Computational Linguistics in the Netherlands Journal 9 (2019) 101-116 Submitted 09/2019; Published 12/2019

Predicting syntactic equivalence between source and target

sentences
Bram Vanroy BRAM.VANROY@QUGENT.BE
Arda Tezcan ARDA.TEZCANQUGENT.BE
Lieve Macken LIEVE.MACKENQUGENT.BE

LT?, Language and Translation Technology Team, Ghent University

Abstract

The translation difficulty of a text is influenced by many different factors. Some of these are specific
to the source text and related to readability while others more directly involve translation and the
relation between the source and the target text. One such factor is syntactic equivalence, which can
be calculated on the basis of a source sentence and its translation. When the expected syntactic
form of the target sentence is dissimilar to its source, translating said source sentence proves
more difficult for a translator. The degree of syntactic equivalence between a word-aligned source
and target sentence can be derived from the crossing alignment links, averaged by the number of
alignments, either at word or at sequence level. However, when predicting the translatability of
a source sentence, its translation is not available. Therefore, we train machine learning systems
on a parallel English-Dutch corpus to predict the expected syntactic equivalence of an English
source sentence without having access to its Dutch translation. We use traditional machine learning
systems (Random Forest Regression and Support Vector Regression) combined with syntactic
sentence-level features as well as recurrent neural networks that utilise word embeddings and
accurate morpho-syntactic features.

1. Introduction

In translation studies, equivalence is a concept that indicates how a source text and its translation can
be compared to each other. It works on low-level language features such as morphology, lexicon, and
syntax, as well as on higher-level, general text properties such as semantic, pragmatic, and cultural
planes (Baker 2011). In the current study, we focus on syntactic— that is, structural— equivalence,
which we operationalise as the amount of reordering that is necessary to transform a source sentence
into a target sentence. When the syntactic equivalence between a source and target sentence is high
(i.e. they are structurally similar), no or few reordering steps are needed to transform the source text’s
syntactic form into the target structure. When syntactic equivalence is low, many reordering steps
are required to create a good translation. We investigate two approaches of quantifying syntactic
equivalence. The first one is based on word alignment whereas the second focuses on the alignment
of sequences of words. How exactly we calculate these metrics will be discussed in Section [3.1

In light of the PreDicT projectE| (Predicting Difficulty in Translation), this study aims to estimate
an English source sentence’s syntactic equivalence to an implied Dutch translation without the
need for that translation. Our previous study shows that syntactic equivalence is correlated with
cognitive effort, and thus the translation difficulty of a text (Vanroy et al. 2019). More related
research will be discussed in Section [2| To predict syntactic equivalence, we use the wealth of data
available in word-aligned source and target sentences of an English-Dutch parallel corpus to train
machine learning models that can predict a source sentence’s syntactic equivalence. The dataset used
will be discussed in Section [B:2] followed by a detailed run-down of the machine learning systems that
we have put to the test (Section . Then we show the results for both the approach based on a

1. https://research.flw.ugent.be/en/projects/predict

(©2019 Bram Vanroy, Arda Tezcan, Lieve Macken.

https://research.flw.ugent.be/en/projects/predict

word-alignment corpus and the one utilising sequence alignment (Section , followed by a discussion
in Section[5} Finally, we will provide some hints towards future research in Section [f]

2. Related research

Translatability is a topic in translation studies that is still open to much debate. Historically,
there has been much discussion of whether or not texts can in fact be truly translated, feeding
an existential sense of untranslatability. This absolute viewpoint is much less present today, even
though ‘it is assumed that the perfect translation, i.e. one which does not entail any losses from
the original is unattainable’ (de Pedro (1999), p. 556). In this paper we understand translatability
as the difficulty of translation rather than the more philosophical possibility or attainability of
translation. It has been suggested that the difficulty of translating a text can be measured by
readability formulas (Jensen 2009), and that it can be modelled by using only source text features
(Mishra et al. 2013). However, empirical research found that a text’s translatability is only in
part related with its readability (Sun and Shreve 2014). In addition to source text properties, the
difficulties that translators are faced with can also be attributed to language-pair specific features.
One such feature is equivalence, or the lack thereof, between a source text and its translation
(Sun 2015). As mentioned before, we put our attention to syntactic equivalence between a source
and target text.

Even though quantitative research on syntactic equivalence with respect to human translation is
scarce, syntactic equivalence is a much more discussed topic in the field of machine translation (MT),
where it can be seen as synonymous for word reordering. Birch et al. (2008) show that the amount of
reordering necessary between a source text and its translation is a strong predictor of the performance
of a statistical machine translation (SMT) system. In other words, language pairs that require more
reordering are more difficult to translate by SMT systems. The reaction to this particular translation
difficulty was addressed by incorporating syntax into SMT systems. The interest for this problem was
large, at the time, and many different solutions were proposed. Most of them require preprocessing
the source text (often called pre-reordering) to better match the expected target sentence’s structure.
The extent of this topic surpasses the scope of the current paper, but for more details and different
approaches see for instance Barone and Attardi (2013), Collins et al. (2005), Xia and McCord (2004),
and Yamada and Knight (2001).

