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Abstract

This article discusses the automatic linguistic enrichment of historical Dutch corpora through the
use of part-of-speech tagging and lemmatization. Such a type of enrichment facilitates linguistic
research where manual annotation is unfeasible.

We built a neural network-based model using the PIE framework and performed an in-depth error
analysis, in order to identify the strengths and weaknesses of each approach with respect to labeling
historical data.

In order to do so, we experimented with two data sets: the Corpus Gysseling (13th century
texts) and the Corpus van Reenen/Mulder (14th century texts). We used two different statistical
approaches (MBT and HunPos) as baselines for our neural approach. MBT is a memory-based
tagger frequently used for modern Dutch, while HunPos is an open source trigram tagger.

We present thoroughly analyzed results. In general, the neural model scores better than the
two baselines, even with limited training data. Based on the error analysis, we propose several
strategies for future research in order to improve the labeling of historical Dutch.

1. Introduction

This article aims to facilitate the linguistic enrichment of historical Dutch corpora through the use
of automatic part-of-speech tagging and lemmatization. Part-of-speech tagging is the assignment
of morpho-syntactic tags to tokens. Lemmatization, on the other hand, is the task of converting a
token to its dictionary headword, which allows us to abstract away from orthographic and inflectional
variation. The goal of these two classification tasks is to facilitate linguistic research by automatically
annotating a large number of historical texts, since manual annotation is expensive and prone to
human errors, e.g., deviations on the normalizations agreed upon. The annotated data can then
be beneficial for corpus linguistics (Daelemans et al. 1996). This article contributes to research on
sequence tagging of historical Dutch by creating a neural network-based model, and by analyzing
the specific problems that model encounters during tagging.

As in Kestemont et al. (2010), we regard lemmatization and PoS tagging as related tasks which
both involve assigning labels (PoS tags or lemmas) to words. Consequently, we used the same
sequence tagger for lemmatizing as for PoS tagging. We used two baselines in default settings, namely
the statistical taggers MBT (Daelemans et al. 1996) and HunPos (Megyesi 2009). Additionally, we
built a neural network based model using the PIE framework created by Manjavacas et al. (2019).
These taggers were tested on two fully annotated corpora from the thirteenth and fourteenth century,
namely Corpus Gysseling (CG) and Corpus van Reenen/Mulder (CRM) respectively.

In recent years, several techniques have been proposed to optimize natural language processing.
Approaches using deep learning have shown promising results, e.g., BERT for pre-training (Devlin
et al. 2019), the Transformer for machine translation (Vaswani et al. 2017) and the Transformer-XL
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(Dai et al. 2019). These recent advances motivated us to apply and evaluate a deep learning based
approach for our particular task.

Sequence tagging of historical data, and more specifically historical Dutch, is more challenging
than the tagging of standardized modern languages for several reasons. First of all, less data are
available for historical languages. Secondly, in the thirteenth and fourteenth century, no standard
Middle Dutch existed, and texts were manually copied. Scribes were not required to be consis-
tent and there was a lot of room for individual liberties (Kestemont and Van Dalen-Oskam 2009).
Consequently, it is possible that several orthographic forms of one word occur in the same text
(Kerckvoorde 1993). Moreover, in this period an amalgam of regional dialects existed, without any
sort of supra-regional variant (Kestemont et al. 2016). Most of the time, the scribes wrote phoneti-
cally, i.e., they wrote a word based on how they would pronounce it (Kerckvoorde 1993). Therefore,
there was a strong regional variation in the spelling, even for highly frequent words. Additionally,
there were preferred, more frequently used orthographic forms depending on when and, again, where
the texts were written. This lack of an orthographic standard makes the task of PoS tagging and
lemmatization more difficult (Kestemont et al. 2010).

However, not only the orthographic variation in Middle Dutch is much larger, compared to con-
temporary standardized Dutch, but also the morphological variation. An example of such variation
is the existence of a case system, similar to that of Latin, in which the declension varied in accordance
with the part of speech (Kerckvoorde 1993).

Apart from the morphological and orthographic variation, frequent lexical ambiguities pose a
third difficulty for sequence tagging (Manjavacas et al. 2019). Lexical ambiguity can arise, for
instance, when two tokens have the same form, but when they belong to different parts of speech.
For example, in English, “spelling” could be a noun or the gerund of a verb (“to spell”). In Middle
Dutch “dier” could be a noun (“animal”) or a determiner (“the” or “this”).

The remainder of this article is organized as follows: in related, we give a brief overview of similar
research, in method we present the corpora we worked on and outline the methodology used in this
study, in results we present results of the experiments with special attention to the errors our model
encountered. Finally, conclusions concludes the paper and discusses future work.

