposition and article errors in texts written by language
learners is treated uniformly in our approach, with a single method for both, which however yields
different models that exploit only partially the same features.

The general approach that we propose is to divide the general task into two subtasks: the first
is error detection, i.e., train a system to spot errors, while the second is error correction, i.e., the
task of providing the language learner with appropriate feedback or correction.

This strategy follows naturally from the analysis of the three basic situations of misuse that
have been identified in error correction literature (Eeg-Olofsson and Knutsson 2003, Chodorow
et al. 2007, Liu 2008):

1. insertion (a token is invoked erroneously)1

2. deletion (a token is omitted erroneously)

3. substitution (a token is picked erroneously)

Insertion errors are shown in Examples (3) and (4) for prepositions and articles, respectively, while
deletion errors are shown in Examples (5) and (6). In Example (a) we report the learner’s sentence
with the error, and in (b) the correct version.

(3) a. *Hij zet tot 8 soorten van dranken, maar geen chocolade melk. (It can make up to
eight types of drinks, but no hot chocolate.)

b. Hij zet tot 8 soorten ø drank, maar geen chocolademelk.

(4) a. *Hij lust zowel de appels als de peren. He likes both the apples and the pears.

b. Hij lust zowel ø appels als ø peren.

1. In our study, a token can be either a preposition or a determiner.
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(5) a. *Roger Federer werd ø 1981 geboren. (*Roger Federer was born ø 1981.)

b. Roger Federer werd in 1981 geboren.

(6) a. * [. . . ] grotere steden tonen ø steeds hogere temperatuur. (Larger cities measure ø
constantly higher temperature.)

. . . . grotere steden tonen een steeds hogere temperatuur.

In a substitution error, as in Example (7), the learner understands that a preposition must be used,
but picks the wrong one (a). The task is to find this out, and replace the token with the correct one
(b). A similar situation can be observed in the Example (8), where “de” is used instead of “het”.

(7) a. *Vanaf nu gaat alle communicatie door email, en niet de telefoon. (From now on,
all communication will be done through email, rather than the telephone.)

b. Vanaf nu gaat alle communicatie via email, en niet de telefoon.

(8) a. *Ze hebben de kind gestraft. (They punished the child.)

b. Ze hebben het kind gestraft.

This classification effectively separates distinct types of errors which might require different strategies
to solve. Note that the deletion and insertion errors are mirrored, as shown in Table 2, hinting at
a possibly joint treatment.

Table 2: Mirroring of deletion and insertion error types, where T is a specific article or preposition.

Correct use Learner sample
Deletion token T no token
Insertion no token token T

Indeed, for insertion and deletion, the task is to model presence or absence of a preposition/article
in any given context, and could be thus conceived as a binary classification task.

3. Data

To build and test our models we used two datasets. The first is LASSY Large (LArge Scale SYntactic
Annotation of Written Dutch (van Noord et al. 2011, van Noord et al. 2013)), a syntactically
annotated corpus of native Dutch which includes newswire and Wikipedia articles, for a total of
700M words and over 64M sentences.

The second is Leerdercorpus Nederlands (Perrez and Degand 2009), an as of yet relatively rarely
used corpus which contains 3,468 essays and argumentative texts written by students who study
Dutch as a second language, with a variety of native languages. The total amount of tokens is
reported at 774,658. The distribution of native languages expresses quite a bit of variation, including
French (1247), German (877), Polish (599), Hungarian (413), Indonesian (197), English (9) and
others which are not defined further (125), making it not quite possible to rely on the regularities
of source-language-specific error types.

To the best of our knowledge, this is the only learner corpus for Dutch, but it is not error-
annotated, meaning that the density of errors is unknown and that evaluation cannot be done
automatically against a gold standard (see Section 5.2 for further details). Still, the samples in
Example 3 illustrate that the corpus exhibits typical L2 learners’ behaviour. A large subset of the
corpus was converted to a treebank (similar to LASSY Large) using the Alpino syntactic parser.
This way we could reproduce the process of extracting feature vectors from learners’ data in the
same way we did for native data, which was syntactically annotated already.
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(9) a. *Dat zijn mooie dromen. Ik hoop dat ze de werkelijkheid zullen worden.

b. *Those are beautiful dreams. I hope they will become the reality.

c. Dat zijn mooie dromen. Ik hoop dat ze ø werkelijkheid zullen worden.