In recent years, advances in deep learning gave rise to neural machine translation (NMT) systems,
which outperform SMT in terms of translation quality and yield fewer errors across almost all error
types, including word order errors (Castilho and O’Brien 2017, Bentivogli et al. 2016, Van Brussel
et al. 2018). Hence, researchers have posed the question whether pre-reordering steps are actually
still necessary (Du and Way 2017). Due to access to more context in NMT and the complexity and
fine-grained feature analysis that neural networks are capable of, it is no surprise that NMT can
implicitly learn word orders from training a translation model. In fact, Toral and Sanchez-Cartagena
(2017) show that the reorderings that NMT introduces are closer to the reorderings in the reference
translations than those by SMT. To further improve their performance, efforts have been made
to teach NMT systems the linguistic nuances of natural language, particularly syntax and word
(re)order(ing) (Huang et al. 2018, Zhang et al. 2017). Du and Way (2017) found that preprocessing
a source sentence by reordering it actually lowers an NMT system’s performance. Instead they
suggest an alternative approach that improves translation quality by adding linguistic knowledge such
as part-of-speech (PoS) tags and word class to Japanese-to-English and Chinese-to-English NMT
systems. This addition was inspired by the work of Sennrich and Haddow (2016) on NMT for the
language pair German and English where they added lemmas, PoS tags, syntactic dependency labels,
and morphological features to the input of the neural network, leading to an increased performance of
the system. Similarly, on the task of detecting grammatical errors in SMT output, Tezcan et al. (2017)
showed that word-level morpho-syntactic features, consisting of PoS, dependency and morphology
information, yield better results than using word embeddings as a word representation technique.

102

This approach is closely related to the recurrent neural network (RNN) architecture that we test
in this study on the task of predicting syntactic equivalence (cf. Section . In a multi-task
set-up, Niehues and Cho (2017) successfully used PoS-tagging as a secondary task next to neural
machine translation. The idea being that the model learns the importance of part-of-speech tags,
and that this information propagates to the MT task. Eriguchi et al. (2016) provided evidence that
attentional NMT systems can be extended with a linguistic tree representation of the source text
for English-to-Japanese translation. A similar idea was worked out by Bastings et al. (2017), who
made use of graph convolutional networks (GCN) to encode the source text as syntax-aware word
representations through syntactic dependency trees. This information contributes to improve over
their baseline without syntactic information for English-German and English-Czech. Conversely,
presenting the target text as a linguistic structure, Aharoni and Goldberg (2017) found that using
a string-to-tree model can improve the performance of German-to-English NMT over a traditional
string-to-string variant. Here, the target text is presented as a linearised and lexicalised constituency
tree. See Currey and Heafield (2018) for a non-exhaustive yet comprehensive overview of efforts to
incorporate syntax into RNN-based NMT systems. The authors also introduce their own approach
of injecting syntactic information into an English-to-German NMT system by using both the source
text as well as its linearised constituency parse as input. Especially the multi-task system performed
well, improving over the baseline.

Generally speaking there seems to be an iterative process of linguistic features being added to
existing translation systems to try to further improve their performance.

Even though the above only highlights the difficulties that MT systems experience as a result of
the lack of linguistic knowledge, there is also some evidence that suggests that the syntax of a source
and of its target text play a role for human translators. Bangalore et al. (2015) found that syntactic
variation — that is, syntactic entropy — correlates with cognitive effort. In other words, the more
possible variations in the target text structure, the more difficult the translation process is. In this
paper, we are more interested in syntactic equivalence between a source and target text rather than
the syntactic entropy of a given source sentence. Translation difficulty is often reduced to source text
features such as its readability, but Sun and Shreve (2014) (reiterated in Sun (2015)) use the term
equivalence to discuss translation-specific difficulty that is not solely related to the source text. The
(syntactic) equivalence between a source text and its (possible) translation can cause difficulties for a
translator when the source and target syntactic structure differ significantly. We refer the reader to a
previous study (Vanroy et al. 2019), where we correlated translation process features with syntactic
equivalence. We found that, indeed, a correlation exists between word reordering and a number
of translation process features (taken from duration, revision and gaze categories) as a proxy for
cognitive effort and, thus, translation difficulty. We take this to mean that the more transformations
the source word order has to undergo during translation, the more cognitive effort is required by
the translator. Considering that the goal of PreDicT is to build a translatability predicting system,
we wish to model syntactic equivalence of a sentence off-line, that is, without the need of a target
sentence which brings us to the current study.

3. Methodology

First, we elaborate on how we quantify syntactic equivalence by distinguishing two approaches in
Section word alignment and sequence alignment. Then we discuss the used dataset (Section ,
followed by the experimental set-up consisting of a baseline , a traditional machine-learning
(ML) approach using sentence-level features , and finally a neural network that uses word-level

features (3.3.3)).

103

3.1 Alignment types

We present two similar approaches to quantify syntactic equivalence: the first quantifies how words
have moved position during translation; the second takes the movement of word sequences into
account rather than single words. The core idea is that we calculate syntactic equivalence as the
number of times alignment links cross each other (hence its name cross value), averaged by the
number of alignment links. Visual examples are given below.

Our first approach works on the word level: by looking at how each individual word has moved
with respect to other words in the sentence, we calculate its cross value. Our measure of syntactic
equivalence is bidirectional (or symmetrical) and applicable to either translation direction (English-
to-Dutch or Dutch-to-English). This contrasts with Carl et al. (2016), who introduce a similar metric
but which is asymmetrical, i.e. the resulting cross value differs depending on the translation direction.
Typically, a word-aligned corpus is represented in the Pharaoh format. The format requires that
every alignment link is shown as a pair of source and target word indices s;-t;. The indices indicate
the position of that token in its sentence. An example is given below where [Ta]is the source sentence,
the target sentence, and [2| a representation of the word alignments in Pharaoh format.