2. Related research

Daelemans et al. (1996) performed part-of-speech tagging using their memory-based tagger MBT on
the Findhoven corpus, a corpus of modern Dutch. However, their research differs from ours in that
they worked with contemporary data and had a smaller, less complicated tag set, as they restricted
it to 13 PoS tags. Kestemont et al. (2010) also used a memory-based approach in order to lemmatize
the literary texts in historical Dutch in Corpus Gysseling. They improved memory-based tagging
by applying Levenshtein distance. Longrée and Poudat (2010) compared the performance of three
sequence taggers on classical Latin texts, namely MBT, Trigrams'n’Tags (TnT) (Brants 2000),
and TreeTagger (Schmid 1994, 1995). In their experiments TnT performed slightly better than
MBT. HunPos is an open-source reimplementation of TnT. As Middle Dutch and Latin are both
morphologically rich languages, a similar performance is expected in our experiments, i.e., HunPos
is expected to outperform MBT on our data sets. Also for Middle Dutch, van Halteren and Rem
(2013) created a tagger-lemmatizer with a focus on orthographic variation. They used 10-fold cross-
validation on Corpus van Reenen/Mulder (CRM), and reached an overall tagging-lemmatization
accuracy of about 95%.

Nowadays, sequence tagging tasks are more often tackled by means of a neural approach. Keste-
mont et al. (2016) looked into lemmatization using character-level convolutions, thus replacing the
more traditional one-hot encoding. On CRM, the same corpus as van Halteren and Rem (2013) used,
they reported a slightly lower lemmatization accuracy of 93.95%. This was found to be advantageous
when tagging unknown tokens. Nevertheless, the authors proved that one-hot encoding remains a
good approach for known tokens. Schmid (2019) introduced a morphological tagger with the spe-
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cific scope of annotating historical texts. He used a character-based bidirectional LSTM (BiLSTM),
which allows the model to learn bidirectional long-term dependencies. He tested his PoS tagger
on Corpus Gysseling, among other historical corpora, tagging the words in their historical spelling,
without a normalization step. He achieved 91.01% accuracy on his test set for Middle Dutch. He
also used a standard encoder-decoder network for lemmatization, but that task was not tested on
CG.

Kestemont and De Gussem (2017) researched joint learning, and created a multi-class learning
environment, where lemmatization and PoS tagging can be executed at the same time. They tested
their model on Latin corpora and noticed that the performance of PoS tagging tasks increased
in a multi-task environment, but that the overall lemmatization results were lower. Since further
research is necessary in order to explain this phenomenon, we tried multi-task sequence labeling on
our corpora to verify whether we would find similar tendencies in Middle Dutch. Manjavacas et al.
(2019) used the PIE framework for lemmatization of non-standard languages with joint learning.
We based our experiments with the neural model on their work. However, instead of focusing on
multiple data sets, we limited our research to Middle Dutch and to how we could improve the model
specifically for our two data sets. We contribute to their research by creating a new neural network
based model with the PIE framework, and by doing a fine-grained error analysis. The morphological
and orthographic variation, as well as the lexical ambiguity previously mentioned, had an influence
on our decision to operate directly on the historical spelling, instead of on modern word forms, a
choice also made by Schmid (2019) and Dipper (2010, 2011), among others.

3. Methodology

3.1 Corpora
3.1.1 Corpus Gysseling (CG) AND Corpus van Reenen/Mulder (CRM)

We tested our sequence taggers on two corpora containing texts in Middle Dutch, from which we
extracted two separate data sets. First, we used the Corpus Gysseling (CG), which consists of 1.5
million tokens in various heterogeneous documents from the thirteenth century. It was published
between 1977 and 1987 on the initiative of Maurits Gysseling and has been annotated and digitized
by the Institute for Dutch Lexicology in Leiden, now called the Dutch Language Institute (INT).!
It was used as source material for a dictionary of Early Middle Dutch (VMNW) (Piotrowski 2012).
The corpus consists of a collection of documents that vary in length. Consequently, each text has
a different number of tokens. There are two main genres, namely literary documents and official
documents. We expect the first category to be more of a problem for sequence tagging, since there
is more room for individual liberties, contrary to the official documents in which we can encounter
some recurrent formulae. Apart from the different genres, there is also temporal variability (with a
maximum temporal distance of 100 years between two texts), and regional variability, as the corpus
includes texts from thirteen main regions.

The second corpus that we used in our experiments is the Corpus van Reenen/Mulder (CRM )?.
This corpus was compiled by Maaike Mulder and Piet van Reenen in the 1980’s and it consists of
2,700 charters from the fourteenth century. Contrary to the CG, this corpus only consists of formal
documents that treat legal affairs, consequently it contains some recurring field-specific expressions.
Mostly, these formulaic expressions occur at the beginning or the end of the charter, while the
middle is less fixed (van Halteren and Rem 2013). CRM was annotated manually, and cleaned
semi-automatically with pattern matching techniques. The Adelheid 1.0 tagger-lemmatizer was

1. The corpus is available for research on the following website: https://ivdnt.org/corpora-lexica/
corpus-gysseling/. A user-friendly interface has also been created, which allows to look for specific word forms,
lemmas, and parts of speech in the corpus: http://gysseling.corpus.taalbanknederlands.inl.nl/gysseling/
page/search

2. CRM is available on the following website: http://www.diachronie.nl/corpora/crmi4
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then trained on this corpus (Piotrowski 2012, Rem and van Halteren 2007). As van Halteren and
Rem indicate, it contains charters from 345 places of origins. Furthermore, since CRM contains
documents from the beginning to the end of the century, there is temporal variation.