Comments. An article insertion error

(10) a. *Ze hadden een relatie en ze konden geen sexueele (=seksuele) relatie voor het huwelijk
hebben omdat het religie tegen (tegen hun religie) was. Dus zijn ze gehuwelijkt
(=getrouwd)!

b. *They were in a relationship and could not engage in sexual relations before marriage
because that was against religion. So they married.

Comments. The indefinite form of ‘sexual’, in Dutch, is ‘seksueel’, which could have in-
duced the confusion that the definite form (‘seksuele‘) also needs two es. ‘gehuwelijkt’
does not exist, just like the perceived infinitive ‘huwelijken’ is not a correct translation
of ‘to marry‘. The writer of this sentence spoke French as L1, where ‘mariage’ (mar-
riage) directly stems from ‘(se) marier’ (to marry), and this analogy was probably
incorrectly carried over to Dutch.

(11) a. *Afsluitend zijn demedia heel interresant (=interessant) en belangrijk voor ons.

b. In conclusion, the media are very interesting and important to us.

Comments. demedia was misspelled, but this might well have been a typo rather than
a language mistake. interresant is misspelled as well. In case of a spelling error,
Alpino will still try to determine the most likely category for the token. In the case
of interresant, however, Alpino guessed that it was a noun rather than an adjective.
This will directly lead to erroneous featurisation; the surrounding POS n-grams will
all be wrong, and the token values will not be recognised because we assume that the
token itself does not exist in the native corpus.

4. Method

In order to detect potential errors, one needs to be able to discriminate between good language
use and incorrect language use. In absence of error-annotated data, we trained models of correct
usage on LASSY Large, with the assumption that native data provides gold labels on grammatical
choices. It is worth noting that because LASSY Large is already fully syntactically annotated,
all linguistic properties that we will present as features were extracted from the corpus without
additional preprocessing steps. Building on the observations on error types in Section 2, we trained
two different models for each phenomenon. The first is a binary detection model trained on positive
and negative events, and used to predict whether a given context contains a preposition/article or
not. The second is a multiclass selection model. For prepositions, we trained a classifier with fifteen
prepositions as class values, used to select a preposition if none was present (as indicated by the
detection model), or if the present preposition was wrong. Among the three articles we consider,
two are definite (“het”, and “de”), while “een” is indefinite. While it could be a possibly successful
alternative, which we might explore in future work, our selection model does not consciously take
any steps beforehand to determine if a given determiner token should be indefinite or definite, so
that we are relying on its ability to do this inherently. For both tasks, the detection and selection
models are deployed in a pipeline, meaning that the actions of the selection model depend on the
outcome of the detection model, as outlined in the following sections. In what follows, for the sake
of space and in order to avoid repetitions, we primarily describe the functioning of the preposition
models. A similar procedure has been used to develop the article models. When the models differ
we make this distinction explicit and report details for both phenomena.
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4.1 Detection model

Using an SVM with a linear kernel,2 we trained a model to detect insertion and deletion errors: given
a feature-vector, the model predicts whether this vector is built around a white-space (absence) or
a preposition (presence). We define a white-space vector as a vector which is extracted around a
case which featured no preposition, but could potentially have one given its surrounding linguistic
properties. In other words; such a vector expresses a surrounding structure that can frequently be
found with a token. We determined this by comparing POS n-gram chunks without prepositions
with POS bigram windows on either side of a preposition. We did this by first extracting POS
fourgram chunks without prepositions/articles from the native data corpus and creating a frequency
distribution of these. Every chunk would have a) the frequency that this chunk was found around
a preposition/article and b) a value denoting the frequency that this chunk was found without a
preposition/article. This essentially creates a simple model that indicates how rare certain patterns
are for either the presence or absence of a preposition or article. To give an example, let us consider
a case where we have a POS pattern that includes a preposition: VERB ADV PREP NOUN $
(where $ is end of sentence). Any case with the same POS context but without a preposition, such
as VERB ADV NOUN $, can be considered as a non-trivial case of preposition absence. A pairwise
example to illustrate the concept of this non-trivial preposition absence is given in (12) and (13).