(1) a. Sometimes she asks me why I used to call her father Harold .
b. Soms vraagt ze waarom ik haar vader Harold noemde .
(2) 0-01-22-14-3 5-4 6-8 7-8 8-8 9-5 10-6 11-7 12-9

We can visualise this as follows in Figure[I] The arrows indicate the alignment links, i.e. where
a given source word has moved to in the target sentence. The circles highlight where alignments
cross one another; these are the crosses. In this example, we count ten crosses. This value is then
averaged by the number of alignments (arrows) to get our final, average cross value of the whole
sentence. In this case that is 10/12 = 0.8333....

Sometimes she asks me why I used to call her father Harold .

X S e/

Soms vraagt ze waarom ik haar vader Harold noemde .

Figure 1: A visual representation of word alignment and cross values.

The second approach that we tested is based on sequential words that move together as a group.
The intuition here is that words that move together are one unit and as such can count as one
alignment link. To this end, we seek the longest possible word sequence alignments between the
source and target sentences with the following criteria:

(i) each word in the source sequence is aligned to at least one word in the target sequence and
vice versa;
(ii) each word in the source word sequence is only aligned to word(s) in the target word sequence

and vice versa;

(iii) none of the alignments between the source and target word sequences cross each other.

The visualisation of Example [I] as sequence alignment in Figure [2] makes this clear. To illustrate:
why I is seen as a sequence because they are sequential (there is no aligned word between them nor
between their translations), and the order is the same (why is aligned with waarom which stands
before the I — ik alignment link), so they do not cross each other. These alignments are also shown
in Pharaoh format in Example

104

[Sometimes|[she]asks| me why T[used to call|her father Harold]]]

XS ==/

[Soms|vraagt|ze[waarom ik|haar vader Harold|noemde][

Figure 2: A visual representation of sequence alignment and cross values.

(3) 0-01-22-13-34-55-46-6

In the example, the cross value based on sequences is 2/7 = 0.286. We would argue that, intuitively,
using crosses of sequence alignment better represents the syntactic shifts that a source sentence has
to go through to become the target sentence because it indicates crossing groups of words rather
than single entities. Therefore, our hypothesis is that cross values based on sequence alignment
can be modelled better than those based on word alignment. To distinguish systems that use word
alignment as input from those using sequence alignment, we will identify the former with WORD and
the latter with SEQ.

Even though not similar, Birch et al. (2008) propose a word reordering metric that works by
maximising aligned block pairs, too. The authors use this metric as a predictor for the performance
of machine translation systems. A large difference with our approach is that they average their metric
by the number of source tokens in a sentence whereas we average by the number of alignments. This
is important, because in our approach, both for word alignment and sequence alignment, calculating
cross is direction-agnostic, meaning that going from source text to target sentence or vice-versa
will yield the same cross value. As such it is, indeed, a syntactic equivalence metric that compares
two sentences irrespective of the translation direction. Do note that sequences are not linguistically
motivated entities but only sequences that move as a single unit. Sequences of words have been
used as (structurally useful) phrases before, perhaps most notably by the (H)TER evaluation metric
which takes sequence shifts into account to calculate the edit distance between a translation and a
reference ((Human-targeted) Translation Edit Rate; Snover et al. (2006)).

Because our aim is to predict syntactic equivalence automatically, which we measure with cross
values in this study, we rely on automatic word alignment methods, which are error-prone. Therefore,
we first analyse the quality of two widely-used automatic word alignment systems in order to (i) ensure
that automatic methods are sufficiently accurate compared to human alignments; and (ii) to use
the automatic method with the highest alignment quality in the remainder of this study. In the
following test we compare the human, manual alignments (MA) of a small corpus, taken from the
work of Macken (2010), to the output of GIZA++ (Och and Ney 2003) and fast_align (FA) (Dyer
et al. 2013) to see whether the quality of automatic word alignment systems is acceptable, and
which tool performs best. For both GIZA++ and FA, we use the grow-diag-final-and algorithm,
which starts with the intersection of the forward and backward alignments and then adds additional
alignment points (Koehn et al. 2003). The dataset contains 143 sentences after filtering out outlying
sentences that consist of less than three or more than 50 tokens in either source or target text. As
word alignment tools work better with larger corpora, we obtained word alignments with GIZA++
and FA after appending the manually aligned data to the Dutch Parallel Corpus (DPC; Macken et al.
(2011)). We evaluate the alignments between MA and GIZA++ and MA and FA with Alignment
Error Rate (AER), as proposed by Mihalcea and Pedersen (2003), which is based on earlier work by
Och and Ney (2000). We use the AER implementation of NLTK in Python (Bird et al. 2009).

105

MA-GIZA++ | MA-FA |

Min. 0.0 0.0

Max. 0.5758 0.6471
Mean 0.0822 0.1127
Median 0.0189 0.0691
SD 0.1110 0.1329

Table 1: Statistics about AER calculated on MA-GIZA++ and MA-FA.

Table [I] shows that with mean AER 0.0822 and median AER 0.0189, GIZA++ is closer to manual
alignments than FA (0.1127 and 0.0691, resp.). These results are in line with earlier findings by Peter
et al. (2017) where GIZA++ outperformed fast_align in terms of alignment quality. We consider
both AER scores to be sufficient for our task and that these automatic word alignment tools can be
used as a proxy for manual alignment. Because of its better alignment quality, we will use GIZA++
as our word alignment tool of choice.