The data sets contain three main elements, namely token, PoS tag, and lemma. The PoS tag con-
sists of a part of speech and supplementary morpho-syntactic features. The singular common noun
vrouwen has for instance NOU(type=common,number=sg,inflection=n) as PoS tag, and VROUW
as lemma. The following is an example of a phrase annotated with lemma and PoS tag information,
extracted from CG:

ene/PD(type=art,subtype=indef,inflection=e) /EEN//schone/ADJ(number=sg,inflection=e)
/SCHOON/ /historie/NOU(type=common,number=sg,inflection=0) /HISTORIE

In both data sets, there are contracted forms and compounds. With contracted forms, we indicate
tokens with two or more tags. These tokens are lemmatized and tagged per recognizable token. An
example of a contracted form that frequently occurs in both data sets is the token wvanden, with
the PoS categories ADP+PD and the lemmas VAN+DE. We will designate the standard forms as
single PoS/lemma tags, and if they are concatenated we will talk about double, triple, quadruple,
or quintuple PoS/lemma tags. The Middle Dutch compounds are treated in the same manner
as the contracted forms, e.g., hiuelants has two PoS categories (NOU+NOU) and two lemmas
(HOEVE+LAND).

3.1.2 PRE-PROCESSING

As illustrated in method: tokens, the data set extracted from CG consists of 1,035,780 non-unique
tokens after pre-processing. All tokens have been lower-cased and the punctuation has been removed,
since, in historical languages, punctuation was not consistently used because of (orthographic) vari-
ation (Piotrowski 2012). The end-of-sentence information was not always present in the annotated
corpus and the punctuation was not sufficient as an end-of-sentence indicator without a lot of (ex-
pensive) manual control. Instead we have opted to include the end-of-paragraph information in our
CG data set. The corpus contained Latin tokens that had not been annotated with a lemma and/or
had been labeled “other” as part of speech. As these Latin tokens were deemed irrelevant to our
analysis, we removed them during pre-processing. Our training and test sets were extracted from the
data set with a 80/20 split. For the neural model, a validation set was extracted from the training
data with a 90/10 split. In the training and test set, full documents were included on one particular
topic, as to avoid the risk of an information leak. The genre, literary or official, was also included
in the data set. 88.00% of the non-unique tokens in our pre-processed data set are from official
texts. In our test set, 9.60% of the tokens come from literary texts. We did not extract regional or
temporal information.

CcG CRM
full train test full train test
Unique tokens 58,045 50,084 20,044 55,752 48,864 20,976
Unique PoS 1,715 1,563 866 815 750 497
Unique lemmas 19,173 17,402 7,761 16,512 14,866 7,381
Total tokens 1,035,780 851,118 184,662 | 1,078,223 864,860 213,363

Table 1: Number of unique tokens (= types), tags, and lemmas in the full data set extracted from
Corpus Gysseling and Corpus van Reenen/Mulder. The distribution between training and
test set is indicated. The total amount of non-unique tokens per document are mentioned
in the final row.
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Test set | unknown tokens unknown tags unknown lemmas
CcG 5.78% 0.12% 1.74%
CRM 4.07% 0.04% 1.11%

Table 2: Number of non-unique unknown token, tags, and lemmas in the two test sets. “Unknown”
means that the tagger did not encounter these forms during training.

CG CRM
Single tags 94.52%  97.38%
Double tags 5.29%  2.60%
Triple tags 0.19%  0.01%
Quadruple tags | 0.01%  0.00%
Quintuple tags 0.00% N/A

Table 3: Non-unique contracted (lemma and PoS) tags in the two data sets. Percentage = n tags in
set / all tags in set. In CG, there were fifteen quintuple tags (none of which were included
in the test set). In CRM, there was only one quadruple tag, and there were no quintuple
tags.

CRM has a similar number of non-unique tokens (cf. method: tokens). Again, we removed the
punctuation and we lower-cased all tokens. Contrary to CG, the end-of-sentence information was
consistently indicated in the corpus and thus included in our data set. In this case, there were no
Latin tokens. As with the CG data set, we have opted for a 80/20 split to create the training and
test set. Contrary to the CG data set, we did not divide the corpus based on genre, since it only
contains official documents.

Both data sets have a similar number of tokens. The amount of non-unique unknown tokens,
PoS tags, and lemmas are given in method: unknown. Unknown tokens are tokens which occur in
the test set, but not in the training set. We found more unknown non-unique tokens in CG than in
CRM, which could influence the final results of our taggers.