(12) De man gaat vaak naar concerten. (The man goes to concerts often.)

(13) De man bezoekt vaak ø concerten. (The man visits ø concerts often.)

Note how in the first sentence, the verb “gaat” (goes) needs a preposition, in this case “naar”
(to). The second sentence is written without a preposition but has exactly the same surrounding
structure in terms of parts of speech. The difference here is that “bezoek” (visits) does not require
a preposition as it is a transitive verb and takes a direct object. As explained above, since the
surrounding POS pattern could hypothetically hold a preposition (as in Example (12)), we call this
a case of non-trivial preposition absence. Because we are in fact talking about the absence of a
preposition, these have to be considered as negative instances and their (preposition) class value is
set to “false”. A preposition case, i.e., a positive instance with class value “true”, is a vector whose
linguistic properties were extracted around a preposition. The actual task is to then train the model
to find distinctions between these two types of vectors.

The same principle can be applied to the use of articles; one may refer to nouns without the use
of a preceding article if context permits it. Such contexts usually involve names, general knowledge
concepts (e.g. global warming) or fixed/idiomatic constructions (e.g. both apples and pears). For
articles, we therefore decided to experiment with new ways of modelling the (non-)triviality of
absence or presence which we have described for prepositions above. This resulted in four candidate
classes: the trivial or non-trivial presence or absence of articles. This extra distinction was added
to try and model when articles are used or omitted whereas the context would indicate otherwise.
This leads to the proposed method of how we try to catch insertion and deletion errors.

The model is informed by n-gram-based features (see Table 3) for both prepositions and ar-
ticles, both at the word- and at the POS-level, which define the linguistic context in which the
preposition/article or the whitespace occurs.

The possible outcomes of the model, both for prepositions and for articles, are shown in Table 4.

Finally, since we had concluded our experiments on prepositions before including the article
segment of this paper, we were able to reflect on the results on the detection task for prepositions
(please refer to Section 5.3.1). Because of this, we decided to make a discrepancy between triviality
and non-triviality, rather than between just absence or presence.

2. As per http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.

LinearSVC, with default parameters
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Table 3: Features for the detection model for both prepositions and articles.
Feature Description

bigram left Token bigram left of token

bigram right Token bigram right of token

trigram left Token trigram left of token

trigram right Token trigram left of token

bigram postags left POS bigram left of token

bigram postags right POS bigram right of token

trigram postags left POS trigram left of token

trigram postags right POS trigram right of token

Table 4: Outcomes and procedure for a detection model.
Observed Predicted Message Action

Presence Presence No error (yet) Feed to selection model

Presence Absence Insertion error Delete token

Absence Presence Deletion error Feed to selection model

Absence Absence No error Stop.

4.2 Selection model

A selection model is used for selecting suitable tokens. As outlined in Table 4, this can occur in two
situations: because of a substitution error or because of a deletion error. Note that before feeding
the vector with a token to this selection model, it is still unknown whether this token (a preposition
or an article) is correct or incorrect. Attesting this is done by analysing the output from the model.
Table 5 illustrates the different outcomes of the selection model.

Table 5: Outcomes and procedure for a selection model. *Assigned by detection model.
Observed Predicted Message Action

None Pj Deletion error* Correction: use Pj

Pj Pj No error None

Pj Pi Substitution error Correction: use P¬j

For the task of preposition error correction, we selected the 15 most frequent prepositions in
Dutch (see Table 1), and trained an SVM model with a linear kernel on vectors of native data, using
the features in Table 6, inspired by Chodorow et al. (2007). The selected preposition is predicted as
a single-label classification task. For articles, we used the three previously described articles (“de”,
“het”, “een”). It is important to note that the class labels are stored but not used as feature during
the prediction/error correction tasks (Section 5). A generic sentence, processed by Alpino, is shown
in Figure 1. How the features and their values are encoded is subsequently exemplified in the third
column of Table 6. The features for the article model differ from those for the preposition model.
The features from the preposition model were heavily inspired by Chodorow et al. (2007), but we
decided to add some more features that could be able to discern between indefinite (een) and definite
(de/het) articles in Dutch, as well as between the gender characteristics of definite articles. The use
of articles in Dutch and English is very similar, but there are also a few differences (Donaldson 2008).
For example, in Dutch, articles are omitted when describing professions (Ik ben ø tandarts. I am
a dentist.) and instruments (Ik speel ø piano. I play the piano.). The reverse is true in case of
seasons and languages (in het Nederlands, in ø Dutch). Whether, how exactly, and how much such
characteristics of Dutch can in practice be exploited towards better error detection is left to future
work.
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Figure 1: Example Alpino dependency tree: The man goes to concerts often.

