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Abstract

The commonly accepted method for fast and efficient word completion is storage and
retrieval of character n-grams in tries. We perform learning curve experiments to measure
the scaling performance of the trie approach, and present three extensions. First, we extend
the trie to store characters of previous words. Second, we extend the trie to the double
task of completing the current word and predicting the next word. Third, we augment the
trie with a recent word buffer to account for the fact that recently used words have a high
chance of recurring. Learning curve experiments on English and Dutch newspaper texts
show that (1) storing the characters of previous words yields an increasing and substantial
improvement over the baseline with more data, also when compared to a word-based text
completion baseline; (2) simultaneously predicting the next word provides an additional
small improvement; and (3) the initially large contribution of a recency model diminishes
when the trie is trained on more background training data.

1. Introduction

Word completion is a basic technology for text entry as well as an important component in
augmentative language technology tools. Its main aim is to reduce the number of keystrokes
needed during text entry by correctly suggesting the completion of the word currently being
entered, as soon as possible, so that the word does not have to be completely keyed in. One
strategy is to generate a suggestion at the word’s unicity point, the point at which the
word is the only word available in the algorithm’s internal word model (e.g. a list of words)
that fits the string of characters keyed in so far. The word completion algorithm may also
venture to suggest a completion even before the word’s unicity point is reached—or even
before its first character is typed. From the moment of suggestion (typically displayed in a
designated part of the device’s screen), the user is able to click an “Accept” button to accord
and enact the suggestion. Although word completion algorithms are used in many devices
with some success, current word completion systems remain imperfect, and are vulnerable
to at least the following two factors.

The first factor that hampers all basic word completion systems is that they will not
suggest words that are not in their on-board word list. This problem can be overcome by
including more words in the construction of the algorithm, in the hope of having a better
coverage of new, unseen text. In the case of morphologically complex languages that allow
affixation or compounding, generation rules might be applied to counter the unknown word
problem (Trost et al. 2005); we will not concern us with this issue here.

A second issue that applies to the simpler kind of word completion systems based on
efficient lookup in a word list, is that they reset after every space or punctuation mark; they
do not take into account the previous sequence of characters or words. Yet, a classic and
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fundamental insight is that characters or words preceding the current word may contribute
information that would enable suggesting the current word earlier than its unicity point,
in some cases even immediately (Shannon 1948). Using information from the previously
entered text may also help in picking one particular suggested word over alternative words
with the same initial characters, but which are less likely given the previous word.

The latter issue has been widely studied, yielding promising and relatively successful
methods that usually trade in speed and memory usage for above-baseline keystroke savings;
we provide an overview of the main findings in Section 2. The main contribution of this
paper is the perspective of the learning curve experiment. The amount of text available
for training a word or text completion algorithm is likely correlated with keystroke savings,
but what is the actual relation? We know from Lesher et al. (1999) that this relation
is positive, but their learning curves extend to two million words of training data. To
complement Lesher et al’s findings, we ask what happens with more data than that: for
instance, does the curve flatten? We report that we indeed find performance improvements
with more training data up to a certain amount of training data, after which we observe
some flattening in the performance of a simple baseline approach. In contrast, a number of
extensions to the baseline (in total we compare the baseline to five extensions, all suggested
by the existing literature) continue to increase their performance when trained on more
data in a log-linear fashion, i.e., with every n-fold increase in the amount of training data,
performance increases by a roughly constant amount.

After our review of related work, we introduce in Section 3 a simple character-based
word completion algorithm based on the normal prefix trie, and a recent-keystrokes vari-
ant which we select as the baseline. After introducing our training and testing data and
our experimental setup in Section 4, we introduce four extensions to the baseline model.
We compare the baseline and its four extensions in learning curve experiments, of which
the results are given in Section 5. We discuss our findings and phrase our conclusions in
Section 6.

2. Related Work

The approach we focus on in this paper aims at reducing the amount of typing necessary
to enter a text by using automatic predictive typing aids. Tools of this type try to predict
the completion of the current text as it is being keyed in, and are available for input
modalities ranging from full keyboards to the more restricted keypads of mobile phones.
For instance, the popular T9 algorithm and several variants were designed specifically to
offer word completion on the standard 12-key keypad layout on the majority of mobile
phones used in the last decade (Grover et al. 1998, MacKenzie et al. 2001). However, a
growing number of mobile devices sport full QWERTY keyboards, either soft keyboards (i.e.
on-screen keyboards that can be utilized through touch or pen input), or hard keyboards
just as regular desktop computers and laptops have. In this paper we focus on predictive
text entry using QWERTY keyboards, i.e. one-letter-per-key keyboards.