From method: contracted, we can infer that most of the tags are not contracted. The CRM
data set, though still large, contains far fewer PoS tags and lemma tags (cf. method: tokens).
In addition, there are fewer contracted forms. Also, CRM has a more rigid structure, with only
charters, contrary to C'G, which has more variation in genre. Because of this, we expect to perform
better on this corpus.

PoS: CcG CRM

subcategories | full train test | full train test
NOU 29 29 24 | 22 22 20
PD 64 64 55 | 56 56 55
VRB 58 57 46 | 59 59 47
ADJ 18 18 13 ] 14 14 12
ADV 55 50 44 | 37 35 29
ADP 10 10 10 6 6 5
NUM 23 23 20 | 19 19 18
CON 25 24 19| 15 14 9

Table 4: Distribution of non-contracted tags for PoS tags in both data sets. The number of subcat-
egories in the training and test set are also indicated.
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The different parts of speech the tagger can encounter in CG and CRM are shown in method:
PoS cat. We notice that the two data sets have a very similar distribution with respect to the
PoS categories, even though the CRM data set generally contains fewer subcategories. We define
subcategories as tags with the same part of speech, but with different morpho-syntactic information,
e.g., type (common/proper) or number (plural/singular).

3.2 Taggers
3.2.1 BASELINES: MBT aAND HuUNPOS

MBT (Memory-Based Tagger) is a statistical, memory-based tagger, introduced by Daelemans et al.
(1996).2 We decided to use this model as a baseline in our evaluation because it has been a popular
sequence tagger for modern Dutch (Kestemont and De Gussem 2017). In a memory-based approach,
training examples are being stored, each with its preceding and following context and its label.
When the trained model encounters a new token during tagging, it searches for the most similar
stored example, and assigns the same label to the test example. It is therefore a form of “inductive
learning from examples” (Daelemans et al. 1996). MBT automatically extracts a lexicon from
the training set. During tagging, every token will be looked up in this lexicon, and based on its
presence there, it will be treated as known or unknown. Unknown tokens will be classified based
on their context and their form. The morphological information taken into account concerns mostly
the suffixes (Daelemans et al. 1996). MBT, and memory-based learning algorithms in general,
have the advantage that they can handle sparse data, with an implicit similarity-based smoothing
scheme, and that they implement automatic feature-weighting. They are lazy learners, since memory
storage is done without abstraction, therefore there is no rule induction in this part (Zavrel and
Daelemans 1999). During tagging, a similarity-based classification will take place. There are several
options for parameter tuning, for which we refer to the reference guide accompanying the software by
Daelemans et al. (2010). In this article, however, we opted for the default parameters: The tagger
generator creates a list with the 100 most frequent words in the corpus. For the known words,
the memory-based learning algorithm is IGTREE, consequently features are sorted according to
information gain and classification happens through decision-tree traversal. For unknown words,
IB1 with the overlap metric with gain ratio feature weighting is used, and the number of nearest
neighbors is set to 1.

The other baseline used on our two data sets is HunPos®*. This is an open source trigram tagger,
created in 2007. It is a reimplementation of the closed source TnT tagger, and they are both taggers
based on Markov models (Brants 2000). The earliest statistical approaches already used Hidden
Markov Models (HMM), and had the aim to build probabilistic models of tag transition sequences
in sentences (Zavrel and Daelemans 1999). HunPos takes contextualized lexical probabilities into
account, and more precisely the information of current and previous tag. It makes use of the end-
of-sentence information. It has the major advantage that the training/tagging cycle is a lot faster
than in most statistical models (Haldcsy et al. 2007). Morphological information is also integrated,
which is supposed to increase the precision during the tagging of unknown and unseen tokens. When
the tagger encounters an unseen token, it generates all possible labels and then assigns weights to
it using a suffix guessing algorithm (Haldcsy et al. 2007). It is a command line tool, with only a
few possibilities of parameter tuning, which are described in Megyesi (2009) and Brants (2000). As
for MBT, we have opted for the default parameters. For training, this means that the probability
of a tag, as well as the probability of a token, is estimated based on the previous 2 tags, and that
the rareness parameter is set at 10. Also, the length of the longest suffix to be considered when the
algorithm estimates an unseen word’s tag distribution is 10. Finally, during tagging, HunPos keeps
10 tags with the highest probabilities.

3. Code available online: https://languagemachines.github.io/mbt/.
4. HunPos is available on this website: https://code.google.com/archive/p/hunpos/downloads
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3.2.2 NEURAL APPROACH

We built a neural network-based model for sequence labeling, with an encoder-decoder architecture,
using the PIE framework (Manjavacas et al. 2019). Besides facilitating this task, the PIE framework
also allows for the joint learning of sequence labeling tasks of variation-rich languages (in this case
Middle Dutch), or in other words, it is possible to combine lemmatization and part-of-speech tagging.