Table 6: Feature sets for the preposition (left) and the article (right) substitution models.

Prepositions Value

bigram left Token bigram left of prep erg vaak

bigram right Token bigram right of prep concerten .

trigram left Token trigram left of prep gaat erg vaak

trigram right Token trigram left of prep concerten . $

PRE verb Verb preceding prep gaat

FOLL verb Verb following prep -

PRE noun Noun preceding prep man

FOLL noun Noun following prep concert

bigram postags left POS bigram left of prep adj adj

bigram postags right POS bigram right of prep noun punct

trigram postags left POS trigram left of prep ww adj adj

trigram postags right POS trigram right of prep noun punct $

FOLL phr head Headword of following phrase -

PRE phr Preceding phrase-type mod

FOLL phr Following phrase-type vaak

Articles

token bigram right

POS bigram right

token trigram right

POS trigram right

token bigram left

POS bigram left

token trigram left

POS trigram left

gender noun right

count noun right

token noun right

category of phrase of article

relation of phrase of article

category of parent phrase

relation of parent phrase
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5. Results

The detection and selection models were trained on 2M and 20M feature vectors, respectively, for
both phenomena. This difference in training size is due to the fact that the detection model is only
a binary class and the selection model makes more complex discrepancies. For the detection model
for articles, 74% of all training events were vectors of article absence, of which 6% were ‘non-trivial’.
26% of all training events were vectors of article presence, of which 15% were ‘non-trivial’. For
prepositions, 71% of all training events were vectors of preposition absence, and 29% of preposition
presence. The preposition models were subsequently tested on 268,895 feature vectors of unseen
native data and on 1,499 feature vectors of the L2 data. Article models were tested on 250K unseen
native test data, and similarly to what we have done for the models’ descriptions, in reporting results
and explaining evaluation strategies, we are mainly focusing on the preposition cases, highlighting
differences wherever relevant. Actual figures are included for both phenomena. Performance is as-
sessed using precision, recall, and f-score, calculated per class c as follows and then averaged:

precc = #correct decisionsc
#positivedecisionsc

recc = #correct decisionsc
#gold casesc

fscorec = 2∗precc∗recc
(precc+recc)

5.1 Baselines

In order to have a lower bound to compare our system to, we devised a few baselines for each model,
with increasing predictive power.

Detection model Baseline 1 is a most-frequent-class simple model always predicting no token for
any given context. Baseline 2 is based on the 200 most common POS patterns for token presence
cases: if a certain pattern has been observed in training data as more likely to occur in presence of
a token rather than in its absence, this baseline will predict a token. Baseline 3 is as Baseline 2,
but all POS patterns are considered. In both cases, POS patterns are based on trigrams. In fact,
Baselines 2 and 3 are simpler versions of our model rather than pure baselines. For this reason, we
decided to include only Baseline 1 in the article experiment.

Selection model Baseline 1 always predicts the preposition van or the article de, each being the
most frequent value for their respective part of speech class. Baseline 2 is a basic classifier trained
on the surrounding POS bigrams only.

5.2 Evaluation on native data

Table 7 outlines the results (including results for the baselines) on native test data for the preposition
detection model, which only determines either the absence or the presence of a preposition. The
results for the detection model are surprisingly high (but so are those for Baseline 3). This might
be due to the fact that negative preposition vectors are all extracted in the same way (as explained
in Section 4.1). In other words, it could depend on the way the data is represented. Future work
will investigate this further, especially in terms of what exactly makes a non-trivial whitespace case.
Results for the article detection model are given in Table 8 and Figure 2. Figure 2 shows that the
non-trivial classes gain a lot of performance in recall but little in precision when more training data
is added. They are much harder to identify than the trivial classes, which, based on the premise of
how they are extracted (Section 4), is to be expected.
Table 9 shows the results on native test data for the selection model per preposition. Note that this
only concerns the cases with a preposition.