Predictive text entry algorithms use context information to anticipate what block of
characters (letters, n-grams, syllables, words, or entire phrases) a person is going to write
next (Garay-Vitoria and Abascal 2006), lowering the overall cognitive load of text entry,
even though the additional interaction with the predictive text entry software introduces a
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load of its own (Horstmann Koester and Levine 1996). The block size the typing aid tries to
predict influences the potential savings in terms of time and keystrokes. However, predicting
n-grams (Goodman et al. 2002) or sub-word units such as syllables or morphemes can
result in increased cognitive load for the user who has to check and approve the predictions.
Because words (whitespace-delimited sequences of letters) are more easily recognizable and
thus reduce the cognitive load required, and because with whitespace-delimited strings the
space bar can play a double role as a whitespace and an “Accept” button, words are most
widely used as predicted blocks (Garay-Vitoria and Abascal 2006). We take this approach
here as well, and thus focus on word completion.

Word completion was adopted early on as a topic in the development of augmentative
and rehabilitation technologies, where it has been established as a generally effective tool
for text entry (Horstmann Koester and Levine 1996). An early version of a simple wordlist-
based system was PAL (Swiffin et al. 1985), a portable device in which high-frequency
words are suggested that partially match the characters keyed in thus far. Extensions were
proposed that exploited conditional probabilities between successive words (Bentrup 1987)
and syntactic parsing (VanDyke 1991).

Another more technical strand of work then emerged that largely followed the same
development path as the previous augmentative technology strand: a context-insensitive
wordlist-based system is augmented by using statistically or linguistically more sophisticated
context of the text typed in thus far. Syntactic information, which can produce constraints
on the likely syntactic category of the next word to be completed based on a partial parse
of the left context, is used in by Wood (1996) and Garay-Vitoria and González-Abascal
(1997). Carlberger et al. (1997) use part-of-speech tagging in their Profet system. Cagigas
(2001) combines grammatical knowledge and part-of-speech tag statistics, as do Matiasek
et al. (2002) with their FASTY system, and Fazly and Hirst (2003). Discussing the use
of part-of-speech tagging likelihoods to constrain and augment word completion, Fazly and
Hirst say, when observing that part-of-speech tagging information hardly contributes to
the performance as compared to the context-sensitive statistical component in their model,
“The relatively small improvement is possibly because word-bigram probabilities implicitly
capture tag-bigram probabilities to a considerable extent as well.” (Fazly and Hirst 2003).
It is for this reason that we do not make use of part-of-speech tagging in our experiments.

Several studies focus on augmenting text completion purely with statistical word bigram
or word trigram models. A key publication is that of Lesher et al. (1999), in which the
relation is investigated between word completion success and the order of the word n-gram
model underlying the word completion, as well as with the amount of training material.
Their results show that in their experimental setting, word trigram models contribute 7.5%
additional keystroke savings over a unigram model (i.e. the word list baseline). They also
report on learning curve experiments with increasing training set sizes and constant test
material, and report increasingly higher keystroke savings with more training data. In the
study described in this article, training set size and context beyond the single current word
are among the factors we also vary in our experimental matrix. Other examples of word
completion work purely driven by statistical word n-gram models are the WordQ system of
Nantais and colleagues (Nantais et al. 2001, Shein et al. 2001), and the system presented by
How and Kan (2005). Note that our work concerns word completion based on character-n-
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gram models, although we do present a comparison against word prediction through a word
n-gram language model.

Copestake (1997) combines context-sensitive part-of-speech tagging information with a
recency model. Information in recent text is also exploited by Darragh et al. (1990), who
use a dynamically updated tree-based memory structure to cache n-grams. Suggestions are
sorted by preference to the longest, most frequent substrings. Tanaka-Ishii (2007) compares
four language models for predictive text entry: two simple models based on frequency and
recency counts, a model based on co-occurrence between words, and an adaptive n-gram
model that takes into account the probability distribution of words previously used by the
user as well. The adaptive n-gram model performs best.