3.2 Data set

In our experiments we use the Dutch Parallel Corpus (Macken et al. 2011), which, as the name
implies, is a parallel corpus that centres around Dutch as its core language. We make use of both
English-to-Dutch and Dutch-to-English parts of the corpus, which in total contain 148,421 sentences
after removing duplicates and sentences that are shorter than 3 tokens or longer than 70 tokens.
The training set consists of 144,421 sentences, leaving 2,000 sentences for the validation set and
2,000 sentences for the test set. The data was tokenised and lower-cased by using the preprocessing
scriptsE| provided by Moses (Koehn et al. 2007).

3.3 Experimental set-up

The objective of this paper is to predict the cross value of an English source sentence without
having access to the Dutch target sentence. As mentioned before, we predict cross values based
on word alignments as well as cross values based on sequence alignments. We train two types of
systems with their own feature sets. The first type contains traditional ML systems combined with
sentence-level features and the second one makes use of recurrent neural networks with word-level
features. Additionally, we compare the estimation performance of the two ML approaches to a mean
baseline, which we discuss first.

3.3.1 MEAN BASELINE

As exemplified above, the cross values for the word alignment and sequence alignment of a sentence
can differ. The mean cross value of the whole training set for WORD is 1.02 and for SEQ it is 0.91.
We use these mean values as a baseline. More explicitly: for all 2,000 sentences in the test set,
this baseline predicts 1.02 and 0.91 as cross values obtained from word and sequence alignments,
respectively. The results for this approach will be referenced as mean baseline below.

3.3.2 SENTENCE-LEVEL FEATURES AND RFR/SVR

In our traditional ML systems, we use sentence-level features as input (shown in , derived from
the sentence level which contrasts with the word features in Section These features have been
chosen because — from a linguistic point-of-view — they provide information about the syntactic
structure of a sentence. We used the Python package spaCy (Honnibal and Montani 2017) to extract
the required information from the source sentences.

2. https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer

106

https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer

(4) e parse tree depth
e sentence length
e # coordinating conjunctions
e # subordinating conjunctions
e # punctuation marks
e # content words (adjectives, (proper) nouns, and verbs)
e # subjects
e # objects

We employ Random Forest Regression (rfr) and Support Vector Regression (svr) from the
Python scikit-learn package (Pedregosa et al. 2011)E| Both rfr and svr are optimised through grid
search with mean squared error (MSE) as the criterion to minimise between predicted and actual
values. For rfr we tuned the number of trees (n_estimators) and found the best results with 500
trees (WORD) and 1000 in (SEQ). In the case of svr, the best parameters were C' = 1 (C is the penalty
of the error term), ¢ = 0.01 (e is the penalty-free distance with respect to training loss), using a
radial bias function kernel. This is the case for both WORD and SEQ.

3.3.3 WORD-LEVEL FEATURES AND RNN

In the previous section, we introduced the traditional machine learning systems that we use. These
systems are relatively fast and rather intuitive in that the features are hand-crafted. This can also
be a downside, however: feature extraction is a time-consuming process and the generated features
are often incomplete. Neural networks, on the other hand, try to learn high-level features from data
and eliminate the need of domain expertise and feature engineering. Combined with the success of
word embeddings (Mikolov et al. 2013, Pennington et al. 2014), especially in the last decade, neural
networks have been producing superior results compared to traditional machine learning algorithms
on various natural language processing tasks, including named entity recognition (Turian et al. 2010),
parsing (Socher et al. 2011a), sentiment analysis (Socher et al. 2011b), machine translation (Cho
et al. 2014) and quality estimation of MT (Deng et al. 2018). Inspired by previous work on NLP
and in addition to the traditional machine learning techniques described above, we use an RNN
architecture for the task of predicting syntactic equivalence for a source sentence and an implied
translation. RNNs can learn from a sequence of inputs rather than a single data point which makes
them ideal for NLP tasks because sentences are sequences of words. Instead of representing a sentence
as a single set of sentence-level features, which is the only option in the traditional ML systems,
neural networks allow us to use a sentence as a set of words, which all have their own features. In
other words, RNNs allow a sentence to be represented as a sequence of words, whereas traditional
systems can only process a sentence as one unit. The RNN architecture that we have used will be
discussed later in this section.

Word embeddings represent a word as a vector of size n based on its context and co-occurrences in
a text. Each dimension in such a vector represents a latent feature of a given word, capturing useful
syntactic and semantic properties (Turian et al. 2010). Despite its success and popularity on various
NLP tasks, Tezcan et al. (2017) suggest that word embeddings, as a word representation technique,
should not be considered as a one-size-fits-all approach. On the task of detecting grammatical errors
in statistical machine translation (SMT) output, they report a marked improvement in performance
over word embeddings by using accurate morpho-syntactic features. Moreover, in a more recent study,
Tezcan et al. (2019) showed that the combination of morpho-syntactic features and word embeddings
maximised the performance of an RNN system, in comparison to using either type of information
alone, on the task of detecting all types of fluency errors in SMT output, consisting of both semantic
and grammatical error types. Both studies suggest that such morpho-syntactic features provide

3. For more information about the fine-tuned parameters that we use in our experiments, see the package’s documen-
tation https://scikit-learn.org/stable/documentation.html.

107

https://scikit-learn.org/stable/documentation.html

complementary information to word embeddings when syntactic properties of texts are important
in a given task. Considering the syntactic nature of the task at hand, namely predicting syntactic
equivalence in translation, we use morpho-syntactic features, as an alternative word representation
technique.