As we can see from the tables, results show that the system is very accurate for some prepositions
(van, in, te, op), while not so much for others (als, bij, door). Most prepositions with low scores seem
to occur less than the more easily predicted prepositions (als and bij ), though this is not always
the case (voor, met). Conversely, the system performs quite well for the preposition tot, which is
also quite infrequent. In order to identify how well performance for these prepositions develop over
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Table 7: Preposition detection model’s and baselines’ performance on native test data.
Precision Recall F-score

Detection Model 1.00 1.00 1.00
Baseline 1 0.25 0.50 0.33
Baseline 2 0.75 0.51 0.36
Baseline 3 0.97 0.97 0.97

Table 8: Article detection model’s performance on native test data.
Prec Rec F-score #cases

False, non-trivial 0.75 0.31 0.43 11.4K
False, trivial 0.95 0.99 0.97 169K
True, non-trivial 0.79 0.30 0.43 10.8K
True, trivial 0.88 0.97 0.92 58.6K
Average 0.92 0.93 0.92 Total : 250K

Baseline 0.46 0.68 0.55 250K
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Precision-Recall AUC curve of article detection performance
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Figure 2: This graph illustrates the growth in precision and recall over various training sizes for the
article detection task. The dots correspond to training sizes 250K, 1M, 2M, 2.5M, 5M,
7.5M, 10M, 15M and 20M respectively.
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Table 9: Performance on native test data for each single preposition. The reported total for prepo-
sition is the number of actual occurrences of that string in the whole dataset.

Preposition Prec Rec F-score # cases
aan 0.72 0.69 0.71 11,690
als 0.81 0.51 0.63 5,157
bij 0.57 0.43 0.49 8,369
door 0.66 0.55 0.60 9,154
in 0.72 0.81 0.76 47,649
met 0.67 0.67 0.67 17,167
naar 0.69 0.62 0.65 6,232
om 0.77 0.69 0.73 10,881
op 0.78 0.78 0.78 23,111
over 0.65 0.59 0.62 6,036
te 0.97 0.97 0.97 19,746
tot 0.75 0.68 0.71 6,703
uit 0.69 0.56 0.62 6,514
van 0.80 0.87 0.83 71,102
voor 0.64 0.58 0.61 19,380
Average 0.75 0.75 0.75 Total : 268,895
Baseline 1 0.07 0.26 0.11
Baseline 2 0.38 0.42 0.35
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Figure 3: This graph illustrates the growth in precision and recall over various training sizes for the
preposition selection task. The dots correspond to training sizes 20K, 50K, 250K, 1M,
2.5M, 5M, 10M, 15M and 20M respectively.

49



Table 10: Article selection model’s performance
Article Prec Rec F-score # cases
de 0.92 0.95 0.93 140.6K
een 0.85 0.78 0.81 61.5K
het 0.90 0.92 0.91 47.9K
Average 0.90 0.90 0.90 Total : 250K

Baseline 0.32 0.56 0.41

various training sizes, we plotted a precision-recall curve in Figure 3. This shows that prepositions
in and van gain most in terms of precision with steep slopes to the right of the graph, generally
below the reference curve. This means that recall is higher than precision. Adding training data
thus reduces the amount of false positives for these cases. In other words: Other, less frequent
classes are better informed so frequent classes are not ‘overpredicted’ as much. On the other hand,
less frequent prepositions such as bij and door also profit in terms of recall, with a slope that more
closely resembles that of the reference curve. These prepositions stay above this reference curve,
which means that precision is higher than recall, indicating a higher degree of false negatives due
to being ‘underpredicted’. For every preposition, the dots are plotted closer after each gain in size,
which indicates that performance is not likely to grow much more after the last training size of 20M.
More discerning features could be the key to further increase performance.

We assume that learner data will contain more erroneous spelling but less variety in structure because
of the fact that most data from the Leerdercorpus Nederlands consists of student essays. Erroneous
spelling, poor lexical choice and grammatical errors will likely contribute to the results on learner
test data.