Although a 2003 EACL workshop1 showcased a considerable breadth and quantity of
research in the text completion field at that point in time, there seems to have been some-
what of a lull in the research since then, while the industrial application field of efficient
text entry methods in increasingly advanced devices is only becoming wider. As it stands,
it may already be the widest-spread piece of language technology in the world, shipped with
nearly every one of the several billions of mobile phones in use worldwide.

3. A baseline word completion algorithm and three extensions

Arguably, the two goals of a word completion algorithm are (i) to store a wide-coverage
word or language model that it can access rapidly to match input character sequences, and
(ii) that it needs to be able to say at the earliest possible point of a character sequence
being entered, with a success rate that should be as high as possible, to which word the
sequence can be completed.

This task can be phrased as a classification problem in which an input sequence of
entered keys is mapped to the complete intended word that is currently being keyed in.
Suppose that a person intends to key in the text “it feels nice” on a normal QWERTY
keyboard. The first task is to predict “it” after seeing the “i”, however unreasonable this
may seem. After having seen “it” and the space bar, the next task is to suggest “feels”;
either immediately, or as soon as possible in the sequence of that word being keyed in:
after “f”, after “fe”, etcetera. Its classification task thus can be made explicit as thirteen
classification instances depicted at the left-hand side of Figure 1, labeled “prefix”.

We first introduce tries as the data structure of choice, and describe the algorithm
to generate them and use them during processing. We then introduce our baseline word
completion algorithm, and describe five extensions to this baseline.

3.1 Tries

To store instances such as the ones in Figure 1 and convert them into an efficient data
structure from which word completions can be quickly retrieved, tries are ideally suited
(Knuth 1973). In our study, we employ the IGTree decision tree algorithm (Daelemans
et al. 1997), which implements trie compression and retrieval. In the first compression phase,
a list of words (e.g., a lexicon or a word list from a corpus) is compressed by IGTree into a trie

1. The EACL 2003 Workshop on Language Modeling for Text Entry Methods, Budapest, Hungary, URL:
http://www.uni-koblenz.de/~compling/eaclws2003/.
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Figure 1: Example classification instances derived from the sentence “it feels nice” for the
prefix trie (left), the recent-keystrokes trie (middle), and the recent-keystrokes
trie with context (right).

structure. To do this, first a one-time ordering of features is computed, where the features
are the positions in the character buffer. The ordering of the features is determined by
their information gain ratio with respect to predicting the word completion. Subsequently,
a root node is created, which represents the most likely word when no key is pressed yet.
This root node fans out to a first layer of nodes through arcs, where the arcs represent all
possible keystrokes. Each first-layer node represents the most likely word given a single
keystroke, and connects to second-layer nodes by arcs that denote all possible keystrokes
given the first keystroke. A node becomes an end node if the arc leading to that node
uniquely identifies a single word (i.e. the word’s unicity point is reached), even if the arc is
not the last character of the word. This algorithm is recursively applied until all instances
are represented as paths in the trie.

The normal prefix trie retrieval process matches new incoming instances to paths in the
trie by simply traversing the trie level by level, one arc per level, according to every new
character in the input. At any point during the traversal, the trie is able to generate the
most likely word as a completion suggestion given the path so far, provided that frequency
information is stored on the trie’s nodes. Starting with the root node, it deterministically
takes the arc representing the first (leftmost) character, and continues following matching
arcs in the ordering of the features, during which it may either (i) encounter a non-ending
node with a matching arc pointing deeper into the trie, at which the current sequence of
keystrokes may still be completed into more than a single word, it may suggest the most
likely word so far (in case of frequency ties, the first word encountered in the training set is
presented), or (ii) it may fail to find a matching arc from the last visited node, from which
it can be concluded that the current word has not been seen in training, or finally (iii) it
may encounter an end node, at which point the full word completion is emitted as the only
known output given that sequence of keystrokes.
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As a side note, trie-based retrieval in character n-gram paths according to a fixed or-
dering (in our case, ordered by information gain) is equivalent to Katz back-off smoothing
in character n-gram language models (Zavrel and Daelemans 1997).

In the larger context of the text application, this trie is embedded in a real-time wrap-
per that reads each incoming keystroke, updates the character buffer (shifting it leftward
with each keystroke, erasing it after each space), sends the buffer to the trie, catches the
prediction emitted by the trie, and presents this to the user, who may then press a special
“Accept” key (or the space bar, as implemented in many text completion interfaces) to
accept the trie’s suggestion.