As described in Tezcan et al. (2017), we transform each token of a given sentence into its
morpho-syntactic representation, in the form of a multi-hot encoded vector that provides accurate
information about its part-of-speech tag, dependency label, and morphology. For every word, the
vector values are set to 0 except for the morpho-syntactic features that apply to it, which are set to 1.
Figure [3] shows the morpho-syntactic features that are extracted for the word is, in a given English
sentence. In this example, the morpho-syntactic feature vector of the word is consists of all zeros
except for the fields that represent its PoS tag (VBZ), dependency label (Root), and morphology
information (finite, present tense, singular, and third person).

The organization of public space is essential for interaction.

[0100..010 ...1011010]

PoS (VBZ), Dep.(Root), Morph. (finite, pres. tense, sing., 3 p.)

Figure 3: A visual representation of how tokens are represented as morpho-syntactic, multi-hot
encoded features.

We used spaCy (Honnibal and Montani 2017) to extract the aforementioned morpho-syntactic
features on the English part of our dataset, as discussed in Section [3:2l We set the length of
morpho-syntactic feature vectors to 147, namely the total number of possible features obtained by
spaCy. The word embedding model was trained using word2vec (Mikolov et al. 2013) on a merged
data set consisting of the English part of our dataset and the English news crawl dataset from the
WMT shared task of 2017@ To keep the amount of information provided to the RNN system by the
two types of input vectors balanced, we trained word embedding models with 147 dimensions.

To go into more detail about the architecture: we built an RNN architecture such that each input
vector, word embedding or morpho-syntactic feature vector, is fed into a dedicated Bidirectional
Gated Recurrent Unit (BiGRU). GRUs are a specialised variant of RNNs, which are well suited for
capturing long range dependencies on multiple time scales (Cho et al. 2014). Bi-directional GRUs
consist of two recurrent layers, each processing the given input sequence in opposite direction, as a
means to overcome the generalisation limitations of RNNs in general, which have the tendency to
represent recent input nodes better (Bahdanau et al. 2014). As the final output of a GRU, we take
the concatenation of the last state of each layer. When both morpho-syntactic features and word
embeddings are provided as input, the outputs of both BiGRU layers are concatenated before they
are connected to the output layer, which predicts the cross value for a given input sentence using a
linear activation function. To help prevent overfitting, we apply dropout in the BiGRU layers (for
the input gates and the recurrent connections) and between the BIGRU layers and the output layer
(Srivastava et al. 2014).

We test three RNN architectures on this task, with different word representation combinations as
input:

e ron_ms: Only morpho-syntactic features
e rnn_w2v Only word embeddings
e ronn_ms+w2v: Both morpho-syntactic features and word embeddings

All systems were built with Keras (Chollet 2015) on top of a TensorFlow backend (Abadi
et al. 2015), using the Adam optimiser with a learning rate of 1le—3, hidden layer of size 200 and a

4. Available at http://data.statmt.org/wmt17/translation-task/.

108

http://data.statmt.org/wmt17/translation-task/

batch size of 200. We used tanh as activation function between input and hidden layers, and linear
activation between hidden and output layers. As loss function, we used MSE. All systems were
trained for 100 epochs. We trained each system with three different dropout values, namely 0, 0.2
and 0.4, and kept the model that performed best on the development set as the best model. Figure [4]
illustrates the proposed RNN architecture, which takes both morpho-syntactic features and word

embeddings as input.
0.245 Regression

‘ Dropout
i j """"""""" i
| Bidirectional = | Bidirectional | |
: GRU GRU 1 Concatenate
i [Dropout J [Dropout] i
W Mf};ﬂph(} -
Syntax

Source Text (sentence)

Figure 4: A visual representation of rnn_ms+w2v.

4. Results

In this section, we use the Pearson correlation (r) between the predicted values and the actual cross
values as our primary evaluation metric. This is done in order to be able to compare the results
from WORD and SEQ: a sentence’s cross value based on word alignment is different from the cross
value based on sequence alignment. We also provide values for mean absolute error (MAE). MSE
and MAE should be minimised whereas Pearson’s r has to be maximised. In all results below, it
holds that the Pearson correlations are significant (p < .01). The figures that are given here show all
metrics (MSE, MAE and Pearson r) on the Y-axis, and all tested systems on the X-axis. Pearson r
values are given in boldface, MAE in italics.

The predictive performance of the systems that we built using input based on word and sequence
alignments are provided in Figure 5] and [6] respectively.

109

EMSE OMAE Pearson r

1.8
1.64
o 1.55
145
14
127
12
12 1.16
: 0.91
0.83
0.8
0.72 0.7 0.71 0.69
06 0.54
0.49 0.52
0.43

o 0.37
0.2

MEAN BASELINE RFR S5VR RNN_MS RNN_W2V ENN_MS+W2V

Figure 5: Visualisation of results for WORD (dataset mean of 1.64).

BMSE [OOMAE Pearson r

1.25
115 1.13

1.05

0.97 0.
0.95
0.85
0.75
075
0.66
0.65
055
045 0.44
035
RFR

MEAN BASELINE

. 0.58 0.58
0. 580_55 0.56 0.57

SVR RNN_MS RNN_W2V RNN_MS+W2V

Figure 6: Visualisation of the results for SEQ (dataset mean of 0.91).

In a last graph (Fig. , the performance difference between systems using input based on word
alignment and sequence alignment is highlighted.