5.3 Evaluation on learners’ data

Because the learners’ corpus is not error-annotated we collected human judgements via crowdsourc-
ing. Annotators were asked to assess whether any given spot would contain a preposition and, if so,
which one. More than one choice was allowed, so that a system’s decision in the selection model is
deemed correct if the predicted preposition is included in the set of those chosen by the annotators.

In order to gather annotations through crowdsourcing, we developed a web application that
allowed users to create an account and annotate sentences written by L2 students, directly extracted
by the Leerdercorpus Nederlands. Sentences of any length or structure were matched for extraction.
An important reason to refrain from performing any preselection was to exploit the data in its
actual form and distribution. For every sentence, a preposition (or white-space) was replaced by a
question mark and participants were asked to select prepositions (from the fifteen prepositions that
were included in the model) that would fit the context or indicate that the context should not have
a preposition at all. Figure 4 shows a screenshot of the annotation interface. The crowdsourcing
website was only used to gather data on prepositions and not articles, which were annotated by a
native speaker and added to this project at a later stage. The reason we adopted a crowdsourcing
solution was because it makes it possible to distribute the initial thesis project in an interactive
way. Furthermore, this would make it possible to gather as many different answers as possible which
would illustrate the difficulty of preposition usage as a whole.

5.3.1 Prepositions

The resulting annotated subset of the learners’ data consists of 1,499 cases. These included 971 cases
based on actual prepositions and picked randomly from the system’s decisions, while ensuring that
every preposition would be represented. The rest were attempts of the system to detect deletion
errors, so that the presence of a preposition is the system’s guess. In the test set, the annotators
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Figure 4: Screenshot of the web-based annotation interface used for crowdsourcing native judge-
ments on sentences extracted from the Leerdercorpus Nederlands.

identified 105 errors (7%). They included 72 substitution errors, 29 insertion errors and 4 deletion
errors, as shown in Table 11. We do not report performance on correction for the baselines, as they
have not been deployed in the same decision-making pipeline where both the detection and selection
models were combined, but were only applied separately.

We also show the confusion matrix for the selection model in Table 12. Apart from the encour-
aging diagonal line showing the correct decisions, we cannot observe any specific confusion patterns.
We hypothesise that this can be due to the varied nature of the native languages represented in the
Leerdercorpus Nederlands, making it unlikely for any regular error trend to arise. A more focused
analysis on a single native language might show a different picture in this sense, but is left to future
work.

5.3.2 Articles

For detection, the model performs much worse than L2 students (75% for positive and 17% for
negative instances, vs. 92% and 90% respectively for L2 learners), when compared to gold standard
annotation. Therefore, we can say that the detection model, for both phenomena, is far from ready.
This is in line with the results on L1 data for the same task – where non-trivial cases already proved
difficult to identify. Human annotation identified 47 insertion errors and 33 deletion errors. Keeping
the 25 substitution errors in mind, this distribution is very different from that of the preposition
errors. Article selection is reported at an F-score of 84%, down from its 90% on L1 data. There were
25 substitution errors in an annotated set of about 750 cases across 279 sentences, and 11 of these
were spotted. Even though this seems unimportant or underperforming at first, it is encouraging
that the system performs well when identifying correct articles.

6. Discussion and Outlook

With an F1-score of 75% on L1 data for prepositions, and results generally above the baselines, we
show that it is possible to build a fairly accurate model of fifteen Dutch prepositions. The consider-
ably lower results on L2 data indicate that the differences between native and learner language are
substantial, especially because native data does not provide any information on the types of errors
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Table 11: Results on learners’ data for prepositions.
Detection Correction
Prec Rec Accuracy N (gold)

Substitution 0.14 0.90 0.60 72
Insertion 0.22 0.21 – 29
Deletion 0.01 0.75 1.00 4
Correct 0.99 0.36 – 1,394
Average/Total 0.91 0.38 0.62 1,499