3.2 The baseline algorithm: Recent-keystroke tries

The classic prefix trie, compressing the types of instances depicted on the left-hand side
of Figure 1, is a data structure that offers a left-to-right letter-by-letter access to words in
the word list. When following the keystrokes belonging to a word, the trie simply needs
to be traversed from the top down. An alternative is to order the keystrokes from most
recent to less recent, i.e. from right to left; examples are given in the middle of Figure 1.
As each new user keystroke changes the history buffer by one position, this trie needs to
be re-accessed with each keystroke. The resulting trie is different from a normal prefix trie,
but has the same function; in practice, it turns out it has virtually the same performance as
well, provided that this “reverse” trie also keeps the first letter in the trie (the first column
of the examples in the second column of Figure 1 labeled “recent keystrokes”), to prevent
it from suggesting words with a different starting letter.

We use this “recent keystrokes” trie as our baseline word completion system for the
reason given in the next subsection.

3.3 Extension 1: Adding previous word context

The advantage of the recent-keystrokes trie over a normal prefix trie is that it can represent
keystrokes before the current word in their natural order, simply by continuing to represent
all characters typed so far from right to left, from the current word down to the previously
complete word, the word before that, etc., up to some fixed buffer limit. We adopt a limit of
15 characters, which is typically wide enough to hold at least one previous word besides the
keyed-in characters of the current word. We explicitly keep spaces and punctuation marks
in the buffer. Examples generated this way can be found in the third column in Figure 1
labeled “recent keystrokes + context”.

As these tries do not compress a word list but rather an extended character n-gram
model over text, they can be expected to be larger than the baseline “recent keystrokes”
tries.

3.4 Extension 2: Predicting the next word as well

If the previous word is available through a character n-gram window, and the currently
keyed-in word is already becoming visible, then it is conceivable to extend the prediction
to the word following the current word to be completed. In other words, the task could
be extended from a unigram prediction task to a bigram prediction task. If the suggestion
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Figure 2: Graphical representations of the baseline and the extensions with their interrela-
tions. Arrows depict the “extends” relation.

for the current word is accorded by the user, this could be immediately followed by a
suggestion for the second part of the predicted bigram. If that was the word the user was
indeed intending to write, then all characters of that word can be saved; only one “Accept”
action (one keystroke) is needed. We introduce this extension as a second variant of the
baseline. In Figure 1 this extension uses the same input as the first “recent keystrokes
+ context” input features, but now predicting bigrams of words. Tries of this type can
be expected to be larger than the tries of the first extension, as more information (longer
paths) will be needed to disambiguate between word bigrams with the same to be completed
left-hand side word, but different right-hand side words.

3.5 Extension 3: Adding a recency model

Following Copestake (1997) and Tanaka-Ishii (2007), the third extension we implemented
is a recency model. While our second extension extends only the first extension, the third
extension can be applied to the baseline system and the first and second extensions. We
illustrate these interrelations in Figure 2 for clarity.

The recency model is a small continuously updated memory buffer of the last m words
seen in the text so far. With every new word, elements in the buffer shift one place back-
wards, dropping the element at the back of the memory, and inserting the word that was
just keyed in or completed. The recency model operates in parallel to the trie, and checks
if the sequence of characters currently keyed in uniquely matches one of the words in the
buffer. If the recency model finds a match, its suggestion is presented instead of the trie’s
suggestion. The motivation for the recency model is that words tend to recur burstily once
they have appeared in a text, due to their association with the text’s topic; the probability
of words recurring in a short stretch of text is far higher than the Poisson distribution based
on their frequency in a large corpus would suggest (Church 2000). A recency model may
therefore provide useful guesses complementary to those of the generic trie, which has no
statistical information on the text being processed.
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As the recency model can be applied to the baseline model as well as the two extensions
described before, we have three variants of the third extension: 3a, 3b, and 3c, as visualized
in Figure 2.

3.6 Classification and storage complexity

Retrieval of classification information in a trie has a favorable upper-bound complexity of
O(f), where f is the number of features and hence the depth of the trie. Storage on the
other hand is linearly bounded by O(n), where n is the number of examples. In practice, a
trie may compress the training examples by a large margin.

In the baseline experiment and in all extensions, f remains constant at character buffer
size 15. In practice we do expect to find differences in storage space needed for the different
extensions. Extension 1, adding previous word context, will increase the average branching
factor of the tries built. Extension 2, predicting two words instead of one, will also likely
increase path length and branching. Despite this we expect to find relatively little effect of
these potentially large storage differences on the speed of classification.