The underlying structure of PIE is hierarchical, features are extracted from the character-level up
to the sentence-level. For instance, for each input token, a sentence-level feature vector is extracted
and then used to predict certain target tasks (Manjavacas et al. 2019). In our case, we tested the
performance of the model on PoS tagging and lemmatization, separately as well as jointly.

The PIE framework is highly configurable and user-friendly, as it allows for a lot of parameter
tweaking. By means of this framework, we carried out the parameter tuning on the development set
and created a neural model that allowed us to achieve good results on the two test sets. Keeping
the differences between the tag sets in mind, we decided to build different models for each data set
to achieve optimal performance based on the development set.

For PoS tagging we used PIE to build a one-layered model, with a linear decoder. It is a Recurrent
Neural Network (RNN) with Long Short-Term Memory (LSTM) as a cell type. LSTM is a “recurrent
network architecture in conjunction with an appropriate gradient-based learning algorithm” , which is
designed to overcome the error back-flow problems of RNN (Hochreiter and Schmidhuber 1997). The
hidden layer size was 300. The main difference between the present model and that of Manjavacas
et al. (2019) is that we opted for a word-level approach, and not a character-level approach, as this
approach yielded better results during preliminary experiments on our development set. We also
enlarged the default maximum sentence length to fifty words. The batch size of our model was 32.
Manjavacas et al. (2019) proved that for lemmatization, it is possible to get better results by using
joint Language Model loss, especially on ambiguous data sets. However, on our CG data set, with
PoS tagging as the target task, we found better results without LM-loss. It was included for our
CRM data set, with 0.2 as weight. Pretraining embeddings using word2vec did not improve the CG
model either, but it did improve the results on the validation set of CRM. Our drop-out rate was 0.5
and the value of our learning rate was 0.75. As an optimizer we used Adam (Kingma and Ba 2015).

For lemmatization, we built an identical model for the two data sets. We made, similarly to
our approach for PoS tagging, a one-layered RNN with LSTMs, but with a hidden layer size of
200. Again, we approached this task on a word-level, as this yielded better results during parameter
tuning on the development set. In this case, we did include the autoregressive loss (with 0.3 as
weight and factor 0.5). The batch size was 64. For the lemmatizer, we did get better results by
pretraining the embeddings with word2vec. Our learning rate is the same as for our PoS model, but
the drop-out rate was 0.4. As in our PoS model, we used Adam as an optimizer.

For our combined model with the CRM data set, we obtained better results by making PoS
tagging our target task. With the CG data set, lemmatizing was our target task. We used sim-
ilar settings to those of the PoS model of CRM, LM-loss with 0.2 as weight included. However,
pretraining did not improve the performance of the model.

4. Results

4.1 General Findings

For our part-of-speech tagging task on the data set extracted from Corpus Gysseling, we achieved a
total accuracy of 87.23% using MBT with the default settings. HunPos, also with the default settings,
reached 89.08% accuracy. With the neural approach, using the PIE framework, we found the highest
accuracy, namely 91.83%. In resultsl: CG PoS the performance on contracted forms is illustrated.
We notice that single tags were, as expected, overall better predicted by the taggers. Secondly, in
general, the neural network approach obtained better results. This is especially true for the double
tags, as there was a clear increase in performance compared to the other two taggers (HunPos:
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CG': contracted MBT HunPos PIE-FW
Single PoS tags 87.83% 89.78% 92.39%
Double PoS tags 77.81% 78.09% 83.27%
Triple PoS tags 39.33% 39.61% 41.85%
Quadruple Pos tags 0.00% 0.00% 0.00%
Overall 87.23%  89.08% 91.83%

Table 5: Accuracy of the three models on Corpus Gysseling and comparison of the performance on
the contracted PoS forms.

CRM:: contracted MBT HunPos PIE-FW
Single PoS tags 92.00% 93.14% 95.03%
Double PoS tags 85.60% 85.49% 87.72%
Triple PoS tags 23.81% 23.81% 19.05%
Quadruple PoS tags 0.00% 0.00% 0.00%
Overall 91.83% 92.93% 94.82%

Table 6: Accuracy of the three models on Corpus van Reenen/Mulder and comparison of the per-
formance on the contracted PoS forms.

-5.18%, MBT: -5.46%). All three taggers failed to correctly predict any of the 18 quadruple tags in
the test set. This is not surprising, as there were only 76 of these forms included in the training set.

The results for the PoS tagging task on the CRM corpus are listed in resultsl: CRM PoS. With
MBT, we reached a total accuracy of 91.83%. With HunPos, with the default settings, 92.93%.
With the neural approach, using the PIE framework, we achieved an accuracy of 94.82%, and thus
the best performance. If we look at the contracted forms, we notice that the neural model reached
a substantially lower accuracy (-4.76%) than MBT or HunPos on the rare triple PoS tags.