110

M Pearson r (word) [Pearson r (seq)

0.6
0.58
0.55 0.56 054
0.55 :
0.52
05 0.49
0.47
0.44

045 043

04

0.37

0.35

03

RFR SVR RNN_MS RNN_W2V RNN_MS+W2V

Figure 7: Comparison of WORD and SEQ.

5. Discussion

The goal of this paper was to predict a Dutch source sentence’s syntactic equivalence to an implicit
English translation. To this end we introduced our version of a cross value, which can be based on
word alignments (WORD) as well as on sequence alignments (SEQ), as discussed in Section We
found that traditional machine learning systems (rfr and svr) are less performant than recurrent
neural networks (rnn_x) across the board. Furthermore, SEQ outperforms the WORD counterpart in
all scenarios.

The neural network architectures with word-level features perform better than the traditional
machine learning systems using sentence-level features. The best performing traditional ML system,
svr, reaches a Pearson correlation of 0.43 (WORD) and 0.47 (SEQ), outperforming rfr (0.37 WORD, 0.44
SEQ). All RNN-architectures achieve better results, though. The reason for recurrent neural networks
performing better than traditional ML is two-fold, and already touched upon before in Section [3.3]
On the one hand, the traditional systems require single data point features as input, meaning that
a sentence can only be represented as a number of features (cf. Section. These features are
thus more coarse grained and not as detailed as word-level features. In contrast, when using neural
networks a sentence can be represented as sequences of features. In other words, rather than having
a single set of features for a sentence, that sentence can be represented as a sequence of word-level
features, which gives much more detailed information to the system. Particularly, recurrent neural
networks allow for the propagation of information through the sequence. This means that the final
output takes into account the order of the words as well as the information of each word. On top of
that, the architecture of our tested traditional ML systems are fundamentally different from neural
networks. The latter is much more capable of modelling data-specific peculiarities while at the same
time generalising sufficiently.

For the neural network systems, we can see that using only morpho-syntactic features (0.49 WORD,
0.55 SEQ) performs slightly worse than using only word embeddings (0.52 WORD, 0.56 SER). Because
the task at hand is syntactic rather than semantic, it is worth expanding on the performance of
word embeddings compared to morpho-syntactic features. Because our task is specifically directed
at modelling syntactic changes, we expected a high importance of the morpho-syntactic features.
Our morpho-syntactic features are very specific to each word in its context and role in the sentence
whereas word embeddings are more general representations of words. Word2vec models do not

111

specifically model syntax or morphology or even semantics; rather, they represent each word-type in
relation to each other, implicitly modelling all kinds of language features, including morpho-syntactic
and semantic. Because of the different goals of both word representations techniques (one specifically
morpho-syntactic, the other more general), we had especially hypothesised them to be complementary,
leading to a performance boost when combined. This is indeed the case, with a correlation of 0.54
(WORD), and 0.58 (SEQ).

Finally, comparing the Pearson correlations of both WORD and SEQ, we clearly see that cross values
based on sequence alignment can be modelled better than those using word alignment.

In this paper we have presented a number of systems that can predict a source text’s syntactic
equivalence with an implicit translation, i.e. without needing an actual translation. In our tests, we
reached a Pearson correlation of 0.58 but in future work we tend to improve this with more complex
neural networks. Furthermore, and in line with Tezcan et al. (2019) who worked on a classification
problem, we showed that for this specific task, a regression problem focused on a sentence’s syntax, a
morpho-syntactic component can be successfully used to improve the quality of predictions.

6. Future work

We have presented a way of calculating syntactic equivalence (with cross values) based on compu-
tational phrases, that is, phrases that are algorithmically created. Building phrases in this way is
often used in automatic systems to create alignments between source and target sentences. However,
we would also like to take the linguistic route, and compute the cross values based on linguistically
motivated phrases. The phrases can be extracted automatically by using a constituency parser,
but this introduces yet another automatic component prone to errors. Additionally, theoretical
questions need to be answered concerning how the constituency tree should be segmented, and how
to deal with linguistic phenomena such as separable verbs, conjunctions, (in)direct speech, interjected
adverbs, and so on. Despite these challenges, we think linguistic phrases can improve performance
over algorithmic phrases.

In our experiment we used recurrent neural networks, and even though they are powerful, they
have been surpassed by the transformer architecture (Vaswani et al. 2017) in many natural language
tasks. In future endeavours we will use transformers and investigate how well they perform for our
given task.

The objective of the PreDicT project is to build a system that can predict a source sentence’s
translation difficulty. The present study discussed one feature (syntactic equivalence) that plays
a role in predicting translatability, but we plan to test more features and add those to the final
system. These features include semantic information such as word translation entropy, but also
source text specific features such as syntactic and semantic complexity. Finally, language (pair)
specific difficulties can be added, for instance the translation of the English -ing form to Dutch.

References

Abadi, Martin, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015), TensorFlow: Large-scale
machine learning on heterogeneous distributed systems. https://www.tensorflow.org/.

Aharoni, Roee and Yoav Goldberg (2017), Towards string-to-tree neural machine translation, Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume

112

2: Short Papers), Association for Computational Linguistics, Vancouver, Canada, pp. 132-140.
https://www.aclweb.org/anthology /P17-2021.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014), Neural machine translation by
jointly learning to align and translate, CoRR.

Baker, M. (2011), In other words: A coursebook on translation, 2 ed., Routledge, Abingdon, UK.

Bangalore, Srinivas, Bergljot Behrens, Michael Carl, Maheshwar Gankhot, Arndt Heilmann, Jean
Nitzke, Moritz Schaeffer, and Annegret Sturm (2015), The role of syntactic variation in translation
and post-editing, Translation Spaces 4 (1), pp. 119-144.