In contrast to our fixed f , n is varied in learning curve experiments, as detailed in the
next section.

4. Experimental setup

We performed experiments on comparable Dutch and English data. Dutch has a productive
compounding morphology, allowing for long, relatively infrequent words. Dutch therefore
has more unknown words than English (Ordelman et al. 2001), but once a long compound
is predicted correctly during the first letters, many keystrokes can be saved—roughly equiv-
alent to what could be saved in extension 2 applied to English, when predicting two English
words at the same time that in Dutch would be single words.

As our Dutch text corpus for training and testing, we used a Dutch newspaper’s article
archive for the year 1998, comprising a total of 128 million words. We split this corpus
into a training corpus of up to the first 30 million words, and a disjoint test set of the
final 100,000 words. The test set thus contains articles describing events which occurred
at a later point in time, and not immediately following the articles in the training set. For
English we made use of the Reuters RCV1 corpus (Lewis et al. 2004), of which we also took
the final 100,000 words as test data, and up to 30 million words from the start of the corpus
as training data.

4.1 Experimental design and evaluation

Keeping the test sets constant for each language, we grow the amount of training material
in a pseudo-exponential series, starting at 1,000 words, ending currently at 30 million. At
each step in the curve we perform a full IGTree experiment in which we generate a trie,
and process the test sets with the trie. With each experiment we measure the percentage of
keystrokes saved: the proportion of the total number of keystrokes needed to generate the
entire test text when all correct suggestions of the system are effectuated as soon as they
are presented, over the total number of keystrokes needed when the full test text would
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Figure 3: Learning curves on Dutch (left) and English (right) data of the baseline system
(the “recent keystrokes” trie), extension 1 (the “recent keystrokes + context”
trie), and extension 3a (adding a recency model to the baseline system).

be keyed in character by character. Pressing the “Accept” button is also counted as a
keystroke.

Counter to Lesher et al. (1999), Fazly and Hirst (2003), and several other approaches
mentioned earlier, we do not consider ranked n-best lists of completion suggestions, as in
many devices and circumstances it is inefficient or impossible to present these suggestion
lists. Inspecting a list of suggestions also poses a larger cognitive load than checking a
single suggestion, and furthermore it is unclear how scrolling, browsing and selecting items
from this list should be counted in terms of keystrokes. One could adopt the reasoning that
selecting the highest-ranked suggestion costs one keystroke, selecting number two costs two
keystrokes: (1) go one step down the list, (2) accept the suggestion, etcetera. Both Lesher
et al. and Fazly and Hirst report keystroke saving results with n > 1 (n = 10 and n = 5,
respectively) but do not take the ranking of the correct suggestion into account. We choose
to work with n = 1.

5. Results

As a first analysis, we compare the baseline system against its two direct variants, extension
2 (the “recent keystrokes + context” trie) and extension 3a (adding a recency model), both
for the Dutch and the English data. Figure 3 displays the two learning curve graphs.

The graphs of the two languages are quite similar. The keystroke savings of the baseline
system increase at a reasonably steady log-linear pace until about a training set of 100,000
words, after which the increase in performance decreases with more data, and even appears
to flatten. The extension 1 system, adding previous-word context to the input, however,
continues its approximately log-linear growth, and gains marked improvements over the
baseline from 100,000 words of training onwards. Second, we observe that adding a recency
model to the baseline system boosts keystroke savings considerably when the trie is trained
on small amounts of data, but the surplus effect of the recency model diminishes gradually,
and the curve flattens just as the baseline curve does.

Figure 4 compares extension 1 (already shown in Figure 3) and 2, and compares the
two extensions with their recency-model variants (3b and 3c, respectively). The graphs
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Figure 4: Learning curves on Dutch (left) and English (right) data of extension 1 (the “re-
cent keystrokes + context” trie), extension 2 (extension 1 plus predicting the
following word), extension 3b (adding a recency model to extension 1), and ex-
tension 3c (adding a recency model to extension 2).

for Dutch and English look similar again, with somewhat higher scores observed for En-
glish. Compared to extension 1, predicting the next word as well (extension 2) leads to
slightly better keystroke savings only at the largest training set sizes; at best, the surplus
of predicting the extra word is 2.3% for English and 1.8% for Dutch).