MBT, HunPos, and the neural model performed better on the second data set, with entries from
the fourteenth century. We achieved the greatest increase in performance with MBT (4+4.60%), and
the lowest increase with our neural model (+2.99%). However, for our neural PoS tagger we used
different parameters for each of the two corpora, which made them difficult to compare.

There are several possible causes for this increase in performance. Since both data sets have
approximately the same number of tokens, we do not consider this aspect to be an influential factor.
A possible reason for a higher accuracy seems to be the fact that the tag set of CRM is smaller
(cf. method: tokens), and that it contains fewer contracted forms (cf. method: contracted). This
would also explain why the accuracy increased the most with a memory-based learning approach. If
there are fewer varied examples in memory, the tagger can more accurately identify the most similar
token and attribute the correct tag to the test example. The downside of the smaller tag set is that
the CRM data set contains fewer contracted triple forms, and, consequently, that on this specific
task the performance of the taggers decreases drastically. However, this does not really influence
the overall accuracy, since these triple forms only concern a small part of the test set. Furthermore,
the higher frequency of these forms can facilitate the learning process. Another explanation we have
mentioned earlier could be that C'G has more variation in genre, as it also includes literary texts,
whereas CRM only contains official documents.

Now, we will briefly look at the performance of the lemmatization task on CG. All taggers reached
a better overall accuracy on this sequence labeling task. With MBT we reached 89.08% accuracy,
with HunPos 90.24% and with the neural model 92.23%.

As illustrated in resultsl: CG lemma, we encountered the same tendencies as for PoS tagging,
but each tagger performed slightly better on lemmatization. This was mainly caused by a higher
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CG: LEM MBT HunPos PIE-FW
Single LEM tags 89.77% 90.92% 92.90%
Double LEM tags 78.08% 79.33% 81.64%
Triple LEM tags 38.48% 40.17% 41.29%
Quadruple LEM tags 0.00% 0.00% 0.00%
Overall LEM 89.08% 90.24% 92.23%

Table 7: Accuracy of the three models on Corpus Gysseling for lemmatization and comparison of
the performance on the contracted forms.

CRM: LEM MBT HunPos PIE-FW
Single LEM 92.79% 93.51% 94.93%
Double LEM 87.56% 87.83% 88.23%
Triple LEM 19.05% 19.05% 28.57%
Quadruple LEM 0.00% 0.00% 0.00%
Overall LEM 92.64%  93.35% 94.74%

Table 8: Accuracy of the three models on Corpus van Reenen/Mulder for lemmatization and com-
parison of the performance on the contracted forms.

accuracy on single lemma tags, which make up the biggest part of our data set. However, the neural
model performed with a slight decrease in accuracy while tagging double and triple tags, and so
did HunPos for double tags. As mentioned earlier, in our neural modal we adopted a word-level
approach. This affected the results on unknown tokens. On lemmatization with CG our model
achieved an accuracy of 51.15%. On PoS tagging, the predictions were more accurate (69.44%).
Since there were less than 5% unknown tags, this did not have a large influence on the final accuracy

score.

In resultsl: CRM lemma we see a similar distribution for the lemmatization of CRM. With
MBT we reached a total accuracy of 92.64%, with HunPos 93.35% and with the neural approach
94.74%. With HunPos and MBT, the overall performance was higher for lemmatization than for PoS
tagging. However, the model built with the PIE framework achieved a slightly lower accuracy on
this task, even though it performed better on the triple tags than the other two models. Moreover, it
outperformed the PoS tagging task on these contracted forms. The accuracy of our neural model on
unknown tokens while lemmatizing was 52.85%. For the PoS tagging task, this accuracy increased

to 79.59%.

If we compare the results for the lemmatization of the two data sets, we notice the same tendencies
as for part-of-speech tagging, though the difference in accuracy is smaller (CRM: MBT: +3.56%,
Hunpos: + 3.11% and PIE-FW: +2.51%). In this case, all three taggers used the same parameters
on both data sets.

Concerning the performance on unknown tokens, we notice that the neural models had more
difficulties with lemmatization than with PoS tagging. This is not surprising since the lemma sets
of both data sets were much larger than their tag sets, and the tagger had already encountered most
of the PoS tags during training. Moreover, for PoS tagging our model performed better on CRM
than on CG. Again, this is probably due to the fact that the CRM tag set was far less complicated

than the tag set of CG.
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CG: PoS MBT HunPos PIE-FW
NOU 87.20% 89.13% 91.82%
PD 88.39% 90.41% 91.88%
VRB 84.96% 87.77% 91.65%
ADJ 83.90% 86.59% 88.94%
ADV 73.46% 78.94% 83.36%
ADP 96.87% 96.77% 97.86%
NUM 89.07% 90.34% 94.60%
CON 92.57% 93.53% 96.04%
Overall 87.83%  89.78% 92.39%

Table 9: Accuracy for the three taggers on the Corpus Gysseling test set, with the specific goal
of comparing the accuracy on each part of speech. We only considered the single tags
(contracted forms were excluded).