Barone, Antonio Valerio Miceli and Giuseppe Attardi (2013), Pre-reordering for machine translation
using transition-based walks on dependency parse trees, Proceedings of the eighth workshop
on statistical machine translation, Association for computational linguistics, Sofia, Bulgaria,
pp. 164-169.

Bastings, Joost, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an (2017), Graph
convolutional encoders for syntax-aware neural machine translation, Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, Copenhagen, Denmark, pp. 1957-1967. https://www.aclweb.org/anthology,/D17-
1209.

Bentivogli, Luisa, Arianna Bisazza, Mauro Cettolo, and Marcello Federico (2016), Neural versus
phrase-based machine translation quality: A case study, CoRR. http://arxiv.org/abs/1608.04631.

Birch, Alexandra, Miles Osborne, and Philipp Koehn (2008), Predicting success in machine translation,
Proceedings of the conference on empirical methods in natural language processing (EMNLP
2008), Association for computational linguistics, Honolulu, Hawaii, pp. 745-754.

Bird, Steven, Edward Loper, and Ewan Klein (2009), Natural language processing with Python,
O’Reily Media Inc.

Carl, Michael, Moritz Jonas Schaeffer, and Srinivas Bangalore (2016), The CRITT translation process
research database, in Carl, Michael, Srinivas Bangalore, and Moritz Jonas Schaeffer, editors,
New directions in empirical translation process research, New frontiers in translation studies,
Springer, Cham, Switzerland, pp. 13-54.

Castilho, Sheila and Sharon O’Brien (2017), Acceptability of Machine-Translated Content: A Multi-
Language Evaluation by Translators and End-Users, Linguistica Antverpiensia 16, pp. 120-136.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio (2014), Learning phrase representations using RNN encoder-decoder
for statistical machine translation, arXiv e-prints. arXiv: 1406.1078.

Chollet, Francois (2015), Keras. https://keras.io/getting-started /faq, .

Collins, Michael, Philipp Koehn, and Ivona Kucerova (2005), Clause restructuring for statistical
machine translation, Proceedings of the 43rd annual meeting on association for computational
linguistics (ACL 2005), Association for computational linguistics, Ann Arbor, Michigan, pp. 531—
540.

Currey, Anna and Kenneth Heafield (2018), Multi-source syntactic neural machine translation,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 2961-2966.

113

de Pedro, Raquel (1999), The translatability of texts: A historical overview, Meta 44 (4), pp. 546-559,
Les Presses de I’Université de Montréal.

Deng, Yongchao, Shanbo Cheng, Jun Lu, Kai Song, Jingang Wang, Shenglan Wu, Liang Yao, Guchun
Zhang, Haibo Zhang, Pei Zhang, Changfeng Zhu, and Boxing Chen (2018), Alibaba’s neural
machine translation systems for WMT18, Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, Association for Computational Linguistics, Belgium, Brussels,
pp. 368-376. https://www.aclweb.org/anthology /W18-6408.

Du, Jinhua and Andy Way (2017), Pre-reordering for neural machine translation: Helpful or harmful?,
The Prague bulletin of mathematical linguistics 108 (1), pp. 171-182.

Dyer, Chris, Victor Chahuneau, and Noah A Smith (2013), A simple, fast, and effective reparame-
terization of IBM model 2, Proceedings of NAACL-HLT 2013, Association for Computational
Linguistics, Atlanta, Georgia, USA, pp. 644-648.

Eriguchi, Akiko, Kazuma Hashimoto, and Yoshimasa Tsuruoka (2016), Tree-to-sequence attentional
neural machine translation, Proceedings of the 5/th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Berlin, Germany, pp. 823-833. https://www.aclweb.org/anthology /P16-1078.

Honnibal, Matthew and Ines Montani (2017), spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing, To appear.

Huang, Po-Sen, Chong Wang, Sitao Huang, Dengyong Zhou, and Li Deng (2018), Towards neu-
ral phrase-based machine translation, Proceedings of International Conference on Learning
Representations, Vancouver, Canada.

Jensen, Kristian T. H. (2009), Indicators of text complexity, in Gopferich, Susanne, Arnt Lykke
Jakobsen, and Inger Mees, editors, Copenhagen Studies in Language, Vol. 37, Samfundslitteratur,
Copenhagen, Denmark, pp. 61-80.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu (2003), Statistical phrase-based translation,
Proceedings of NAACL-HLT 2008, Edmonton, Canada, pp. 48-54.

Koehn, Philipp, Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra Constantin, Evan Herbst, Hieu
Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, and Christine Moran (2007), Moses: Open source toolkit for statistical
machine translation, Proceedings of the ACL 2007 demo and poster sessions, Prague, Czech
Republic, pp. 177-180.

Macken, Lieve (2010), Sub-sentential alignment of translational correspondences, Phd thesis, Ghent
University, Ghent, Belgium.

Macken, Lieve, Orphée De Clercq, and Hans Paulussen (2011), Dutch parallel corpus: A balanced
copyright-cleared parallel corpus, Meta: Journal des traducteurs 56 (2), pp. 374-390.

Mihalcea, Rada and Ted Pedersen (2003), An evaluation exercise for word alignment, Proceedings
of the HLT-NAACL 2003 Workshop on Building and using parallel texts data driven machine
translation and beyond, Vol. 3, Association for Computational Linguistics, Edmonton, Canada,
pp. 1-10.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013), Efficient estimation of word
representations in vector space, arXiv e-prints. arXiv: 1301.3781.