Adding a recency model to the two extensions also leads to enhanced scores when trained
on small amounts of data, but the surplus of the recency model decreases with more training
data. Extension 3c represents the aggregate of all available information; its curves combine,
as can be seen in the graphs of both languages, the (diminishing) effect of the recency model
with the (increasing) effect of previous-word context in the input and the (modest) effect of
predicting the extra next word. Extension 3 produced the highest keystroke savings: 50.1%
on Dutch and 54.0% on English, both at 30 million training words.

As pointed out, all systems compared here are based on character n-grams; earlier we
referred to related work on predicting the next word based on an input of previous words
(Nantais et al. 2001, Shein et al. 2001, How and Kan 2005), i.e. based on word n-grams.
We trained and tested a memory-based word trigram language model (Van den Bosch 2006)
on the same data. The model predicts the next word on the basis of the two previously
typed words. If the predicted word is correct, all characters of the entire word (plus a
whitespace character) are saved. The disadvantage of this system is that it cannot suggest
the completion of a word as it is keyed in, as it needs to wait for this word to be entered
completely to be able to predict the next word.

Figure 5 compares the learning curve of this word trigram-based model versus our
character-based baseline system for Dutch. It is clear that the word-based model pro-
duces considerably lower key savings. An analysis shows that this can be attributed largely
to the fact that the word prediction is particularly successful in predicting short function
words, on which few keystrokes can be saved. Trained on 30 million words, the trigram
language model is able to predict 20.4% of all next words correctly, while this only accounts
for 14.0% keystrokes saved. Yet, the word-based learning curve does not flatten, which is
in accordance with earlier observations (Van den Bosch 2006).
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Figure 5: Learning curves on Dutch data of the (character n-gram-based) baseline system
and a word-based trigram language model.

As stated earlier, adding character context to the input (extension 1) and predicting the
next word as well (extension 2) can be expected to produce a larger memory footprint due
to a larger branching factor in the trie, and longer paths stored in the trie. The left-hand
graph in Figure 6 displays the number of trie nodes needed at the various training set sizes
by the three systems trained on Dutch data. The y-axis is also logarithmic. The numbers
of trie nodes needed by both extensions stand in a roughly linear relation with the number
of training instances (recall the linear O(n) worst case complexity); largely mimicking the
results shown earlier in Figures 3 and 4, the curve of the baseline system flattens earlier
and more than the other two curves2. Comparing the curves of the two extensions, the
second extension appears to continue a near-linear trajectory. As the memory footprint of
the baseline flattens more, the difference between the trie sizes of the extensions and the
baseline grows to more than one order of magnitude.
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Figure 6: Left: Memory usage of the baseline system versus the first and second extensions,
in terms of the number of trie nodes. Extension 1 extends the input character
buffer to cover previous words as well; extension 2 adds the prediction of the
next word. Right: Speed of the three word completion variants, in terms of the
number of characters processed per second.

2. The current implementation of IGTree uses 40 bytes per trie node; the 604,285-node trie of the baseline
system trained on 2 million words costs just over 23 MB of memory.
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Besides their increased memory footprint, for practical purposes it would be good to
know that the extensions are not exceptionally slower than the baseline, as the algorithm
has to at least be fast enough to follow real time keystrokes, the average speed of which
has been estimated at 0.12 seconds per keystroke for a good typist, and 0.28 seconds per
keystroke for untrained typists (Kieras and John 1994). The worst-case complexity (O(f),
f being the number of features) would predict no substantial loss in speed as f remains
constant in our experiments.

The right-hand graph of Figure 6 displays the speed of the three systems using the
same logarithmic learning curve axis, measured on the Dutch test set in uninterrupted
classification mode, on a state-of-the-art computing server. Single measurements were made
per training set size, hence the occasional spike, which may be due to uncontrollable task
attribution behavior of the computer’s kernel. The figure shows that the speed of the three
systems, despite their different memory footprints, is indeed similar. The speed of all three
systems declines from about 110 thousand classifications (keystrokes) per second to around
55 thousand classifications per second for the two extensions, and around 70 thousand
classifications per second for the baseline system, at 30 million words of training data.