CRM: PoS MBT HunPos PIE-FW
NOU 90.24% 91.55% 93.41%
PD 92.72% 93.75% 95.48%
VRB 88.52% 90.32% 93.35%
ADJ 90.84% 91.81% 93.96%
ADV 84.57% 87.35% 91.42%
ADP 98.30% 98.37% 99.07%
NUM 96.33% 96.32% 97.76%
CON 96.65% 97.44% 98.22%
Overall 92.00% 93.14% 95.03%

Table 10: Accuracy for the three taggers on the Corpus van Reenen/Mulder test set, with the specific
goal of comparing the accuracy on each part of speech. We only considered the single tags
(contracted forms were excluded).

4.2 Error Analysis

In this section, we will look further into the difficulties the models encountered and the categories
where the three taggers performed better or worse.

EA: CG PoS cat and EA: CRM PoS cat show the performance on single tags in more detail for
both data sets, by evaluating the prediction for each part of speech separately. The taggers performed
best on adpositions (ADP), conjunctions (CON), and numerals (NUM). The lowest accuracy was
reached on adverbs (ADV). We presuppose that this is caused by the large number of morpho-
syntactic subcategories, as illustrated in method: PoS cat. One could counter this hypothesis by
pointing out the fact that on verbs (VRB) and pronouns/determiners (PD) a higher accuracy was
reached than on adverbs, even though VRB and PD contained more subcategories. However, when
we look at the full data set, including the non-unique tokens, we notice that the models were trained
on double the number of VRB tags and triple the number of PD tags.

If we compare the two data sets, we notice that the three taggers performed better on all cat-
egories in the CRM data set. However, the difference was more apparent for the adverb category.
Again, we believe that this is due to the fact that adverbs in CRM had less subcategories than in
CG (cf. method: PoS cat).

To verify our hypothesis, we evaluated our trained taggers on the main parts of speech, with-
out any morpho-syntactic values, thus on the so-called 'short’ forms. The detailed results of this
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CcG CRM
PIE PoS 91.83%  94.82%
PIE LEM 92.23%  94.74%
PIE-MT PoS 91.71% 94.89%
PIE-MT LEM | 92.86%  95.26%

Table 11: A comparison of the results we obtain for both tasks (PoS and LEM), without multi-task
sequence tagging and with (-MT). The accuracy on the target task is printed in bold.

experiment are listed in appendix: CG short and appendix: CRM short in the Appendix (5). After
the subcategories were removed during the evaluation, the performance improved substantially for
all three taggers (on CG: MBT: 4+6.67%, HunPos: +6.00%, PIE-FW: +4.53%). As expected, the
performance on the adverb category increased the most, e.g., with +7.72% on CG using the neural
model (cf. appendix: CG cat short and appendix: CRM cat short).

For CG, we looked at the performance of our neural tagger based on text genre. On official texts,
our PoS tagger scored 7.83% higher than on literary texts. The same tendency was noted in our
predictions for the lemmatization task, with a 6.30% higher accuracy on official texts compared to
literary texts.

Finally, in EA: MT, we compare the accuracy of the neural model on the CG and CRM data
sets in a multi-task environment to those achieved for each task separately. As mentioned earlier (cf.
3.2.2), our target task in the combined model for CG was lemmatization. The performance increased
on this specific task, but there was a slight decrease in accuracy for PoS tagging. The performance on
more complex triple tags slightly decreased for the lemmatization task, and substantially improved
on the PoS tagging task. For CRM, the target task was PoS tagging. The performance on the CRM
data set increased only slightly on the target task. However, on lemmatization it increased with
+0.52%. On CRM, the performance on triple tags did not improve.

5. Conclusion

We developed a novel neural model for historical linguistic enrichment, and rigorously evaluated this
model on PoS tagging and lemmatization of historical Dutch, using two existing sequence taggers
as baselines. The adequate automated annotation of historical Dutch corpora can facilitate further
research. In general, we obtained better results with our a neural approach, even when there were not
many training data, e.g., for the lemmatization of triple tags. Furthermore, we also noted that, as for
classical Latin data (Longrée and Poudat 2010), a HMM-based model (HunPos) performed better
on Middle Dutch than a memory-based model (MBT). In general, our model performed better on
the lemmatization task than on the PoS tagging task. Concerning the results on CRM, our accuracy
of almost 95% on both sequence tagging tasks was similar to the result of the tagger-lemmatizer of
van Halteren and Rem (2013), who expanded the lexicon by including orthographic variations, and
then used 10-fold cross-validation.