Baseline 1 0.14 0.37 – –
Baseline 2 0.39 0.37 – –
Baseline 3 0.43 0.55 – –

Table 12: Confusion matrix for model selection (columns) and gold standard annotation (rows) in
learners’ test data.
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aan 24 0 2 2 4 7 0 1 0 0 0 1 0 4
als 1 1 2 1 3 0 0 1 1 2 0 1 0 0 2
bij 2 0 14 2 9 3 0 1 4 0 0 0 0 5 2
door 1 0 3 2 3 2 0 3 1 1 0 0 2 0 1
in 2 0 5 0 117 4 0 1 5 0 0 0 2 5 3
met 0 0 5 1 15 41 1 7 2 3 0 0 0 6 1
naar 1 0 1 0 2 1 12 0 2 0 0 0 0 2 0
om 0 0 1 0 8 3 1 35 0 2 0 1 0 2 1
op 1 1 1 0 12 0 3 1 48 1 0 0 1 2 2
over 1 0 2 1 6 3 0 3 1 20 0 0 0 0 1
te 1 0 0 0 2 0 0 0 1 4 87 0 0 2 2
tot 0 0 0 1 0 1 0 3 3 0 0 5 0 0 0
uit 0 0 2 0 1 0 0 0 0 0 0 1 7 0 1
van 2 0 2 2 15 6 1 2 3 3 0 0 0 93 8
voor 5 0 8 3 8 12 0 8 3 0 2 0 1 4 70
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and confusions that learners make (Han et al. 2010). The detection model suffers mostly from the
transition from L1 to L2 test data. The model is clearly too biased towards preposition presence,
which makes little sense, as the chances that any given whitespace contains a preposition are intu-
itively low, even if the POS pattern is commonly found with a preposition. This is amplified by the
fact that we tried to capture as many deletion errors as possible, which also maximises the amount
of false positives. Insertion error detection and correction are both rather low, yet promising. Most
insertion errors were confused with substitution errors, another consequence of the detection model
because it would rather see a preposition than none. The high recall for substitution is encouraging,
and the low precision is worrying; they are both due to the fact that the selection model picks one
preposition only, even if other candidates might be equally acceptable. For articles, the selection
performance on L2 data is still strong at 84%, although this is expected because there are fewer
classes. However, detecting error types still proves to be difficult. In many cases, the model still
marks certain decisions as wrong when they should be right (and vice versa), especially through
decisions by the detection model. This shows all the more that modelling ‘nothing’ is difficult, and
errors that are related to not using words of very important lexical building blocks are even more
difficult to spot for a system. In short, it is very difficult to model how learners might misuse or
forget articles using only native data.

For prepositions, one logical next step is rebuilding the selection procedure into a multilabel
model, which would reduce the number of false positives, and also improve the learner’s experience by
suggesting more than one option to a (likely) wrongly used preposition. Multiple suggestions would
reduce the number of false positives when detecting substitution errors (De Felice and Pulman 2009).
Adding more information to the model, such as semantic features relative to word classes, for
example, could also yield better results. For example, features could be inherited by similar words, so
as to cope with unseen nouns or verbs. To this end, similarity information could be exploited either
in the form of simple synonym lookup via lexical resources such as WordNet (Fellbaum 1998), or via
corpus-derived distributional information in the form, for example, of word embeddings (Mikolov
et al. 2013).

However, a prime direction for improvement is to make the model more familiar with L2 language.
One simple first step could just be using a spell corrector to improve the quality of L2 data and
overall preprocessing. Linguistically-informed features on learners’ use of prepositions should also
be investigated, though the variety of native languages in the L2 corpus does not make this straight-
forward. Another interesting possibility for investigating in this context would be to add artificially
generated errors to the native training corpora (as suggested in (Rozovskaya and Roth 2010)), so
as to reduce the differences between native and learner language. Specifically, (Rozovskaya and
Roth 2010) show that introducing artificial errors in article usage in English in the training data
increases results on learner test data. They make sure that the distribution of these errors is similar
to the distribution of errors in ESL (English as a Second Language) data. This could prove very
useful as it teaches the system what kind of errors can be expected and which errors are rare, and
might be especially interesting for the case of prepositions as they are a closed class but with many
possible different confusions.

As far as the corpus itself is concerned, the Leerdercorpus Nederlands proved to be useful and
promising for this task because it features typical learner errors. There is much more data in
the corpus which we did not annotate in the short amount of time we had. A next step for the
Leerdercorpus Nederlands would be to make it error-annotated so tasks on automatic error correction
or language acquisition can be tackled more conveniently.
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