114

Mishra, Abhijit, Pushpak Bhattacharyya, and Michael Carl (2013), Automatically predicting sentence
translation difficulty, Proceedings of the 51st Annual Meeting on Association for Computational
Linguistics (ACL 2013), Sofia, Bulgaria, pp. 346-351.

Niehues, Jan and Eunah Cho (2017), Exploiting linguistic resources for neural machine translation
using multi-task learning, Proceedings of the Second Conference on Machine Translation, pp. 80—
89.

Och, Franz Josef and Hermann Ney (2000), A comparison of alignment models for statistical machine
translation, Proceedings of the 18th conference on computational linguistics, Vol. 2, Association
for Computational Linguistics, Saarbriicken, Germany, pp. 1086-1090.

Och, Franz Josef and Hermann Ney (2003), A systematic comparison of various statistical alignment
models, Computational Linguistics 29 (1), pp. 19-51.

Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, and David Cournapeau (2011), Scikit-learn: Machine learning in Python,
Journal of machine learning research 12, pp. 2825-2830.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014), GloVe: Global vectors for
word representation, Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532-1543.

Peter, Jan-Thorsten, Arne Nix, and Hermann Ney (2017), Generating alignments using target
foresight in attention-based neural machine translation, The Prague Bulletin of Mathematical
Linguistics 108 (1), pp. 27-36.

Sennrich, Rico and Barry Haddow (2016), Linguistic input features improve neural machine translation,
Proceedings of the First Conference on Machine Translation: Volume 1, Research Papers, pp. 83—
91.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul (2006), A
study of translation edit rate with targeted human annotation, Proceedings of association for
machine translation in the Americas.

Socher, Richard, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Manning (2011a), Parsing natural
scenes and natural language with recursive neural networks, Proceedings of the 26th International
Conference on Machine Learning (ICML).

Socher, Richard, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning
(2011Db), Semi-supervised recursive autoencoders for predicting sentiment distributions, Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 11,
Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 151-161.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov
(2014), Dropout: A simple way to prevent neural networks from overfitting, Journal of machine
learning research 15 (1), pp. 1929-1958.

Sun, Sanjun (2015), Measuring translation difficulty: Theoretical and method-
ological considerations, Across languages and cultures 16 (1), pp. 29-54.
http://www.akademiai.com/doi/abs/10.1556,/084.2015.16.1.2.

Sun, Sanjun and Gregory M. Shreve (2014), Measuring translation difficulty: An empirical study,
Target 26 (1), pp. 98-127. https://benjamins.com/online/target /articles/target.26.1.04sun.

115

Tezcan, Arda, Veronique Hoste, and Lieve Macken (2019), Estimating word-level quality of statistical
machine translation output using monolingual information alone, Natural Language Engineering.

http://dx.doi.org/10.1017/S1351324919000111.

Tezcan, Arda, Véronique Hoste, and Lieve Macken (2017), A neural network architecture for detecting
grammatical errors in statistical machine translation, The Prague bulletin of mathematical
linguistics 108 (1), pp. 133-145.

Toral, Antonio and Victor M. Sanchez-Cartagena (2017), A multifaceted evaluation of neural versus
phrase-based machine translation for 9 language directions, Proceedings of the 15th conference
of the European chapter of the association for computational linguistics, Vol. 1, Association for
computational linguistics, Valencia, Spain, pp. 1063-1073. http://aclweb.org/anthology/E17-
1100.

Turian, Joseph, Lev Ratinov, and Yoshua Bengio (2010), Word representations: A simple and general
method for semi-supervised learning, Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL 10, Association for Computational Linguistics, pp. 384-394.

Van Brussel, Laura, Arda Tezcan, and Lieve Macken (2018), A fine-grained error analysis of NMT,
PBMT and RBMT output for English-to-Dutch, in Calzolari, Nicoletta, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Héléne Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu
Tokunaga, editors, Proceedings of the Eleventh International Conference on Language Resources
and Evaluation, European Language Resources Association (ELRA), pp. 3799-3804.

Vanroy, Bram, Orphée De Clercq, and Lieve Macken (2019), Correlating process and
product data to get an insight into translation difficulty, Perspectives pp. 1-18.
https://www.tandfonline.com/doi/full /10.1080/0907676X.2019.1594319.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin (2017), Attention is all you need, Advances in neural information
processing systems, pp. 5998-6008.

Xia, Fei and Michael McCord (2004), Improving a statistical MT system with automatically learned
rewrite patterns, Proceedings of the conference on computational linguistics, Bombay, India,
pp. 508-514.

Yamada, Kenji and Kevin Knight (2001), A syntax-based statistical translation model, Proceed-
ings of the 39th annual meeting on association for computational linguistics, Association for
computational linguistics, Toulouse, France, pp. 523-530.

Zhang, Jinchao, Mingxuan Wang, Qun Liu, and Jie Zhou (2017), Incorporating word reordering
knowledge into attention-based neural machine translation, Proceedings of the 55th annual
meeting of the association for computational linguistics, Vol. 1, Association for Computational
Linguistics, Vancouver, Canada, pp. 1524-1534. http://aclweb.org/anthology /P17-1140.

116

	Introduction
	Related research
	Methodology
	Alignment types
	Data set
	Experimental set-up
	Mean baseline
	Sentence-level features and RFR/SVR
	Word-level features and RNN

	Results
	Discussion
	Future work