By evaluating our models, and by giving special attention to the difficulties the model encoun-
tered, we noticed that, next to sparse data, the task of attributing a part-of-speech tag to a token
was rendered more difficult by the complicated PoS tag set, which included subcategories with in-
flectional information. The complicated tag set was a consequence of the morphological variation
of Middle Dutch. A first solution would be to work with a simplified tag set, although the full tag
information might contribute to the disambiguation. Another solution would be to predict this mor-
phological and inflectional information separately, perhaps by adding the lemma and PoS category
as separate features to execute the task.
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By adding more training data, we would be able to improve our results, but unfortunately data
in Middle Dutch is rather sparse. Another, and more realistic option, would be to adapt some
decisions made during pre-processing. For instance, in CG, there were Latin tokens that had not
been annotated with a lemma, and that had received “other” as tag. We decided to remove these
tokens from our data set. However, some Middle Dutch words in the corpus were surrounded by
Latin words. HunPos, as a trigram tagger, takes the context of a token into account, but after
removing the Latin, the context of these tokens was processed differently. That would have been
less of a problem if the end-of-sentence information had been correctly extracted from the corpus,
but, as we explained in related, doing this would necessitate more manual labour. A possible solution
to this issue would be to keep the Latin tokens in the data set, but to exclude them from evaluation,
or to replace them by a marker <LATIN>. Another option would be to remove texts with more
tokens in Latin than in Middle Dutch from the data set, using a threshold.

Another possibility to improve our results would be the integration of a lexicon-based lemma-
tization approach, in which a computational lexicon (containing a mapping between lemmas and
inflections) would be used as an extra input to a neural model. However, because of the particular
nature of Middle Dutch, this approach would have supplementary difficulties with correctly tag-
ging out-of-vocabulary words, and with orthographic variation (Kestemont and De Gussem 2017).
Therefore, a normalization step would have to be added, e.g., using Levenshtein distance (Kestemont
et al. 2010). As previously mentioned, according to Manjavacas et al. (2019), normalization is not
feasible for historical languages. However, van Halteren and Rem (2013) showed that by taking
orthographic variation into account and by expanding the lexicon, they reached higher accuracy,
with minimal increase in ambiguity.

During our evaluation, we noticed that the performance for lemmatization and part-of-speech
tagging on official text seemed higher than on literary texts. We believe that, for both tasks,
this result is influenced by the more rigid structure of official documents, as we discussed in intro.
However, as our data set was not equally balanced based on genre, more research is needed to verify
our hypothesis.

With this research article, we have shown that neural networks can be used as a powerful tech-
nique to automate the linguistic enrichment of historical Dutch corpora, if used in combination
with human knowledge of factors like genre and historical variation. We hope that our findings will
facilitate future linguistic research on historical corpora.
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Appendix

CG: Short PoS MBT HunPos PIE-FW
Single tags short 94.66% 95.90% 97.16%
Double tags short 81.76% 81.89% 87.44%
Triple tags short 41.85% 42.70% 45.22%
Quadruple tags short 0.00% 0.00% 0.00%
Overall 93.90% 95.08% 96.36%

Table 12: Results for PoS tagging on the contracted forms in the CG test set. Only the main parts
of speech are taken into account (left column), the subcategories are ignored (morpho-

syntactic values).

CRM: Short PoS MBT HunPos PIE-FW
Single tags short 96.33% 97.25% 98.14%
Double tags short 88.43% 88.14% 90.71%
Triple tags short 23.81% 23.81% 19.05%
Quadruple tags short 0.00% 0.00% 0.00%
Overall 96.11% 97.00% 97.93%

Table 13: Results for PoS tagging on the contracted forms in the CRM test set. Only the main parts
of speech are taken into account (left column), the subcategories are ignored (morpho-
syntactic values).

CG: Short PoS MBT HunPos PIE-FW
NOU 96.64% 97.87% 98.17%
PD 95.11% 96.30% 97.11%
VRB 93.41% 95.23% 97.03%
ADJ 89.55% 91.07% 92.95%
ADV 82.90% 86.67% 91.08%
ADP 98.07% 98.07% 99.15%
NUM 94.95% 95.25% 96.95%
CON 95.04% 95.96% 97.59%
Overalll 94.66%  95.90% 97.16%

Table 14: Results for PoS tagging on the short version of the single tags in the CG test set. Only the
main parts of speech are taken into account (left column), the subcategories are ignored
(morpho-syntactic values).
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CRM: Short PoS MBT HunPos PIE-FW
NOU 97.44% 98.30% 98.63%
PD 97.65% 98.08% 98.89%
VRB 94.88% 96.44% 97.70%
ADJ 93.00% 94.25% 96.05%
ADV 87.06% 90.23% 93.24%
ADP 98.57% 98.83% 99.33%
NUM 97.31% 97.58% 98.81%
CON 97.82% 98.35% 98.79%
Overall 96.33%  97.25% 98.14%

Table 15: Results for PoS tagging on the single tags in the CRM test set. Only the main parts
of speech are taken into account (left column), the subcategories are ignored (morpho-
syntactic values)
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