As a final analysis, in order to gain some insight into the performance of the recency-
based model in isolation and not as a companion to the trie-based word completion system,
we performed a series of experiments varying the size of the memory buffer m in steps of
5, again on Dutch data. In our experiments we arbitrarily set m = 300, as this seemed a
reasonable approximation of the average length of a newspaper article, in which words can
be expected to recur burstily because of the topical coherence of the text seen so far. The
results visualized in Figure 7 show that our estimate is reasonable, with 14.5% keypresses
saved at m = 300, a point where the curve has flattened considerably and little is to be
gained from further increase.
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Figure 7: Percentage of keystrokes saved using the recency model in isolation, with an
increasing recent-word memory buffer up to 500 words in size.
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6. Discussion

Given the common wisdom on the topic of word completion, our goal in this paper was
to investigate the scaling behavior of a baseline trie-based word completion system as well
as that of two extensions. The first extension adds characters of previous words to the
input; the second extension adds the next word to the completion output, turning it into a
bigram predictor. The baseline and its two extensions were also augmented with a recency
model. First, we focused on performance in terms of keystroke savings on an unseen text.
We performed experiments on English and Dutch data from the news domain, and plotted
learning curves based on a pseudo-incrementally increasing training set regime. In agree-
ment with the observation made by Lesher et al. (1999), the learning curves show initial
log-linear increases, but we observe flattening curves for the context-insensitive baseline
system, reaching about 32% character savings in both languages at 30 million words of
training data.

Extending the character input buffer to cover previous words as well leads to an in-
creasing surplus in saved keystrokes of up to 15% in our experiments. This is in line with,
but a larger effect than the 7.5% surplus reported by (Lesher et al. 1999) at a training
set maximum of two million words; we do find a similar 7% increase with Dutch on that
same training set size (but an 11% increase with English). The surplus increases because
the baseline learning curve flattens more with more data than the curve of extension 1.
Extending this further by predicting not only the current word but at the same time also
the next word yields an additional small surplus of about 2% (results on the two languages
differ slightly, but show the same trends and differences overall).

Finally, adding a recency model to the three systems produces an additional boost in
performance, but this effect is not sustained; rather, the added effect of the recency model
decreases as the systems are trained on more data. The initial boost of about 11% decreases
to about 4% in our experiments. Completing words that recently occurred is a sensible idea,
but with a completion system trained on more data the recency model’s contribution will
be increasingly less complementary.

In general the learning curve results indicate that more training data leads to increased
performance of context-sensitive trie-based word completion systems; we logged keystroke
savings of 50% (Dutch) to 54% (English). We also have gathered indications on whether
and how much our learning curves flatten, and thus to what extent the performance could
still be boosted by adding more data. The early study of Lesher et al. (1999) reports a
non-trivial rate of increase up to two million training words. Using a 10-best list, they
report average keystroke savings over seven different test sets of about 54%. More recently,
Fazly and Hirst (2003) measured the performance of their best system on two different
training set sizes, 5.6 million and 81 million words from the British National Corpus. They
report relatively limited improvements on two differently-sized test sets: an increase from
about 51% to 53% (recall that they draw the correct suggestion out of a ranked 5-best
list). They characterize the 2% increase as “only a small improvement”, suggesting a more
serious flattening than we observed so far.

Despite the positive effects on performing the task, more training data also leads to
larger tries; the baseline system produces lean and fast tries, while the extended systems
yield tries that are at least an order of magnitude larger. Still, as our complexity analysis
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predicted, the effectiveness of the trie data structure leads to high processing speeds that
are only about 21% slower for the extensions as compared to the baseline.

There are several obvious paths to take in future work, the first one being the continua-
tion of the learning curves. A second extension that the literature suggests (cf. Section 2) is
to use part-of-speech tagging or syntactic information, but we also quoted Fazly and Hirst’s
hypothesis on why the influence of this information is limited in their experiments (Fazly
and Hirst 2003). Garay-Vitoria and González-Abascal (1997) report similar observations
with using statistical grammatical information. The experiment nonetheless remains in-
teresting when seen through the instrument of learning curves, as the influence of explicit
linguistic information may be larger with smaller training set sizes, as shown earlier by Van
den Bosch and Buchholz (2002).

Another direction of future research with a considerable practical value would be to
train and test word completion systems on personalized collections of documents or social
media messages (such as email or tweets), and perform matrices of experiments with in-
domain/out-of-domain and generic/personalized data in all combinations of training and
test set types. These dimensions are likely to have a major impact on the percentages of
keystrokes saved, but we would expect the relative learning curve effects to persist.
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